Nitrogen Utilization in a Cereal-Legume Rotation Managed with Sustainable Agricultural Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Study
2.2. Experimental Setup and Treatments
2.3. Measurements
2.3.1. Crop Measurements
2.3.2. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Tillage System, Organic Amendment, and Green Manuring on Crops Biomass, Yield, and N Efficiency Parameters
3.2. N Balance
4. Discussion
4.1. Effect of Treatments on Cash Crops’ Agronomic Performance and Nitrogen Utilization
4.2. The N Surplus/Deficit
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effect of tillage, crop rotation and nitrogen fertilization on wheat under rainfed Mediterranean conditions. Agron. J. 2000, 92, 1054–1063. [Google Scholar] [CrossRef]
- Franke, A.C.; van den Brand, G.J.; Vanlauwe, B.; Giller, K.E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agric. Ecosyst. Environ. 2018, 261, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Pala, M.; Ryan, J.; Zhang, H.; Singh, M.; Harris, H.C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 2007, 93, 136–144. [Google Scholar] [CrossRef]
- Davis, S.A. Cover-crop roller-crimper contributes to weed management in no-till soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Gilmour, J.T.; Mauromostaukos, A.; Gale, P.M.; Norman, R.J. Kinetics of crop residue decomposition: Variability among crops and years. Soil Sci. Soc. Am. J. 1998, 62, 750–755. [Google Scholar] [CrossRef]
- Smukler, S.M.; O’Geen, A.T.; Jackson, L.E. Assessment of best management practices for nutrient cycling: A case study on an organic farm in a Mediterranean-type climate. J. Soil Water Conserv. 2012, 67, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.P.; Letey, J. Organic farming: Challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Canali, S.; Montemurro, F. Agronomic performance and sustainability indicators in organic tomato combining different agro-ecological practices. Nutr. Cycl. Agroecosyst. 2018, 112, 101–117. [Google Scholar] [CrossRef]
- Melero, S.; López-Bellido, R.J.; López-Bellido, L.; Muñoz-Romero, V.; Moreno, F.; Murillo, J.M. Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil Tillage Res. 2011, 114, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crop Res. 2000, 65, 165–181. [Google Scholar] [CrossRef]
- Souza, A.; Colozzi-Filho, A.; Giller, K.E. The soil microbial community and soil tillage. In Soil Tillage in Agroecosystems; El Titi, A., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 51–81. [Google Scholar]
- Mazzoncini, M.; Sapkota, T.B.; Bàrberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Rizk, M.H. Effect of some legume cover crops and organic fertilizer on petiole nutrient content, productivity and fruit composition of Thompson seedless’ grapevines. Acta Hort. 2012, 933, 381–387. [Google Scholar] [CrossRef]
- Montemurro, F.; Fiore, A.; Campanelli, G.; Tittarelli, F.; Ledda, L.; Canali, S. Organic fertilization, green manure, and vetch mulch to improve organic zucchini yield and quality. HortScience 2013, 48, 1027–1033. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA-NRCS: Washington, DC, USA, 1999. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Kalra, Y.P. Hand Book of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–92. [Google Scholar]
- Montemurro, F. Are the organic N fertilizing strategies able to improve lettuce yield, use of nitrogen and N status? J. Plant Nutr. 2010, 33, 1980–1997. [Google Scholar] [CrossRef]
- López-Bellido, R.J.; López-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crop Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Watson, C.A.; Bengtsson, H.; Ebbesvik, M.; Løes, A.K.; Myrbeck, A.; Salomon, E.; Schroder, J.; Stockdale, E.A. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 2002, 18, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, F.; Ferri, D.; Tittarelli, F.; Canali, S.; Vitti, C. Anaerobic digestate and on-farm compost application: effects on lettuce (Lactuca sativa L.) crop production and soil properties. Compost Sci. Util. 2010, 18, 184–193. [Google Scholar] [CrossRef]
- Sainju, U.M. Determination of nitrogen balance in agroecosystems. MethodsX 2017, 4, 199–208. [Google Scholar] [CrossRef] [PubMed]
- García-Gómez, H.; Garrido, J.L.; Vivanco, M.G.; Lassaletta, L.; Rabago, I.; Àvila, A.; Benedictow, A.; Sánchez, G.; González, A.; González-Fernández, I.; et al. Nitrogen deposition in Spain: Modeled patterns and threatened habitats within the Natura 2000 network. Sci. Total Environ. 2014, 485–486, 450–460. [Google Scholar]
- OECD. EUROSTAT Gross Nitrogen Balances Handbook. 2007. Available online: http://www.oecd.org/greengrowth/sustainable-agriculture/40820234.pdf (accessed on 3 January 2019).
- Høgh-Jensen, H.; Loges, R.; Jørgensen, F.V.; Vinther, F.P.; Jensen, E.S. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric. Syst. 2004, 82, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.; Bernard, M.E.; Richette, P.; Whalen, J.K.; Dörsch, P. Nitrous oxide emissions from a fertile grassland in Western Norway following the application of inorganic and organic fertilizers. Nutr. Cycl. Agroecosyst. 2014, 98, 71–85. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroy, M.-H.; Mary, B.; David, C. Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems. Nutr. Cycl. Agroecosyst. 2013, 97, 1–3. [Google Scholar]
- Montemurro, F. Different nitrogen fertilization sources, soil tillage, and crop rotations in winter wheat: Effect on yield, quality, and nitrogen utilization. J. Plant Nutr. 2009, 32, 1–18. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, M.; Ibrahim, M.; Lal, R. Tillage effect on nutrient uptake by wheat and cotton as influenced by fertilizer rate. Soil Tillage Res. 2001, 62, 41–53. [Google Scholar] [CrossRef]
- Hasegawa, H.; Denison, R.F. Model predictions of winter rainfall effects on N dynamics of winter wheat rotation following legume cover crop or fallow. Field Crop Res. 2005, 91, 251–261. [Google Scholar] [CrossRef]
- Clayton, G.W.; Rice, W.A.; Lupwayi, N.Z.; Johnston, A.M.; Lafond, G.P.; Grant, C.A.; Walley, F. Inoculant formulation and fertilizer nitrogen effects on field pea: Nodulation, N2 fixation and nitrogen partitioning. Can. J. Plan Sci. 2004, 84, 79–88. [Google Scholar] [CrossRef]
- Walley, F.L.; Kyei-Boahen, S.; Hnatowich, G.; Stevenson, C. Nitrogen and phosphorus fertility management for desi and kabuli chickpea. Can. J. Plan Sci. 2005, 85, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Bonfil, D.J.; Pinthus, M.J. Response of chickpea to nitrogen and a comparison of the factors affecting chickpea seed yield with those affecting wheat grain yield. Exp. Agric. 1995, 31, 39–47. [Google Scholar] [CrossRef]
- Shrestha, R.; Turner, N.C.; Siddique, K.H.M.; Turner, D.W. Physiological and seed yield responses to water deficits among lentil genotypes from diverse origins. Aust. J. Agric. Res. 2006, 57, 903–915. [Google Scholar] [CrossRef]
- Mishra, B.K.; Srivastava, J.P.; Lal, J.P.; Sheshshayee, M.S. Physiological and biochemical adaptations in lentil genotypes under drought stress. Russ. J. Plant Physiol. 2016, 63, 695–708. [Google Scholar] [CrossRef]
- Mishra, B.K.; Srivastava, J.P.; Lal, J.P. Drought resistance in Lentil (Lens culinaris Medik.) in relation to morphological, physiological parameters and phenological developments. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2288–2304. [Google Scholar] [CrossRef]
- Schmidtke, K.; Neumann, A.; Hof, C.; Rauber, R. Soil and atmospheric nitrogen uptake by lentil (Lens culinaris Medik.) and barley (Hordeum vulgare ssp. nudum L.) as monocrops and intercrops. Field Crop Res. 2004, 87, 245–256. [Google Scholar] [CrossRef]
Treatments | Spelt | Wheat | Spelt | Wheat | Spelt | Wheat | Spelt | Wheat | Spelt | Wheat |
---|---|---|---|---|---|---|---|---|---|---|
Biomass | Yield | N Uptake | NUE | N Uptake Efficiency | ||||||
(t ha−1) | (t ha−1) | (kg ha−1) | (kg kg−1) | (kg kg−1) | ||||||
Tillage (T) | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Amendment (A) | *** | ** | *** | ** | *** | *** | *** | ** | *** | *** |
T × A | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Chickpea | Lentil | Chickpea | Lentil | Chickpea | Lentil | Chickpea | Lentil | Chickpea | Lentil |
---|---|---|---|---|---|---|---|---|---|---|
Biomass | Yield | N Uptake | NUE | N Uptake Efficiency | ||||||
(t ha−1) | (t ha−1) | (kg ha−1) | (kg kg−1) | (kg kg−1) | ||||||
Tillage (T) | ns | ns | ns | - | ns | ns | ns | - | ns | ns |
Amendment (A) | ns | ns | ns | - | ns | ns | ns | - | *** | *** |
Green manuring (G) | ns | ns | ns | - | ns | ns | ns | - | *** | *** |
T × A | ns | ns | ns | - | ns | ns | ns | - | ns | ns |
T × G | ns | ns | ns | - | ns | ns | ns | - | ns | ns |
A × G | ns | ns | ns | - | ns | ns | ns | - | *** | *** |
T × A × G | ns | ns | ns | - | ns | ns | ns | - | ns | ns |
Treatments | Spelt | Chickpea | Wheat | Lentil | ||||
---|---|---|---|---|---|---|---|---|
Biomass | Yield | Biomass | Yield | Biomass | Yield | Biomass | Yield | |
(t ha−1) | (t ha−1) | (t ha−1) | (t ha−1) | (t ha−1) | (t ha−1) | (t ha−1) | (t ha−1) | |
Tillage | ||||||||
P | 6.80a ± 1.02 | 2.33a ± 0.19 | 0.87a ± 0.31 | 0.38a ± 0.13 | 8.00a ±1.51 | 3.23a ± 0.71 | 0.91a ± 0.27 | - |
RC | 6.21a ± 0.87 | 2.32a ± 0.32 | 0.84a ± 0.29 | 0.38a ± 0.16 | 7.75a ±1.44 | 3.16a ± 0.71 | 0.67a ± 0.67 | - |
Amendment | ||||||||
F | 7.11a ± 0.69 | 2.49a ± 0.18 | 0.76a ± 0.28 | 0.32a ± 0.15 | 8.81a ±1.14 | 3.68a ± 0.53 | 0.72a ± 0.24 | - |
NF | 5.89b ± 0.84 | 2.16b ± 0.21 | 0.95a ± 0.27 | 0.44a ± 0.09 | 6.94b ±1.11 | 2.71b ± 0.48 | 0.86a ± 0.30 | - |
Green manuring | ||||||||
GM | - | - | 0.86a ± 0.29 | 0.39a ± 0.15 | - | - | 0.81a ± 0.28 | - |
NoM | - | - | 0.85a ± 0.30 | 0.38a ± 0.13 | - | - | 0.76a ± 0.28 | - |
Means | 6.50 | 2.33 | 0.86 | 0.38 | 7.88 | 3.20 | 0.79 | - |
Treatment | Spelt | Chickpea | Wheat | Lentil | |||
---|---|---|---|---|---|---|---|
NUE | N Uptake Efficiency | NUE | N Uptake Efficiency | NUE | N Uptake Efficiency | N Uptake Efficiency | |
(kg kg−1) | (kg kg−1) | (kg kg−1) | (kg kg−1) | (kg kg−1) | (kg kg−1) | (kg kg−1) | |
Tillage | |||||||
P | 18.73a ± 3.68 | 0.54a ± 0.42 | 8.23a ± 2.24 | 0.73a ± 0.45 | 17.84a ± 3.66 | 0.62a ± 0.46 | 0.60a ± 0.52 |
RC | 20.47a ± 3.37 | 0.55a ± 0.43 | 8.91a ± 2.80 | 0.72a ± 0.48 | 17.75a ± 3.02 | 0.63a ± 0.47 | 0.54a ± 0.48 |
Amendment | |||||||
F | 17.52b ± 3.34 | 0.13b ± 0.02 | 7.43a ± 1.80 | 0.54b ± 0.22 | 15.37b ± 2.27 | 0.17b ± 0.01 | 0.27b ± 0.08 |
NF | 21.67a ± 2.50 | 0.95a ± 0.07 | 9.72a ± 2.65 | 0.91a ± 0.56 | 20.22a ± 2.20 | 1.08a ± 0.08 | 0.88a ± 0.55 |
Green manuring | |||||||
GM | - | - | 8.36a ± 2.27 | 0.37b ± 0.06 | - | - | 0.28b ± 0.10 |
NoM | - | - | 8.78a ± 2.80 | 1.08a ± 0.40 | - | - | 0.86a ± 0.56 |
Means | 19.60 | 0.54 | 8.57 | 0.73 | 17.80 | 0.63 | 0.57 |
N Balance | P | P | RC | RC | P | P | RC | RC |
---|---|---|---|---|---|---|---|---|
NF | F | NF | F | NF | F | NF | F | |
NoM | NoM | NoM | NoM | GM | GM | GM | GM | |
2012 | ||||||||
SN t0 | 1643 | 1643 | 1670 | 1689 | 1640 | 1735 | 1658 | 1703 |
N uptake | 107.3 | 155.2 | 95.86 | 139.3 | ||||
N supply | 18.00 | 152.6 | 18.00 | 152.6 | ||||
2013 | ||||||||
N uptake | 46.60 | 47.90 | 42.98 | 40.66 | 53.17 | 44.83 | 51.02 | 38.14 |
N supply | 36.76 | 74.56 | 36.37 | 73.17 | 132.94 | 161.43 | 127.1 | 178.51 |
2014 | ||||||||
N uptake | 137.9 | 245.2 | 131.6 | 241.9 | ||||
N supply | 18.00 | 152.6 | 18.00 | 152.6 | ||||
2015 | ||||||||
SN tf | 1733 | 1987 | 1759 | 2189 | 1727 | 2083 | 1653 | 2118.09 |
N uptake | 21.60 | 25.03 | 18.65 | 16.11 | 34.00 | 23.53 | 18.45 | 16.03 |
N supply | 33.59 | 80.36 | 33.59 | 80.36 | 74.17 | 146.26 | 86.30 | 143.8 |
N surplus/deficit | −117 | 331 | −94 | 520 | 206 | 587 | 139 | 683 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diacono, M.; Baldivieso-Freitas, P.; Sans Serra, F.X. Nitrogen Utilization in a Cereal-Legume Rotation Managed with Sustainable Agricultural Practices. Agronomy 2019, 9, 113. https://doi.org/10.3390/agronomy9030113
Diacono M, Baldivieso-Freitas P, Sans Serra FX. Nitrogen Utilization in a Cereal-Legume Rotation Managed with Sustainable Agricultural Practices. Agronomy. 2019; 9(3):113. https://doi.org/10.3390/agronomy9030113
Chicago/Turabian StyleDiacono, Mariangela, Paola Baldivieso-Freitas, and Francisco Xavier Sans Serra. 2019. "Nitrogen Utilization in a Cereal-Legume Rotation Managed with Sustainable Agricultural Practices" Agronomy 9, no. 3: 113. https://doi.org/10.3390/agronomy9030113
APA StyleDiacono, M., Baldivieso-Freitas, P., & Sans Serra, F. X. (2019). Nitrogen Utilization in a Cereal-Legume Rotation Managed with Sustainable Agricultural Practices. Agronomy, 9(3), 113. https://doi.org/10.3390/agronomy9030113