Soil Water Content and High-Resolution Imagery for Precision Irrigation: Maize Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Water Data Collection
2.3. Remote Sensing Data
2.4. Crop Yield Data
2.5. Statistical Analysis
2.6. Best Model’s Selection
2.6.1. Best Dates Model
2.6.2. Best Depth Models
Best Depth for Each Date Model:
Best Depth Including All Relevant Date Model:
2.6.3. Imagery Model
3. Results
3.1. Best Dates Model
3.2. Best Depth Models
3.2.1. Best Depth for Each Date Model:
3.2.2. Best Depth for All Relevant Dates Model:
3.3. Imagery Model
4. Discussion
Practical Implications
5. Conclusions
Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Hupet, F.; Vanclooster, M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol. 2002, 261, 86–101. [Google Scholar] [CrossRef]
- Steduto, P. Water use efficiency. In Sustainability of Irrigated Agriculture; Springer: New York, NY, USA, 1996; pp. 193–209. [Google Scholar]
- Longchamps, L.; Khosla, R.; Reich, R.; Gui, D. Spatial and temporal variability of soil water content in leveled fields. Soil Sci. Soc. Am. J. 2015, 79, 1446–1454. [Google Scholar] [CrossRef]
- Vachaud, G.; Passerat de Silans, A.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Wiegand, C.; Richardson, A.; Escobar, D.; Gerbermann, A. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Ashcroft, P.; Catt, J.; Curran, P.; Munden, J.; Webster, R. The relation between reflected radiation and yield on the broadbalk winter wheat experiment. Remote Sens. 1990, 11, 1821–1836. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.; Rivera, J.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green lai over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; Mckee, M. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high-resolution visual, nir, and thermal imagery. Irrig. Drain. 2017, 66, 273–288. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Soil Survey Staff; Usda-Nrcs: Lincoln, NE, USA, 2000.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FaoRome 1998, 300, D05109. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; van Leeuwen, W. Modis Vegetation Index (mod13) Algorithm Theoretical Basis Document; NASA Goddard Space Flight Cent.: Greenbelt, MD, USA, 1999. Available online: http://Modarch.Gsfc.Nasa.Gov/ (accessed on 3 April 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; ISBN 3-900051-07-0. [Google Scholar]
- Andrade, F.H.; Sadras, V.O. Bases Para el Manejo del Maíz, el Girasol y la Soja; INTA AND EEA Balcarce: Buenos Aires, Argentina, 2000. [Google Scholar]
- Barton, K.; Mumin: Multi-Model Inference. R package version 1.42.1. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 3 April 2019).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer Science & Business Media: Boston, NY, USA, 2003. [Google Scholar]
- Kranz, W.L.; Irmak, S.; Van Donk, S.J.; Yonts, C.D.; Martin, D.L. Irrigation Management for Corn; University of Nebraska–Lincoln Extension: Lincoln, NE, USA, 2008. [Google Scholar]
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed par using radiative transfer models. Geosci. Remote Sens. IEEE Trans. 1997, 35, 1380–1393. [Google Scholar] [CrossRef]
- Fipps, G. Soil Moisture Management; Texas Agricultural Extension Service, Texas A&M University System: College Station, TX, USA, 1995; Volume B-1670. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum l. And acer platanoides l. Leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Santesteban, L.; Di Gennaro, S.; Herrero-Langreo, A.; Miranda, C.; Royo, J.; Matese, A. High-resolution uav-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
Index † | Formulation ‡ | Source | Resolution | Reference |
---|---|---|---|---|
NDVI | RapidEye | 5 m | [7] | |
RECI | RapidEye | 5 m | [15,16] | |
RENDVI | RapidEye | 5 m | [10] | |
EVI | 2.5 × | MODIS | 250 m | [17] |
NP DOY † | Depth | |||||||
---|---|---|---|---|---|---|---|---|
30 cm | 60 cm | 90 cm | 120 cm | 150 cm | 30–60 cm | 30–90 cm | 30–150 cm | |
170 | - | - | - | - | - | - | - | - |
175 | - | - | - | - | - | - | - | - |
177 | - | - | - | - | - | - | - | - |
181 | - | - | - | - | - | - | - | - |
184 | - | - | - | - | - | - | - | - |
188 | - | - | - | - | - | - | - | - |
191 | - | - | - | - | - | - | - | - |
195 | - | - | - | - | - | - | - | - |
198 | - | - | - | - | - | - | - | - |
202 | - | - | - | - | - | - | - | - |
205 | 0.36 | - | - | - | - | - | - | - |
209 | 0.48 | - | - | - | - | - | - | - |
212 | 0.62 | 0.33 | - | - | - | - | 0.38 | - |
216 | 0.66 | 0.37 | - | - | - | - | 0.46 | 0.45 |
219 | - | 0.50 | - | 0.34 | 0.56 | 0.47 | 0.37 | 0.44 |
222 | 0.70 | 0.48 | - | - | 0.50 | 0.70 | 0.57 | 0.58 |
226 | 0.36 | 0.48 | 0.62 | 0.66 | - | 0.43 | 0.54 | 0.58 |
230 | 0.71 | 0.54 | - | 0.64 | 0.41 | 0.74 | 0.60 | 0.64 |
233 | 0.70 | 0.59 | 0.44 | 0.61 | 0.60 | 0.76 | 0.72 | 0.74 |
237 | 0.65 | 0.59 | 0.46 | 0.57 | 0.74 | 0.74 | 0.72 | 0.75 |
240 | 0.72 | 0.58 | 0.57 | 0.76 | 0.70 | 0.77 | 0.75 | 0.76 |
Depth | NP DOY † | r2 | p Value | ||||||||||
205 | 209 | 212 | 216 | 219 | 222 | 226 | 230 | 233 | 237 | 240 | |||
30 cm | - | - | X | - | X | - | - | - | - | X | - | 0.83 | <0.001 |
60 cm | - | - | - | - | - | X | X | - | - | - | X | 0.72 | <0.001 |
90 cm | - | - | - | - | - | X | X | - | - | X | - | 0.80 | <0.001 |
120 cm | - | X | - | - | X | X | X | X | - | - | - | 0.89 | <0.001 |
150 cm | - | X | - | - | - | - | - | - | - | X | - | 0.64 | <0.001 |
Total | 0 | 2 | 1 | 0 | 2 | 3 | 3 | 1 | 0 | 3 | 1 | - | - |
NP † DOY † | Soil Depth | r2 | p Value | ||||
30 cm | 60 cm | 90 cm | 120 cm | 150 cm | |||
205 | X | - | - | - | - | 0.30 | 0.02 |
209 | X | - | - | - | - | 0.41 | 0.00 |
212 | X | - | X | - | - | 0.60 | 0.00 |
216 | X | - | - | - | - | 0.59 | 0.00 |
219 | - | - | - | X | - | 0.34 | 0.01 |
222 | X | - | - | - | - | 0.63 | 0.00 |
226 | - | - | - | X | - | 0.59 | 0.00 |
230 | - | - | X | X | - | 0.67 | 0.00 |
233 | X | - | - | - | - | 0.59 | 0.00 |
237 | X | - | - | - | - | 0.65 | 0.00 |
240 | X | - | - | - | - | 0.71 | 0.00 |
Total | 8 | 0 | 2 | 3 | 0 |
Soil Depth | r2 |
---|---|
30 cm | 0.85 |
60 cm | - |
90 cm | 0.93 |
120 cm | 0.92 |
150 cm | - |
Vegetation Index † | Correlation Coefficient | |||||
---|---|---|---|---|---|---|
DOY | ||||||
155 | 164 | 178 | 192 | 204 | 242 | |
NDVI | - | - | - | - | - | - |
RECI | - | - | - | - | - | 0.72 |
RENDVI | - | - | - | - | - | 0.63 |
NDVI † Model | ||||||||||
NP 219 | NP 226 | NP 237 | NDVI 155 | NDVI 164 | NDVI 178 | NDVI 192 | NDVI 204 | NDVI 242 | r2 | AICc # |
X | X | X | - | - | - | - | - | - | 0.77 | 297.3 |
RECI ‡ Model | ||||||||||
NP 219 | NP 226 | NP 237 | RECI 155 | RECI 164 | RECI 178 | RECI 192 | RECI 204 | RECI 242 | r2 | AICc |
X | X | X | - | - | - | - | X | - | 0.84 | 294.9 |
RENDVI § Model | ||||||||||
NP 219 | NP 226 | NP 237 | RENDVI 155 | RENDVI 164 | RENDVI 178 | RENDVI 192 | RENDVI 204 | RENDVI 242 | r2 | AICc |
X | X | X | - | - | - | - | X | - | 0.83 | 296.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lara, A.; Longchamps, L.; Khosla, R. Soil Water Content and High-Resolution Imagery for Precision Irrigation: Maize Yield. Agronomy 2019, 9, 174. https://doi.org/10.3390/agronomy9040174
de Lara A, Longchamps L, Khosla R. Soil Water Content and High-Resolution Imagery for Precision Irrigation: Maize Yield. Agronomy. 2019; 9(4):174. https://doi.org/10.3390/agronomy9040174
Chicago/Turabian Stylede Lara, Alfonso, Louis Longchamps, and Raj Khosla. 2019. "Soil Water Content and High-Resolution Imagery for Precision Irrigation: Maize Yield" Agronomy 9, no. 4: 174. https://doi.org/10.3390/agronomy9040174
APA Stylede Lara, A., Longchamps, L., & Khosla, R. (2019). Soil Water Content and High-Resolution Imagery for Precision Irrigation: Maize Yield. Agronomy, 9(4), 174. https://doi.org/10.3390/agronomy9040174