Comparison of Energy Used and Effects on Bulk Density and Yield by Tillage Systems in a Semiarid Condition of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Treatments and Experimental Setup
2.3. Measurement of Variables in the Field
2.4. Calculation of Energy
2.5. Calculation of Overall Efficiency
2.6. Bulk Density and Total Porosity
2.7. Crop Yield
3. Results and Discussion
3.1. Draft and Energy for Tillage Operation and Systems
3.2. Specific Draft per Soil Volume and Specific Energy per Moved Soil Mass
3.3. Fuel Used by Worked Area
3.4. Overall Efficiency in the Use of Energy from the Fuel
3.5. Effect of Tillage on Bulk Density and Porosity of the Soil
3.6. Effect of Tillage on the Dry Matter Yield of Maize
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canakci, M.; Topakci, M.; Akinci, I.; Özmerzi, A. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Convers. Manag. 2005, 46, 655–666. [Google Scholar] [CrossRef]
- Chamsing, A.; Salokhe, V.; Singh, G. Energy Consumption Analysis for Selected Crops in Different Regions of Thailand”. Agric. Eng Int: CIGR J. 2006, 8, 1–18. [Google Scholar]
- Tabatabaeefar, A.; Emamzadeh, H.; Varnamkhasti, M.; Rahimizadeh, R.; Karimi, M. Comparison of energy of tillage systems in wheat production. Energy 2009, 34, 41–45. [Google Scholar] [CrossRef]
- Fischer, R.; Connor, D. Issues for cropping and agricultural science in the next 20 years. Crop. Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Mileusnić, Z.; Petrović, D.; Đević, M. Comparison of tillage systems according to fuel consumption. Energy 2010, 35, 221–228. [Google Scholar] [CrossRef]
- Castellini, M.; Ventrella, D. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil Res. 2012, 124, 47–56. [Google Scholar] [CrossRef]
- Campos-Magaña, S.G.; Cadena-Zapata, M.; Ramírez-Fuentes, G.; Pacheco-López, J.L.; Reynolds-Chavez, M.A.; Valezuela-Garcia, J.R. An experimental determination of the specific soil resistance of a sandy loam soil using vertical soil tillage in the Northeast of Mexico. Agricul. Mech. Asia Africa Latin Am. 2015, 46, 53–57. [Google Scholar]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Conserv. 2015, 70, 103–108. [Google Scholar] [CrossRef]
- Derpsch, R. Conservation Tillage, No-Tillage and Related Technologies. In Conservation Agriculture; Springer Nature: Basingstoke, UK, 2003; pp. 181–190. [Google Scholar]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M. Drawing a Roadmap for Oil Pricing Reform. In Household Savings in Central Eastern and Southeastern Europe: How Do Poorer Households Save? The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Rodríguez, R.G. La simple aritmética de la nueva política de precios de las gasolinas y el diesel. Economía Informa 2017, 404, 40–62. [Google Scholar] [CrossRef]
- Esengun, K.; Erdal, G.; Gündüz, O.; Erdal, H. An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renew. Energy 2007, 32, 1873–1881. [Google Scholar] [CrossRef]
- Ghorbani, R.; Mondani, F.; Amirmoradi, S.; Feizi, H.; Khorramdel, S.; Teimouri, M.; Sanjani, S.; Anvarkhah, S.; Aghel, H. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl. Energy 2011, 88, 283–288. [Google Scholar] [CrossRef]
- Steiner, K.G. Conserving Natural Resources and Enhancing Food Security by Adopting No Tillage; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH: Rossdorf, Germany, 1998. [Google Scholar]
- Erdal, G.; Esengun, K.; Erdal, H.; Gündüz, O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 2007, 32, 35–41. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Sharma, P.; Abrol, V.; Sharma, R. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. Eur. J. Agron. 2011, 34, 46–51. [Google Scholar] [CrossRef]
- Rathke, G.-W.; Wienhold, B.; Wilhelm, W.; Diepenbrock, W. Tillage and rotation effect on corn–soybean energy balances in eastern Nebraska. Soil Res. 2007, 97, 60–70. [Google Scholar] [CrossRef]
- Jokiniemi, T.; Mikkola, H.; Rossner, H.; Talgre, L.; Lauringson, E.; Hovi, M.; Ahokas, J. Energy savings in plant production. Agron. Res. Biosyst. Eng. 2012, 1, 85–96. [Google Scholar]
- Gonzalez-De-Soto, M.; Emmi, L.; García, I.; Gonzalez-De-Santos, P. Reducing fuel consumption in weed and pest control using robotic tractors. Comput. Electron. Agric. 2015, 114, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Kim, J.S.; Kim, K.U. Computer simulations to maximise fuel efficiency and work performance of agricultural tractors in rotovating and ploughing operations. Biosyst. Eng. 2016, 142, 1–11. [Google Scholar] [CrossRef]
- Moreno, M.; Lacasta, C.; Meco, R.; Moreno, C. Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial. Soil Res. 2011, 114, 18–27. [Google Scholar] [CrossRef]
- Wolf, D.; Hadas, A. Determining efficiencies of various moldboard ploughs in fragmenting and tilling air-dry soils. Soil Res. 1987, 10, 181–190. [Google Scholar] [CrossRef]
- SIAP. Servicio de Informacion Agroalimentaria y Pesquera. Infografias agroalimentarias. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2018/Infografias-2018 (accessed on 30 March 2019).
- Baumhardt, R.L.; Salinas-Garcia, J. Dryland Agriculture in Mexico and the U.S. Southern Great Plains. In Dryland Agriculture, 2nd ed.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2006. [Google Scholar]
- Fuentes, M.; Govaerts, B.; De León, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Singh, P.N.; Munk, D.S.; Wroble, J.F.; Hogan, P.; Roy, R.; Hanson, B.R.; Mitchell, J.P.; Wallender, W.W.; Horwath, W.R. No-tillage and high-residue practices reduce soil water evaporation. Calif. Agric. 2012, 66, 55–61. [Google Scholar] [Green Version]
- Alvarez, R.; Steinbach, H. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Alegre, J.; Cassel, D.; Amézquita, E. Tillage systems and soil properties in Latin America. Soil Res. 1991, 20, 147–163. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Muñoz, M.A.; Gil Rodríguez, M.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Bertocco, M.; Basso, B.; Sartori, L.; Martin, E. Evaluating energy efficiency of site-specific tillage in maize in NE Italy. Bioresour. Technol. 2008, 99, 6957–6965. [Google Scholar] [CrossRef]
- Campos Magaña, S.G.; Reynolds Chávez, M.A.; Cadena Zapata, M.; López López, J.A.; Cuervo Piña, N.; Ramírez Fuentes, G. Desarrollo de un sistema integral de medición de fuerzas para la evaluación de implementos de labranza. Terra Latinoamericana 2015, 33, 139–149. [Google Scholar]
- Bowers, C.G., Jr. Southeastern tillage energy data and recommended reporting. Trans. ASAE 1985, 28, 731–737. [Google Scholar] [CrossRef]
- Campbell, D. Determination and Use of Soil Bulk Density in Relation to Soil Compaction. Dev. Agric. Eng. 1994, 11, 113–139. [Google Scholar]
- Flint, A.L.; Flint, L.E. Particle density. In Methods of Soil Analysis; Dane, J.H., Topp, G.C., Eds.; Part 4. Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002; pp. 229–240. [Google Scholar]
- Demuner-Molina, G.; Cadena-Zapata, M.; Campos-Magaña, S.G.; Zermeño-González, A.; Sánchez-Pérez, F.J. Efecto de labranza y mejoradores de suelo en humedad y desarrollo radicular. Tecnología y Ciencias del Agua 2014, 5, 123–130. [Google Scholar]
- ASABE Standards. D497.7: MAR2011 (R2015) Agricultural Machinery Management Data. Available online: https://webstore.ansi.org/standards/asabe/asaed497mar2011r2015 (accessed on 29 March 2019).
- McLaughlin, N.B.; Drury, C.F.; Reynolds, W.D.; Yang, X.M.; Li, Y.X.; Welacky, T.W.; Stewart, G. Energy Inputs for Conservation and Conventional Primary Tillage Implements in a Clay Loam Soil. Trans. ASABE 2008, 51, 1153–1163. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; De Mastro, G. A comparison of the energy consumption of rainfed durum wheat under diferent management scenarios in southern Italy. Energy 2013, 61, 308–318. [Google Scholar] [CrossRef]
- Ranjbarian, S.; Askari, M.; Jannatkhah, J. Performance of tractor and tillage implements in clay soil. J. Saudi Soc. Agric. Sci. 2017, 16, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Okoko, P.; Ajav, E.A.; Olosunde, W.A. Draft and power requirements for some tillage implements operating in clay loam soil. Agric. Eng. Int. CIGR J. 2018, 20, 95–102. [Google Scholar]
- Moitzi, G.; Szalay, T.; Schüller, M.; Wagentristl, H.; Refenner, K.; Weingartmann, H.; Liebhard, P.; Boxberger, J.; Gronauer, A. Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria. Agric. Eng. Int. CIGR J. 2013, 15, 94–101. [Google Scholar]
- Hernanz, J.L.; Sánchez-Girón, V.; Navarrete, L.; Sánchez, M.J. Long-term (1983–2012) assessment of three tillage systems on the energy use efficiency, crop production and seeding emergence in a rain fed cereal monoculture in semiarid conditions in central Spain. Field Crops Res. 2014, 166, 26–37. [Google Scholar] [CrossRef]
- Chen, G.; Baillie, C. Development of a framework and tool to asses on-farm energy uses of cotton production. Convers. Manag. 2009, 50, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Hamzei, J.; Seyyedi, M. Energy use and input–output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil Res. 2016, 157, 73–82. [Google Scholar] [CrossRef]
- Moitzi, G.; Wagentristl, H.; Refenner, K.; Weingartmann, H.; Piringer, G.; Boxberger, J.; Gronauer, A. Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agric. Eng. Int. CIGR J. 2014, 16, 182–190. [Google Scholar]
- Hadas, A.; Wolf, D. Soil Aggregates and Clod Strength Dependence on Size, Cultivation, and Stress Load Rates1. Soil Sci. Soc. Am. J. 1984, 48, 1157–1164. [Google Scholar] [CrossRef]
- Šarauskis, E.; Buragienė, S.; Masilionytė, L.; Romaneckas, K.; Avižienytė, D.; Sakalauskas, A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014, 69, 227–235. [Google Scholar] [CrossRef]
- Yalcin, H.; Cakir, E. Tillage effects and energy efficiencies of subsoiling and direct seeding in light soil on yield of second crop corn for silage in Western Turkey. Soil Res. 2006, 90, 250–255. [Google Scholar] [CrossRef]
- Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty, K.; Yanowitz, J. Biodiesel Handling and Use Guide, 4th ed.; U.S. Department of Energy: Washington, DC, USA, 2016.
- Kheiralla, A.; Yahya, A.; Zohadie, M.; Ishak, W. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Res. 2004, 78, 21–34. [Google Scholar] [CrossRef]
- Celik, A.; Gokalp Boydas, M.; Turgut, N. Comparison of the Energy Requirements of an Experimental Plow, a Moldboard Plow and a Disk Plow. Philipp. Agric. Sci. 2007, 90, 173–178. [Google Scholar]
- Khadr, K.A.A. Effect of some primary tillage implement on soil pulverization and specific energy. Misr. J. Agric. Eng. 2008, 25, 731–745. [Google Scholar]
- Logsdon, S.D.; Karlen, D.L. Bulk density as a soil quality indicator during conversion to no-tillage. Soil Res. 2004, 78, 143–149. [Google Scholar] [CrossRef]
- Reynolds, W.; Drury, C.; Tan, C.; Fox, C.; Yang, X. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Gozubuyuk, Z.; Sahin, U.; Ozturk, I.; Celik, A.; Adiguzel, M.C. Tillage effects on certain physical and hydraulic properties of a loamy soil under a crop rotation in a semi-arid region with a cool climate. CATENA 2014, 118, 195–205. [Google Scholar] [CrossRef]
- Chen, Y.; Cavers, C.; Tessier, S.; Monoro, F.; Lobb, D. Short-term effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil Tillage Res. 2005, 161–171. [Google Scholar] [CrossRef]
- Monneveux, P.; Quillerou, E.; Sanchez, C.; Lopez-Cesati, J. Effect of Zero Tillage and Residues Conservation on Continuous Maize Cropping in a Subtropical Environment (Mexico). Plant Soil 2006, 279, 95–105. [Google Scholar] [CrossRef]
- Martínez, E.; Fuentes, J.-P.; Silva, P.; Valle, S.; Acevedo, E. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Res. 2008, 99, 232–244. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.R.; Serraj, R.; Cassman, K.G. Evaluating conservation agriculture for small-scale farmers in Sub-Saharan Africa and South Asia. Agric. Ecosyst. Environ. 2014, 187, 1–10. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Rodney, T.; Venterea, R.T.; et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
Tillage Systems | Years | ||
---|---|---|---|
2013 | 2016 | 2017 | |
Soil moisture content w/w | |||
DDP | 11.20 | 11.73 | 5.32 |
CHDP | 10.54 | 15.33 | 7.09 |
NT | - | 8.89 | 6.62 |
Characteristics | Disk Plow ARHK-3 | Chisel Plow JD 610 | Offset Disk Harrow RI 2024 | Planter JD Max Emerge |
---|---|---|---|---|
Working tools | 3 discs of 711 mm diameter and 6.35 mm thickness, Disk concavity 110 mm | 8 tines “C” type shank | Front section of 10 notched disks, one rear section of 10 plain disks with a disk spacing of 230 mm, diameter of disk of 609.6 mm and 4 mm thickness. Disk concavity 95 mm | 4 planting units at spacing of 910 mm, double disk opener |
Weight of implement (kg) | 542 | 618 | 674 | 841 |
Type of coupling to the tractor | Mounted, three-point linkage category 2 |
Average of Field Measurements | Disc Plow ARHK-3 | Chisel Plow JD 610 | Disc Harrow RI 2024 | Planter JD Max Emerge |
---|---|---|---|---|
Working width (mm) | 800 | 2200 | 2250 | 2700 |
Working speed (m s−1) | 1.11 | 1.10 | 1.24 | 1.27 |
Working depth (mm) | 237 | 166 | 126.5 | 50 |
Implement/Year | 2013 | 2016 | 2017 | Average | ASABE Estimate |
---|---|---|---|---|---|
Draft (kN m−1) | |||||
Disk Plow | 29.89 | 27.99 | 31.10 | 29.66 | - |
Chisel Plow | 11.28 | 5.32 | 8.16 | 8.25 | 12.60 |
Disk Harrow | 5.56 | 5.18 | 4.92 | 5.22 | 7.60 |
Planter | 2.81 | 1.81 | 1.95 | 2.19 | 2.64 |
Tillage Systems | Years | Average | ||
---|---|---|---|---|
2013 | 2016 | 2017 | ||
Working Depth (mm) | ||||
DDP | ||||
Disk Plow | 279 | 169 | 263 | 237 |
Disk Harrow | 100 | 130 | 148 | 126 |
Planter | 50 | 50 | 50 | 50 |
CHDP | ||||
Chisel Plow | 148 | 119 | 231 | 166 |
Disk Harrow | 100 | 130 | 150 | 127 |
Planter | 50 | 50 | 50 | 50 |
NT | ||||
Planter | 50 | 50 | 50 | 50 |
Tillage Systems | Years | Average | ||
---|---|---|---|---|
2013 | 2016 | 2017 | ||
MJ ha−1 | ||||
DDP | ||||
Disk Plow | 284.59 a | 298.17 a | 311.02 a | 297.93 |
Disk Harrow | 74.02 a | 50.55 a | 46.56 a | 57.04 |
Planter | 27.86 a | 25.58a | 20.89 a | 24.78 |
CHDP | ||||
Chisel Plow | 89.02 a | 43.56 b | 74.25 a | 68.94 |
Disk Harrow | 62.63 a | 40.25 a | 39.60 a | 47.49 |
Planter | 28.67 a | 13.95 b | 13.09 b | 18.57 |
NT | ||||
Planter | 28.05 ab | 18.59 b | 32.65 a | 26.43 |
Tillage Systems/Years | 2013 | 2016 | 2017 | Average |
---|---|---|---|---|
Volume of Soil Moved m3 ha−1 | ||||
DDP | ||||
Disk Plow | 2790 | 1690 | 2630 | 2370 |
Disk Harrow | 1000 | 1300 | 1480 | 1260 |
Planter | 500 | 1100 | 1100 | 900 |
CHDP | ||||
Chisel Plow | 1475 | 1190 | 2310 | 1658 |
Disk Harrow | 1000 | 1300 | 1500 | 1267 |
Planter | 500 | 1100 | 1100 | 900 |
NT | ||||
Planter | 500 | 1100 | 1100 | 900 |
Tillage Systems | Years | Average | ||
---|---|---|---|---|
2013 | 2016 | 2017 | ||
kN m−3 | ||||
DDP | ||||
Disk plow | 115.29 b | 166.89 b | 118.52 b | 133.56 |
Disk harrow | 66.61 c | 38.88 c | 31.04 c | 45.51 |
Planter | 457.74 a | 410.17 a | 338.74 a | 402.21 |
CHDP | ||||
Chisel Plow | 92.65 b | 36.50 b | 32.02 b | 53.72 |
Disk harrow | 55.60 c | 30.96 b | 26.71 b | 37.75 |
Planter | 470.99 a | 226.73 a | 226.23 a | 307.81 |
NT | ||||
Planter | 460.82 | 244.31 | 384.35 | 363.16 |
Tillage Systems | Years | Average | |
---|---|---|---|
2016 | 2017 | ||
L ha−1 | |||
DDP | |||
Disk plow | 25.35 a | 31.36 a | 28.35 |
Disk harrow | 14.88 a | 12.93 a | 13.90 |
Planter | 13.40 a | 10.90 a | 12.15 |
CHDP | |||
Chisel plow | 23.73 a | 20.68 a | 22.20 |
Disk harrow | 15.78 a | 14.00 a | 14.89 |
Planter | 9.26 a | 9.64 a | 9.45 |
NT | |||
Planter | 11.87 a | 10.27 a | 11.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vázquez, A.; Cadena-Zapata, M.; Campos-Magaña, S.; Zermeño-Gonzalez, A.; Mendez-Dorado, M. Comparison of Energy Used and Effects on Bulk Density and Yield by Tillage Systems in a Semiarid Condition of Mexico. Agronomy 2019, 9, 189. https://doi.org/10.3390/agronomy9040189
López-Vázquez A, Cadena-Zapata M, Campos-Magaña S, Zermeño-Gonzalez A, Mendez-Dorado M. Comparison of Energy Used and Effects on Bulk Density and Yield by Tillage Systems in a Semiarid Condition of Mexico. Agronomy. 2019; 9(4):189. https://doi.org/10.3390/agronomy9040189
Chicago/Turabian StyleLópez-Vázquez, Alfredo, Martin Cadena-Zapata, Santos Campos-Magaña, Alejandro Zermeño-Gonzalez, and Mario Mendez-Dorado. 2019. "Comparison of Energy Used and Effects on Bulk Density and Yield by Tillage Systems in a Semiarid Condition of Mexico" Agronomy 9, no. 4: 189. https://doi.org/10.3390/agronomy9040189
APA StyleLópez-Vázquez, A., Cadena-Zapata, M., Campos-Magaña, S., Zermeño-Gonzalez, A., & Mendez-Dorado, M. (2019). Comparison of Energy Used and Effects on Bulk Density and Yield by Tillage Systems in a Semiarid Condition of Mexico. Agronomy, 9(4), 189. https://doi.org/10.3390/agronomy9040189