Optimizing the Sowing Date and Irrigation Strategy to Improve Maize Yield by Using CERES (Crop Estimation through Resource and Environment Synthesis)-Maize Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Crop Management and Irrigation
2.3. Water Use Efficiency
2.4. Field Measurements
2.5. CERES-Maize Model Description and Calibration
2.6. Statistical Model Evaluation
2.7. Crop Cultivar Coefficient
2.8. Scenario Simulation
2.8.1. Optimum Sowing Date Treatments
2.8.2. Irrigation Strategy
3. Results and Discussion
3.1. Calibrated Parameters Output
3.2. Model Simulation Evaluation
3.2.1. Grain Yield and Aboveground Biomass
3.2.2. Soil Moisture Content
3.2.3. Leaf Area Index
3.2.4. Water Use Efficiency
3.2.5. Optimum Sowing Date
3.2.6. Irrigation Strategy
3.2.7. Seasonal Water Use Efficiency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, S.; Wang, P.; Engel, P. Effects of virtual water flow on regional water resources stress: A case study of grain in China. Sci. Total Environ. 2016, 550, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jia, Z.; Ren, X.; Zhang, Y.; Chen, X.; Bing, H.; Zhang, P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agric. Water Manag. 2015, 158, 1–9. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Dong, S.; Liaqat, U.W.; Faiz, M.A.; Hu, Y.; Saddique, Q. Recent climate trends and drought behavioral assessment based on precipitation and temperature data series in the Songhua River basin of China. Water Resour. Manag. 2016, 30, 4839–4859. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Ping, H.; Bai, Y.L.; Jin, J.Y.; Drury, C.F.; Zhu, Y.P.; Yang, X.M.; Li, W.J.; Xie, J.G. Optimizing parameters of CSM-CERES-maize model to improve simulation performance of maize growth and nitrogen uptake in northeast China. J. Integr. Agric. 2012, 11, 1898–1913. [Google Scholar] [CrossRef]
- Benjamin, J.; Nielsen, D.; Vigil, M.; Mikha, D.; Calderon, F. Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems. Agric. Water Manag. 2015, 159, 107–114. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Reddy, P.P. Supplemental Irrigation, Sustainable Intensification of Crop Production; Springer: Gateway East, Singapore, 2016; pp. 253–265. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aqua Crop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Stockle, C.; Cabelguenne, M.; Debaeke, P. Comparison of Crop Syst performance for water management in southwestern France using submodels of different levels of complexity. Eur. J. Agron. 1997, 7, 89–98. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.; Meinke, H.; Hochman. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Cameira, M.; Sousa, P.; Farahani, H.; Ahuja, L.; Pereira, L. Evaluation of the RZWQM for the simulation of water and nitrate movement in level-basin, fertigated maize. J. Agric. Engng. Res. 1998, 69, 331–341. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.; Dyke, P. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; pp. 17–39. [Google Scholar]
- Ritchie, J. The CERES-Maize model. CERES Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; pp. 1–6. [Google Scholar]
- Ritchie, J.; Alocilja, E.C.; Singh, U.; Uehara, G. IBSNAT and the CERES-Rice model. Weather and Rice. 1986, 11, 17–27. [Google Scholar]
- Carberry, P.; Muchow, R.; McCown, M. Testing the CERES-Maize simulation model in a semi-arid tropical environment. Field Crops Res. 1989, 20, 297–315. [Google Scholar] [CrossRef]
- Nouna, B.; Katerji, N.; Mastrorilli, M. Using the CERES-Maize model in a semi-arid Mediterranean environment. Evaluation of model performance. Eur. J. Agron. 2000, 13, 309–322. [Google Scholar] [CrossRef]
- DeJonge, K.; Andales, A.; Ascough, I.I.; Hansen, N. Modeling of full and limited irrigation scenarios for corn in a semiarid environment. Trans. ASABE 2011, 54, 481–492. [Google Scholar] [CrossRef]
- Dogan, E.; Clark, G.; Rogers, D.; Martin, V.; Vanderlip, R. On-farm scheduling studies and ceresmaize simulation of irrigated corn. Appl. Eng. Agric. 2006, 22, 509–516. [Google Scholar] [CrossRef]
- Gerçek, S.; Okant, M. Evaluation of CERES-maize simulation model results with measured data using water pillow irrigation under semi-arid climatic conditions. Afr. J. Agric. Res. 2010, 5, 606–613. [Google Scholar]
- Braga, R.; Cardoso, M.; Coelho, J. Crop model based decision support for maize (Zea mays L.) silage production in Portugal. Eur. J. Agron. 2008, 28, 224–233. [Google Scholar] [CrossRef]
- Ruane, A.C.; Cecil, L.D.; Horton, R.M.; Gordón, R.; McCollum, R.; Brown, D.; Killough, B.; Goldberg, R.; Greeley, AP.; Rosenzweig, C. Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agric. For. Meteoro. 2013, 170, 132–145. [Google Scholar] [CrossRef]
- Soler, C.M.T.; Sentelhas, P.C.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- Strzepek, K.M.; Major, D.C.; Rosenzweig, C.; Iglesias, A.; Yates, D.N.; Holt, A.; Hillel, D. New methods of modeling water availability for agriculture under climate change: The US corn belt. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1639–1655. [Google Scholar] [CrossRef]
- Bannayan, M.; Mansoori, H.; Rezaei, E.E. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran. Int. J. Biometeorol. 2014, 58, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Sultana, H.; Ali, N.; Iqbal, M.M.; Khan, A.M. Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Clim. Change 2009, 94, 123–142. [Google Scholar] [CrossRef]
- Yun, J.I. Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agric. Syst. 2003, 77, 23–38. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, Z.; Wu, W.; Yang, Y.; Zhou, Y.; Xu, C. Potential Impacts of Climate Change and Adaptation on Maize in Northeast China. Agron. J. 2017, 109, 476–1490. [Google Scholar] [CrossRef]
- Guo, R.; Lin, Z.; Mo, X.; Yang, C. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric. Water Manag. 2010, 97, 1185–1194. [Google Scholar] [CrossRef]
- Ji, J.; Cai, H.; He, J.; Wang, J. Performance evaluation of CERES-Wheat model in guanzhong plain of Northwest China. Agric. Water Manag. 2014, 144, 1–10. [Google Scholar] [CrossRef]
- Wang, W. Optimal Irrigation Schedule for Winter Wheat in the Guanzhong Irrigation District Based on DSSAT Model; Research Center of Soil and Water Conservation and Eco-environment: Beijing, China, 2012. [Google Scholar]
- China Meteorological Data Service. Available online: http://data.cma.cn/data/cdcindex/cid/f0fb4b55508804ca (accessed on 29 May 2017).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements-FAO IRRIGATION and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Tsuji, G.Y.; Hoogenboom, G.; Thornton, P.K. Understanding Options for Agricultural Production; Springer Science and Business Media: Honolulu, HI, USA, 2013. [Google Scholar]
- Jones, J.; Keating, B.; Porter, C. Approaches to modular model development. Agric. Syst. 2001, 70, 421–443. [Google Scholar] [CrossRef]
- Tsuji, G.Y.; Uehara, G.; Balas, G. DSSAT version 3. International Benchmark Sites Network for Agrotechnology Transfer; Univrsity of Hawai: Honolulu, HI, USA, 1994. [Google Scholar]
- He, J.; Dukes, M.; Jones, J.; Graham, W.; Judge, J. Applying GLUE for estimating CERES-Maize genetic and soil parameters for sweet corn production. Trans. ASABE 2009, 52, 1907–1921. [Google Scholar] [CrossRef]
- Mavromatis, T.; Boote, K.; Jones, J.; Irmak, A.; Shinde, D.; Hoogenboom, G. Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Sci. 2001, 41, 40–51. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Math. Soc. 1982, 63, 1309–1369. [Google Scholar] [CrossRef]
- Anothai, J.; Soler, C.; Green, A.; Trout, T.; Hoogenboom, G. Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. Agric. Forest Meteorol. 2013, 176, 64–76. [Google Scholar] [CrossRef]
- Adnan, A.A.; Jibrin, J.M.; Kamara, A.Y.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES–Maize Model for determining the optimum planting dates of early maturing maize varieties in northern Nigeria. Front. Plant Sci. 2017, 8, 1118. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.K.; Hoogenboom, G. A computer program to analyze single-season crop model outputs. Agron. J. 1994, 86, 860–868. [Google Scholar] [CrossRef]
- Dokoohaki, H.; Gheysari, M.; Mousavi, S.F.; Zand-Parsa, S.; Miguez, F.E.; Archontoulis, S.V.; Hoogenboom, G. Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition. Agric. Water Manag. 2016, 163, 90–99. [Google Scholar] [CrossRef]
- Thorp, K.R.; Hunsaker, D.J.; French, A.N.; White, J.W.; Clarke, T.R.; Pinter, J.R. Evaluation of the CSM-CROPSIM-CERES-Wheat model as a tool for crop water management. Trans. ASABE 2010, 53, 87–102. [Google Scholar] [CrossRef]
- Mubeen, M.; Ahmad, A.; Wajid, A.; Khaliq, T.; Bakhsh, A. Evaluating CSM-CERES-Maize Model for Irrigation Scheduling in Semi-arid Conditions of Punjab, Pakistan. Int. J. Agric. Biol. 2013, 15, 16–23. [Google Scholar]
- DeJonge, K.; Ascough, J.; Andales, A.; Hansen, N.; Garcia, L.; Arabi, M. Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agric. Water Manag. 2012, 115, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Igbadun, H.E.; Salim, B.A.; Tarimo, A.K.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irri. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.M. Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Prod. Sci. 2017, 20, 353–365. [Google Scholar] [CrossRef]
- Kirda, C. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In Deficit Irrigation Practice; Water reports 22; FAO: Rome, Italy, 2002; pp. 1–3. [Google Scholar]
Soil Property | Soil Layers (cm) | ||||
---|---|---|---|---|---|
0–23 | 23–35 | 35–95 | 95–196 | 196–250 | |
Texture | silty clay loam | silty clay loam | silty clay loam | silt loam | silty clay loam |
Sand % | 26.71 | 24.98 | 24.11 | 21.32 | 30.64 |
Silt % | 50.85 | 52.78 | 54.75 | 48.60 | 47.55 |
Clay% | 22.10 | 22.10 | 20.90 | 30.10 | 21.60 |
Bulk density, g cm−3 | 1.32 | 1.40 | 1.41 | 1.36 | 1.32 |
Wilting Point % | 10.8 | 10.9 | 12.8 | 14.5 | 14.5 |
Field Capacity % | 28.2 | 27.6 | 27.9 | 28 | 27.8 |
Organic matter % | 1.17 | 0.65 | 0.55 | 0.64 | 0.39 |
Total N, % (w/w) | 0.09 | 0.06 | 0.05 | 0.05 | 0.03 |
Total P, % (w/w) | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Total K, % (w/w) | 1.74 | 1.25 | 1.20 | 1.39 | 1.75 |
pH | 8.00 | 8.20 | 8.20 | 8.20 | 8.20 |
Treatments | 2012 | 2013 | |||||
---|---|---|---|---|---|---|---|
23 June | 29 July | 25 August | 13 July | 8 August | 15 August | 08 September | |
CK | 1.0 a | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
T2 | 1.0 | 0.8 b | 0.8 | 1.0 | 0.8 | 0.8 | 0.8 |
T3 | 1.0 | 0.6 c | 0.6 | 1.0 | 0.6 | 0.6 | 0.6 |
T4 | 0.8 | 1.0 | 0.8 | 0.8 | 1.0 | 0.8 | 0.6 |
T5 | 0.8 | 0.8 | 0.6 | 0.8 | 0.8 | 0.6 | 1.0 |
T6 | 0.8 | 0.6 | 1.0 | 0.8 | 0.6 | 1.0 | 0.8 |
T7 | 0.6 | 1.0 | 0.6 | 0.6 | 1.0 | 0.6 | 0.8 |
T8 | 0.6 | 0.8 | 1.0 | 0.6 | 0.8 | 1.0 | 0.6 |
T9 | 0.6 | 0.6 | 0.8 | 0.6 | 0.6 | 0.8 | 1.0 |
Treatments | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|
CK | 175 | 262 | 179 | 192 |
T2 | 149 | 220 | ||
T3 | 123 | 178 | ||
T4 | 152 | 205 | ||
T5 | 126 | 213 | ||
T6 | 142 | 211 | ||
T7 | 129 | 198 | ||
T8 | 145 | 196 | ||
T9 | 119 | 204 |
Parameters | Values | Description |
---|---|---|
P1 | 164.6 | Degree days (base 8 °C) from emergence to end of juvenile phase |
P2 | 0.551 | Photoperiod sensitivity coefficient |
P5 | 780.3 | Degree days (base 8 °C) from silking to physiological maturity |
G2 | 808.0 | Potential kernel number |
G3 | 8.425 | Potential kernel growth rate mg/day |
PHINT | 50.22 | Degree days required for a leaf tip to emerge (phyllochron interval) (degree days) |
Crop Growth Stages and Irrigation Amount (mm) | ||||
---|---|---|---|---|
Irrigation Treatments | Emergence | Flowering | Grain Filling | Maturity |
I1 | Rainfed | Rainfed | Rainfed | Rainfed |
I2 | 100 | |||
I3 | 100 | |||
I4 | 100 | |||
I5 | 100 | |||
I6 | 100 | 100 | ||
I7 | 100 | 100 | ||
I8 | 100 | 100 | ||
I9 | 100 | 100 | 100 | |
I10 | 100 | 100 | 100 | |
I11 | 100 | 100 | 100 | 100 |
I12 | Automatic irrigation 80% | Automatic irrigation 80% | Automatic irrigation 80% | Automatic irrigation 80% |
Parameters | Year | Simulated | Observed | RAE% |
---|---|---|---|---|
Emergence date (d.o.y) | 2012 | 176 | 176 | 0.00 |
2013 | 179 | 179 | 0.00 | |
2014 | 177 | 177 | 0.00 | |
2015 | 172 | 172 | 0.00 | |
Anthesis date (d.o.y) | 2012 | 220 | 221 | −0.45 |
2013 | 224 | 225 | −0.44 | |
2014 | 219 | 222 | −1.33 | |
2015 | 217 | 218 | −0.45 | |
Maturity date (d.o.y) | 2012 | 278 | 284 | −2.11 |
2013 | 274 | 275 | −0.36 | |
2014 | 276 | 274 | 0.72 | |
2015 | 270 | 273 | −1.09 | |
Grain Yield (kg ha−1) | 2012 | 8001 | 7700 | 3.89 |
2013 | 9004 | 8400 | 7.60 | |
2014 | 7800 | 7600 | 2.60 | |
2015 | 7000 | 7400 | −5.40 | |
Aboveground Biomass (kg ha−1) | 2012 | 14,200 | 15,500 | −8.38 |
2013 | 16,780 | 17,800 | −5.73 | |
2014 | 15,400 | 16,100 | −4.3 | |
2015 | 15,670 | 14,710 | −6.52 | |
Maximum LAI | 2012 | 4.34 | 4.53 | −4.19 |
2013 | 4.73 | 5.0 | −5.40 |
Treatments | 2012 Growing Season WUE (kg ha−1 mm−1) | 2013 growing season WUE (kg ha−1 mm−1) | ||
---|---|---|---|---|
Observed | Simulated | Observed | Simulated | |
T1 | 26.4 | 25.4 | 25.9 | 26.5 |
T2 | 23.2 | 22.8 | 30.8 | 31.1 |
T3 | 20.7 | 17.5 | 34.9 | 32.4 |
T4 | 20.9 | 19.7 | 30.5 | 26.0 |
T5 | 26.1 | 25.2 | 28.8 | 25.6 |
T6 | 21.4 | 20.3 | 27.0 | 27.4 |
T7 | 21.9 | 21.2 | 28.9 | 29.2 |
T8 | 20.3 | 20.1 | 29.7 | 28.3 |
T9 | 21.8 | 18.8 | 27.0 | 25.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddique, Q.; Cai, H.; Ishaque, W.; Chen, H.; Chau, H.W.; Chattha, M.U.; Hassan, M.U.; Khan, M.I.; He, J. Optimizing the Sowing Date and Irrigation Strategy to Improve Maize Yield by Using CERES (Crop Estimation through Resource and Environment Synthesis)-Maize Model. Agronomy 2019, 9, 109. https://doi.org/10.3390/agronomy9020109
Saddique Q, Cai H, Ishaque W, Chen H, Chau HW, Chattha MU, Hassan MU, Khan MI, He J. Optimizing the Sowing Date and Irrigation Strategy to Improve Maize Yield by Using CERES (Crop Estimation through Resource and Environment Synthesis)-Maize Model. Agronomy. 2019; 9(2):109. https://doi.org/10.3390/agronomy9020109
Chicago/Turabian StyleSaddique, Qaisar, Huanjie Cai, Wajid Ishaque, Hui Chen, Henry Wai Chau, Muhammad Umer Chattha, Muhammad Umair Hassan, Muhammad Imran Khan, and Jianqiang He. 2019. "Optimizing the Sowing Date and Irrigation Strategy to Improve Maize Yield by Using CERES (Crop Estimation through Resource and Environment Synthesis)-Maize Model" Agronomy 9, no. 2: 109. https://doi.org/10.3390/agronomy9020109
APA StyleSaddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H. W., Chattha, M. U., Hassan, M. U., Khan, M. I., & He, J. (2019). Optimizing the Sowing Date and Irrigation Strategy to Improve Maize Yield by Using CERES (Crop Estimation through Resource and Environment Synthesis)-Maize Model. Agronomy, 9(2), 109. https://doi.org/10.3390/agronomy9020109