Drivers, Process, and Consequences of Native Grassland Degradation: Insights from a Literature Review and a Survey in Río de la Plata Grasslands
Abstract
:1. Introduction
2. Methodology
2.1. Literature Review
2.2. Expert Survey
3. Conceptual Framework for Grassland Degradation
3.1. Which Are the Main Drivers that Influence Grassland Degradation?
3.2. How Ecological Process Are Affected by Grassland Degradation?
3.2.1. Energy Flux
3.2.2. Biogeochemical Cycles
3.2.3. Water Cycle
3.3. What are the Main Consequences of Grassland Degradation?
4. Conceptual Framework Adapted to RPG
4.1. How Did Experts Percived the Degradation of Natural Grassland?
4.2. Which Indicators Are the Most Important to Characterize Degradation?
4.3. Conceptual Framework Proposed of Monitoring Río de la Plata Grassland Degradation
5. What is a Degraded Native Grassland?
6. Discussion
7. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, D.J. Grasses and Grassland Ecology; Oxford University Press: Oxford, UK, 2009; p. 313. [Google Scholar]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.G. Accounting for the world’s rangelands. Rangelands 2007, 29, 3–10. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Review: Part of a highlight on breeding strategies for forage and grass improvement. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Bedunah, D.J.; Angerer, J.P. Rangeland degradation, poverty, and conflict: How can rangeland scientists contribute to effective responses and solutions? Rangel. Ecol. Manag. 2012, 65, 606–612. [Google Scholar] [CrossRef]
- Modernel, P.; Rossing, W.A.H.; Corbeels, M.; Dogliotti, S.; Picasso, V.; Tittonell, P. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ. Res. Lett. 2016, 11, 113002. [Google Scholar] [CrossRef] [Green Version]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; p. 535. [Google Scholar]
- Berretta, E.J.; Risso, D.F.; Montossi, F.; Pigurina, G. Campos in Uruguay. In Grassland Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., de Moraes, A., Nabinger, C., Carvalho, P.C., Eds.; CABI Publishing: New York, NY, USA, 2000; Volume 19, pp. 377–394. [Google Scholar]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Jpn. Soc. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Carroll, M.; Malherbe, J. Relevance of rangeland degradation in semiarid northeastern South Africa to the non-equilibrium theory. Ecol. Appl. 2007, 17, 815–827. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Han, J.G.; Zhang, Y.J.; Wang, C.J.; Bai, W.M.; Wang, Y.R.; Han, G.D.; Li, L.H. Rangeland degradation and restoration management in China. Rangel. J. 2008, 30, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Veldman, J.W.; Buisson, E.; Durigan, G.; Fernandes, G.W.; Le Stradic, S.; Mahy, G.; Negreiros, D.; Overbeck, G.E.; Veldman, R.G.; Zaloumis, N.P.; et al. Toward an old-growth concept for grasslands, savannas, and woodlands. Front. Ecol. Environ. 2015, 13, 154–162. [Google Scholar] [CrossRef]
- Mansour, K.; Mutanga, O.; Everson, T. Remote sensing based indicators of vegetation species for assessing rangeland degradation: Opportunities and challenges. Afr. J. Agric. Res. 2012, 7, 3261–3270. [Google Scholar]
- Wick, A.F.; Geaumont, B.A.; Sedivec, K.; Hendrickson, J. Grassland degradation. In Biological and Environmental Hazards, Risks and Disasters; Shroder, J.F., Sivanpillai, R., Eds.; Elsevier: New York, NY, USA, 2016; Volume 8, pp. 257–276. ISBN 9780123964717. [Google Scholar]
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Evans, J.P.; McCabe, M.F.; de Jeu, R.A.M.; van Dijk, A.I.J.M.; Dolman, A.J.; Saizen, I. Changing Climate and Overgrazing Are Decimating Mongolian Steppes. PLoS ONE 2013, 8, e57599. [Google Scholar] [CrossRef]
- Andrade, B.O.; Marchesi, E.; Burkart, S.; Setubal, R.B.; Lezama, F.; Perelman, S.; Schneider, A.A.; Trevisan, R.; Overbeck, G.E.; Boldrini, I.I. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 2018, 188, 250–256. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, L.; Chen, Y.; Li, J.; Ju, W.; Odeh, I. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecol. 2014, 55, 86–96. [Google Scholar] [CrossRef]
- Wilson, J.B.; Peet, R.K.; Dengler, J.; Pärtel, M. Plant species richness: The world records. J. Veg. Sci. 2012, 23, 796–802. [Google Scholar] [CrossRef]
- Henwood, W.D. Editorial–the world’s temperate grasslands: A beleaguered biome. Parks 1998, 8, 1–2. [Google Scholar]
- Carvalho, P.C.; Batello, C. Access to land, livestock production and ecosystem conservation in the Brazilian Campos biome: The natural grasslands dilemma. Livest. Sci. 2009, 120, 158–162. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Shao, Q. Spatial and temporal characteristics of grassland degradation in the riverhead area of the Yellow River. In Second International Conference on Earth Observation for Global Changes; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7471, pp. 74710R-1–74710R-7. [Google Scholar]
- Manssour, K. Rangeland Degradation Assessment Using Remote Sensing and Vegetation Species. Ph.D. Thesis, Faculty of Science and Agriculture, University of KwaZulu-Natal, Durban, South Africa, 2011. [Google Scholar]
- Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West Chine, using Landsat TM and in situ reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar] [CrossRef]
- Rosengurtt, B. Estudios Sobre Praderas Naturales del Uruguay 3ª Contribución; Barreiro y Ramos: Montevideo, Uruguay, 1943; p. 281. [Google Scholar]
- Berretta, E.J.; do Nascimento, D., Jr. Glosario Estructurado de Términos Sobre Pasturas y Producción Animal; Diálogo 32; IICA–PROCISUR: Montevideo, Uruguay, 1991; p. 127. ISBN 92-9039-180-4. [Google Scholar]
- Behmanesh, B.; Barani, H.; Sarvestani, A.A.; Shahraki, M.R.; Sharafatmandrad, M. Rangeland degradation assessment: A new strategy based on indigenous ecological knowledge of pastoralists. Solid Earth Discuss. 2015, 7, 2999–3019. [Google Scholar] [CrossRef]
- Millot, J.C.; Methol, R.; Risso, D. Relevamiento de Pasturas Naturales y Mejoramientos Extensivos en Áreas Ganaderas del Uruguay: Informe Técnico de la Comisión Honoraria del Plan Agropecuario; Consultora F.U.C.R.E.A; MGAP: Montevideo, Uruguay, 1987; p. 199. [Google Scholar]
- Pallarés, O.R.; Berretta, E.J.; Maraschin, G.E. The South American campos ecosystem. In Grasslands of the World; Suttie, J., Reynolds, S.G., Batello, C., Eds.; FAO: Roman, Italy, 2005; pp. 171–219. [Google Scholar]
- Tácuna, R.E.; Aguirre, L.; Flores, E.R. Influencia de la revegetación con especies nativas y la incorporación de materia orgánica en la recuperación de pastizales degradados. Ecol. Appl. 2015, 14, 191–200. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Abdalla, K.; Mutema, M.; Chivenge, P.; Everson, C.; Chaplot, V. Grassland degradation significantly enhances soil CO2 emission. Catena 2018, 167, 284–292. [Google Scholar] [CrossRef]
- Cao, J.; Yeh, E.T.; Holden, N.M.; Qin, Y.; Ren, Z. The roles of overgrazing, climate change and policy as drivers of degradation of China’s grasslands. Nomadic Peoples 2013, 17, 82–101. [Google Scholar] [CrossRef]
- Li, S.; Verburg, P.H.; Lv, S.; Wu, J.; Li, X. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Environ. Chang. 2012, 12, 461–474. [Google Scholar]
- Westoby, M.; Walker, B.; Noy-Meir, I. Opportunistic management for rangelands not at equilibrium. J. Range Manag. 1989, 42, 266–274. [Google Scholar] [CrossRef]
- Briske, D.D.; Fuhlendorf, S.D.; Smeins, F.E. State-and-transition models, thresholds, and rangeland health: A synthesis of ecological concepts and perspectives. Rangel. Ecol. Manag. 2005, 58, 1–10. [Google Scholar] [CrossRef]
- Lopez, D.R.; Cavallero, L.; Brizuela, M.A.; Aguiar, M.R. Ecosystemic structural–functional approach of the state and transition model. Appl. Veg. Sci. 2011, 14, 6–16. [Google Scholar] [CrossRef]
- Briske, D.D.; Fuhlendorf, S.D.; Smeins, F.E. A unified framework for assessment and application of ecological thresholds. Rangel. Ecol. Manag. 2006, 59, 225–236. [Google Scholar] [CrossRef]
- Briske, D.D.; Bestelmeyer, B.T.; Stringham, T.K.; Shaver, P.L. Recommendations for development of resilience-based state-and-transition models. Rangel. Ecol. Manag. 2008, 61, 359–367. [Google Scholar] [CrossRef]
- Snyman, H.A. Rangeland degradation in a semi-arid South Africa—I: Influence on seasonal root distribution, root/shoot ratios and water-use efficiency. J. Arid Environ. 2005, 60, 457–481. [Google Scholar] [CrossRef]
- Snyman, H.A.; Du Preez, C.C. Rangeland degradation in a semi-arid South Africa—II: Influence on soil quality. J. Arid Environ. 2005, 60, 483–507. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef] [Green Version]
- de Queiroz, J.S. Range Degradation in Botswana; Pastoral Development Network Paper, No. 35b; Overseas Development Institute (ODI): London, UK, 1993; p. 19. [Google Scholar]
- Atkinson, R.; Flint, J. Accessing hidden and hard-to-reach populations: Snowball research strategies. Soc. Res. Update 2001, 33, 1–4. [Google Scholar]
- Vogt, W.P.; Johnson, R.B. Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences: A Nontechnical Guide for the Social Sciences; Sage Publications: Thousand Oaks, CA, USA, 2011; p. 437. [Google Scholar]
- Heink, U.; Kowarik, I. What are indicators? On the definition of indicators in ecology and environmental planning. Ecol. Indic. 2010, 10, 584–593. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Li, J.; Gang, C.; Zhang, Y.; Zhang, Y.; Oden, I.; Qi, J. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. J. Arid Environ. 2016, 135, 164–172. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Klein, J.A.; Harte, J.; Zhao, X.Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 2007, 17, 541–557. [Google Scholar] [CrossRef]
- Carlyle, C.N.; Fraser, L.H.; Turkington, R. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient. Oecologia 2014, 174, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhao, C.; Yang, K.; Liu, W.; Li, Y.; You, J.; Xiao, J. Alpine grassland degradation in the Qilian Mountains, China—A case study in Damaying Grassland. Catena 2016, 137, 494–500. [Google Scholar] [CrossRef]
- Fedrigo, J.K.; Ataide, P.F.; Filho, J.A.; Oliveira, L.V.; Jaurena, M.; Laca, E.A.; Overbeck, G.E.; Nabinger, C. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restor. Ecol. 2017, 26, 677–685. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; El-Bana, M.I.; Al-Bakre, D.A.; Assaeed, A.M.; Hegazy, A.K.; Ali, M.B. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasim, S.; Gul, S.; Shah, M.H.; Hussain, F.; Ahmad, S.; Islam, M.; Rehman, G.; Yaqoob, M.; Shah, S.Q. Influence of grazing exclosure on vegetation biomass and soil quality. Int. Soil Water Conserv. Res. 2017, 5, 62–68. [Google Scholar] [CrossRef]
- Altesor, A.; Oesterheld, M.; Leoni, E.; Lezama, F.; Rodríguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 2005, 179, 83–91. [Google Scholar] [CrossRef]
- Yao, X.; Wu, J.; Gong, X.; Lang, X.; Wang, C. Grazing exclosures solely are not the best methods for sustaining alpine grasslands. PeerJ 2019, 7, e6462. [Google Scholar] [CrossRef]
- Snyman, H.A. Short-term responses of southern African semi-arid rangelands to fire: A review of impact on soils. Arid Land Res. Manag. 2015, 29, 222–236. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, D.M.; Nabinger, C.; Kunrath, T.R.; Carvalho, P.C.D.F.; Carassai, I.J.; Cadenazzi, M. Impact of nitrogen fertilization on the forage characteristics and beef calf performance on native pasture overseeded with ryegrass. Rev. Bras. Zootec. 2012, 41, 528–536. [Google Scholar] [CrossRef] [Green Version]
- de Ávila, M.R.; Nabinger, C.; Brambilla, D.M.; Carassai, I.J.; Kunrath, T.R. The effects of nitrogen enrichment on tiller population density and demographics of annual ryegrass overseeded on natural pastures South of Brazil. Afr. J. Agric. Res. 2013, 8, 3013–3018. [Google Scholar]
- Jaurena, M.; Lezama, F.; Salvo, L.; Cardozo, G.; Ayala, W.; Terra, J.; Nabinger, C. The dilemma of improving native grasslands by overseeding legumes: Production intensification or diversity conservation. Rangel. Ecol. Manag. 2016, 69, 35–42. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Son, Y. Exotic plant species invade hot spots of native plant diversity. Ecol. Monogr. 1999, 69, 25–46. [Google Scholar] [CrossRef]
- Li, C.; Hao, X.; Zhao, M.; Han, G.; Willms, W.D. Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agric. Ecosyst. Environ. 2008, 128, 109–116. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, G.; Zhang, F. Effects of Different Grazing Intensities on Grassland Production in China: A Meta-Analysis. PLoS ONE 2013, 8, e81466. [Google Scholar] [CrossRef]
- Bircham, J.S.; Hodgson, J. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass Forage Sci. 1983, 38, 323–331. [Google Scholar] [CrossRef]
- Asner, G.P.; Scurlock, J.M.O.; Hicke, J.A. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Duchini, P.G.; Zanini, G.D.; Santos, G.T.; Padilha, D.A.; Schmitt, D. Defoliation Strategies in Pastures Submitted to Intermittent Stocking Method: Underlying Mechanisms Buffering Forage Accumulation over a Range of Grazing Heights. Crop Sci. 2018, 58, 945–954. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar]
- Willms, W.D.; Smoliak, S.; Bailey, A.W. Herbage production following litter removal on Alberta native grasslands. J. Range Manag. 1986, 39, 536–540. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Chang, S.; Kan, H.; Lin, L. Impact of Grazing on Soil Carbon and Microbial Biomass in Typical Steppe and Desert Steppe of Inner Mongolia. PLoS ONE 2012, 7, e36434. [Google Scholar] [CrossRef]
- Zhang, R.; Bai, Y.; Zhang, T.; Henkin, Z.; Degen, A.A.; Jia, T.; Guo, C.; Long, R.; Shang, Z. Driving Factors That Reduce Soil Carbon, Sugar, and Microbial Biomass in Degraded Alpine Grasslands. Rangel. Ecol. Manag. 2019, 72, 396–404. [Google Scholar] [CrossRef]
- Steffens, M.; Kölbl, A.; Totsche, K.U.; Kögel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia. Geoderma 2008, 143, 63–72. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, C.; Shelton, S.; Wang, Z.; Pang, G.; Chen, J.; Wang, J. Grazing intensity influence soil microbial communities and their implications for soil respiration. Agric. Ecosyst. Environ. 2017, 249, 50–56. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Chang. Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef]
- Dlamini, P.; Chivenge, P.; Chaplot, V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agric. Ecosyst. Environ. 2016, 221, 258–269. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, Y.; Han, G.; Mei, H.; Sakurai, K. Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 356–364. [Google Scholar] [CrossRef]
- Mchunu, C.; Chaplot, V. Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma 2012, 177, 72–79. [Google Scholar] [CrossRef]
- Yi, X.S.; Li, G.S.; Yin, Y.Y. The impacts of grassland vegetation degradation on soil hydrological and ecological effects in the source region of the Yellow River—A case study in Junmuchang region of Maqin country. Procedia Environ. Sci. 2012, 13, 967–981. [Google Scholar] [CrossRef]
- Bertol, I.; Gomes, K.E.; Denardin, R.B.N.; Machado, L.A.Z.; Maraschin, G.E. Propriedades físicas do solo relacionadas a diferentes níveis de oferta de forragem numa pastagem natural. Pesqui. Agropecuária Bras. 1998, 33, 779–786. [Google Scholar]
- Willatt, S.T.; Pullar, D.M. Changes in soil physical-properties under grazed pastures. Aust. J. Soil Res. 1984, 22, 343–348. [Google Scholar] [CrossRef]
- Babel, W.; Biermann, T.; Coners, H.; Falge, E.; Seeber, E.; Ingrisch, J.; Willinghöfer, S. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 2014, 11, 6633–6656. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z. Quantitative analysis of driving factors of grassland degradation: A case study in Xilin River Basin, Inner Mongolia. Sci. World J. 2012, 2012, 14. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Wilcox, B.P.; Breshears, D.D.; Tongway, D.J.; Imeson, A.C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 2005, 86, 288–297. [Google Scholar] [CrossRef]
- Sun, L.; Yang, L.; Hao, L.; Fang, D.; Jin, K.; Huang, X. Hydrological effects of vegetation cover degradation and environmental implications in a semiarid temperate Steppe, China. Sustainability 2017, 9, 281. [Google Scholar] [CrossRef]
- Mansour, K.; Mutanga, O.; Everson, T.; Adam, E. Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution. ISPRS J. Photogramm. Remote Sens. 2012, 70, 56–65. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal. Remote Sens. Environ. 2010, 114, 1845–1855. [Google Scholar] [CrossRef]
- Hoppe, F.; Kyzy, T.Z.; Usupbaev, A.; Schickhoff, U. Rangeland degradation assessment in Kyrgyzstan: Vegetation and soils as indicators of grazing pressure in Naryn Oblast. J. Mt. Sci. 2016, 13, 1567–1583. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.; Li, Y.; Li, X.; Shi, J.; Wang, Y.; Liu, D.; Ma, Y. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 2013, 8, e58432. [Google Scholar] [CrossRef]
- Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.; Denning, A.S. Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Glob. Chang. Biol. 1998, 4, 461–475. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Adegoke, J.; BeltraáN-Przekurat, A.; Hiemstra, C.A.; Lin, J.; Nair, U.S.; Niyogi, D.; Nobis, T.E. An overview of regional land-use and land-cover impacts on rainfall. Tellus B Chem. Phys. Meteorol. 2007, 59, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Costa, M.H.; Delire, C.; Ramankutty, N.; Snyder, P. Green surprise? How terrestrial ecosystems could affect earth’s climate. Front. Ecol. Environ. 2003, 1, 38–44. [Google Scholar]
- Feng, Q.; Ma, H.; Jiang, X.; Wang, X.; Cao, S. What has caused desertification in China? Sci. Rep. 2015, 5, 15998. [Google Scholar] [CrossRef]
- Bakker, E.S.; Ritchie, M.E.; Olff, H.; Milchunas, D.G.; Knops, J.M. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 2006, 9, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Altesor, A.; Piñeiro, G.; Lezama, F.; Jackson, R.B.; Sarasola, M.; Paruelo, J.M. Ecosystem changes associated with grazing in subhumid South American grasslands. J. Veg. Sci. 2006, 17, 323–332. [Google Scholar] [CrossRef]
- Lezama, F.; Baeza, S.; Altesor, A.; Cesa, A.; Chaneton, E.J.; Paruelo, J.M. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 2014, 25, 8–21. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Poore, A.G.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Noy-Meir, I.; Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 2005, 15, 757–773. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P. Species composition, richness and aboveground biomass of natural grassland in Hilly-Gully Regions of the Loess Plateau. China J. Integr. Agric. 2014, 13, 2527–2536. [Google Scholar] [CrossRef]
- Soriano, A.; León, R.J.C.; Sala, O.E.; Lavado, R.S.; Deregibus, V.A.; Cahuepé, M.A.; Scaglia, O.A.; Velazquez, C.A.; Lemcoff, J.H. Río de la Plata grasslands. In Ecosystems of the World 8A. Natural Grasslands. Introduction and Western Hemisphere; Coupland, R.T., Ed.; Elsevier: New York, NY, USA, 1992; pp. 367–407. [Google Scholar]
- Overbeck, G.E.; Müller, S.C.; Fidelis, A.; Pfadenhauer, J.; Pillar, V.D.; Blanco, C.C.; Boldrini, I.I.; Both, R.; Forneck, E.D. Brazil’s neglected biome: The South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Bilenca, D.; Miñarro, F. Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Cam-pos de Argentina, Uruguay y sur de Brasil; Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, 2004; p. 352. [Google Scholar]
- Fonseca, C.R.; Guadagnin, D.L.; Emer, C.; Masciadri, S.; Germain, P.; Zalba, S.M. Invasive alien plants in the Pampas grasslands: A tri-national cooperation challenge. Biol. Invasions 2013, 15, 1751–1763. [Google Scholar] [CrossRef]
- Guido, A.; Varela, R.D.; Baldassini, P.; Paruelo, J. Spatial and temporal variability in aboveground net primary production of Uruguayan grasslands. Rangel. Ecol. Manag. 2014, 67, 30–38. [Google Scholar] [CrossRef]
- Medeiros, R.B.; Pillar, V.D.; Reis, J.C.L. Expansão de Eragrostis plana Ness (capim-annoni-2), no Rio Grande do Sul e indicativos de controle. In Reunión del grupo técnico regional del Cono Sur en mejoramiento y utilización de los recursos forrajeros del área tropical y subtropical, Grupo Campos, 20. Salto, Uruguay, 2004; Regional Norte de la Universidad de la República: Salto, Uruguay, 2004; pp. 208–211. [Google Scholar]
- Jaurena, M.; Bentancur, O.; Ayala, W.; Rivas, M. Especies indicadoras y estructura de praderas naturales de basalto con cargas contrastantes de ovinos. Agrociencia Urug. 2011, 15, 103–114. [Google Scholar]
- Sala, O.E.; Oesterheld, M.; León, R.J.C.; Soriano, A. Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetatio 1986, 67, 27–32. [Google Scholar]
- Focht, T.; Medeiros, R.B.D. Prevention of natural grassland invasion by Eragrostis plana Nees using ecological management practices. Rev. Bras. Zootec. 2012, 41, 1816–1823. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Li, Y.K.; Xu, X.L.; Zhang, F.W.; Du, Y.G.; Liu, S.L.; Gou, X.W.; Cao, G.M. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands. Solid Earth 2015, 6, 1237–1246. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; You, G.; Li, R.; Shen, W.; Yue, Y.; Lin, N. Spectral characteristics of alpine grassland and their changes responding to grassland degradation on the Tibetan Plateau. Environ. Earth Sci. 2015, 74, 2115–2123. [Google Scholar] [CrossRef]
- Geerken, R.; Ilaiwi, M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ. 2004, 90, 490–504. [Google Scholar] [CrossRef]
- Hao, C.; Wu, S. The effects of land-use types and conversions on desertification in Mu Us Sandy Land of China. J. Geogr. Sci. 2006, 16, 57–68. [Google Scholar] [CrossRef]
- Baldi, G.; Paruelo, J.M. Land-use and land cover dynamics in South American temperate grasslands. Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef]
- Vega, E.; Baldi, G.; Jobbagy, E.G.; Paruelo, J. Land use change patterns in the Río de la Plata grasslands: The influence of phytogeographic and political boundaries. Agric. Ecosyst. Environ. 2009, 134, 287–292. [Google Scholar] [CrossRef]
- Mugerwa, S.; Emmanuel, Z. Drivers of grassland ecosystems’ deterioration in Uganda. Appl. Sci. Rep. 2014, 2, 103–111. [Google Scholar]
- Li, C.; de Jong, R.; Schmid, B.; Wulf, H.; Schaepman, M.E. Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Sci. Total Environ. 2019, 665, 678–689. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, D.A.; Engle, D.M.; Wilsey, B.J.; Fuhlendorf, S.D.; Miller, J.R.; Debinski, D.M. Grazing and an invasive grass confound spatial pattern of exotic and native grassland plant species richness. Basic Appl. Ecol. 2012, 13, 654–662. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Shao, Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 2008, 18, 259–273. [Google Scholar] [CrossRef]
- Zhao, Y.; He, C.; Zhang, Q. Monitoring vegetation dynamics by coupling linear trend analysis with change vector analysis: A case study in the Xilingol steppe in northern China. Int. J. Remote Sens. 2012, 33, 287–308. [Google Scholar] [CrossRef]
- Ho, P.; Azadi, H. Rangeland degradation in North China: Perceptions of pastoralists. Environ. Res. 2010, 110, 302–307. [Google Scholar]
- Miehe, S.; Kluge, J.; Von Wehrden, H.; Retzer, V. Long-term degradation of Sahelian rangeland detected by 27 years of field study in Senegal. J. Appl. Ecol. 2010, 47, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Guido, A.; Vélez-Martin, E.; Overbeck, G.E.; Pillar, V.D. Landscape structure and climate affect plant invasion in subtropical grasslands. Appl. Veg. Sci. 2016, 19, 600–610. [Google Scholar] [CrossRef]
- Semmartin, M.; Di Bella, C.; de Salamone, I.G. Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant Soil 2010, 328, 471–481. [Google Scholar] [CrossRef]
- Pickup, G. Estimating the effects of land degradation and rainfall variation on productivity in rangelands: An approach using remote sensing and models of grazing and herbage dynamics. J. Appl. Ecol. 1996, 33, 819–832. [Google Scholar] [CrossRef]
- Snyman, H.A. Soil seed bank evaluation and seedling establishment along a degradation gradient in a semi-arid rangeland. Afr. J. Range Forage Sci. 2004, 21, 37–47. [Google Scholar] [CrossRef]
- Vieira, M.D.S.; Bonilha, C.L.; Boldrini, I.I.; Overbeck, G.E. The seed bank of subtropical grasslands with contrasting land-use history in southern Brazil. Acta Bot. Braz. 2015, 29, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Andrade, B.O.; Koch, C.; Boldrini, I.I.; Vélez-Martin, E.; Hasenack, H.; Hermann, J.M.; Kollman, J.; Pillar, V.D.; Overbeck, G.E. Grassland degradation and restoration: A conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 2015, 13, 95–104. [Google Scholar] [CrossRef]
- Chaneton, E.J.; Perelman, S.B.; Omacini, M.; Leon, R.J.C. Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biol. Invasions 2002, 4, 7–24. [Google Scholar] [CrossRef]
- Altesor, A.; López-Marsico, L.; Paruelo, J. (Eds.) Bases Ecológicas y Tecnológicas Para el Manejo de Pastizales II; Serie FPTA-INIA (69); INIA: Montevideo, Uruguay, 2019; p. 167. [Google Scholar]
- Porensky, L.M.; Mueller, K.E.; Augustine, D.J.; Derner, J.D. Thresholds and gradients in a semi-arid grassland: Long-term grazing treatments induce slow, continuous and reversible vegetation change. J. Appl. Ecol. 2016, 53, 1013–1022. [Google Scholar] [CrossRef]
- Oesterheld, M.; Semmartin, M. Impact of grazing on species composition: Adding complexity to a generalized model. Austral Ecol. 2011, 36, 881–890. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Davidowitz, G. Does precipitation variability increase from mesic to xeric biomes? Glob. Ecol. Biogeogr. 2002, 11, 143–154. [Google Scholar] [CrossRef]
- Whitford, W.G. Ecology of Desert Systems. J. Mammal. 2002, 84, 1122–1124. [Google Scholar]
- Van Etten, E.J. Inter-annual rainfall variability of arid Australia: Greater than elsewhere? Aust. Geogr. 2009, 40, 109–120. [Google Scholar] [CrossRef]
- Le Houérou, H.N. A probabilistic approach to assessing arid rangelands’ productivity, carrying capacity and stocking rates. In Drylands: Sustainable Use of Rangelands into the Twenty First Century; Squires, V.R., Sidahmed, A.E., Eds.; IFAD: Rome, Italy, 1998; pp. 159–172. [Google Scholar]
- Wiegand, T.; Snyman, H.A.; Kellner, K.; Paruelo, J.M. Do grasslands have a memory: Modeling phytomass production of a semiarid South African grassland. Ecosystems 2004, 7, 243–258. [Google Scholar] [CrossRef]
- Sloat, L.L.; Gerber, J.S.; Samberg, L.H.; Smith, W.K.; Herrero, M.; Ferreira, L.G.; Godde, C.M.; West, P.C. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Chang. 2018, 8, 214. [Google Scholar] [CrossRef]
- Ellis, J.E.; Swift, D.M. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. Rangel. Ecol. Manag. J. Range Manag. Arch. 1998, 41, 450–459. [Google Scholar] [CrossRef]
- Briske, D.D.; Zhao, M.; Han, G.; Xiu, C.; Kemp, D.R.; Willms, W.; Havstad, K.; Kang, L.; Wang, Z.; Wu, J.; et al. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs. production efficiency of livestock systems. J. Environ. Manag. 2015, 152, 177–182. [Google Scholar] [CrossRef]
Conceptual Category | Subtopic | Indicator | Effect | % of Papers (Literature) | % of Experts (Survey) |
---|---|---|---|---|---|
Drivers | Human–induced processes *1 [6,8,9,10,13,14,15,16,25,29,34,35,52,55,56,63,64,65,91,92,106,114,115,116,117,118,119,120,121,122] | 46 | 52 | ||
Result of natural events (drought, climate change) [13,14,16,17,25,33,35,49,55,115] | 15 | ||||
Process indicators | Productivity | Productivity (ANPP related to the potential in a specific soil type) [12,15,24,25,29,32,34,36,45,55,90,91,92,115,123,124] | − | 24 | 55 |
Vegetation and/or bare soil cover [12,24,25,32,34,55,108,110,114,116,125,126,127] | − or + | 19 | 72 | ||
Productivity indicator species % *2 [4,123,124] | − | 4 | 45 | ||
Plant height [12,92,125] | − | 4 | 31 | ||
Biomass or Forage availability [9,10,14,35,55,92,115,126] | − | 12 | 7 | ||
Quality indicator species (%) *3 [14,24,25,29,31,128] | − | 10 | 10 | ||
Biodiversity | Plant species richness, plant or functional groups diversity [8,12,24,26,29,34,35,65,123,125] | − | 15 | 55 | |
Species and functional type composition [8,29,115,123,126] | − or + | 7 | 55 | ||
Weeds (%) [8] | + | 1 | 41 | ||
Structural heterogeneity [29] | − | 1 | 48 | ||
Non–native plant species % [65,108,110,127] | + | 6 | 41 | ||
Key, endemic or rare species [32] | − | 1 | 28 | ||
Soil process | Soil bulk density [32,87] | + | 3 | 17 | |
Soil organic matter [32,74,75,76,77,78,92] | − | 10 | 14 | ||
Soil nutrients [29,35,116] | + | 4 | 21 | ||
Litter presence [67,68,73] | − | 4 | 10 | ||
Consequences | Soil erosion [29,34,35,67,87,88,116] | + | 10 | 41 | |
Drought resistance and resilience [18,24,76,129] | − | 6 | 28 | ||
Secondary production *4 [9,24,34,45,56,90,123,129] | − | 12 | 28 | ||
Ecosystem processes, services and function *5 [12,15,24,29,32,45,56,67,74,75,83,84,87,88,123,124] | − | 24 | 23 | ||
Plant health [15] | − | 1 | 21 | ||
Soil seed bank [130,131] | − | 3 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiscornia, G.; Jaurena, M.; Baethgen, W. Drivers, Process, and Consequences of Native Grassland Degradation: Insights from a Literature Review and a Survey in Río de la Plata Grasslands. Agronomy 2019, 9, 239. https://doi.org/10.3390/agronomy9050239
Tiscornia G, Jaurena M, Baethgen W. Drivers, Process, and Consequences of Native Grassland Degradation: Insights from a Literature Review and a Survey in Río de la Plata Grasslands. Agronomy. 2019; 9(5):239. https://doi.org/10.3390/agronomy9050239
Chicago/Turabian StyleTiscornia, Guadalupe, Martín Jaurena, and Walter Baethgen. 2019. "Drivers, Process, and Consequences of Native Grassland Degradation: Insights from a Literature Review and a Survey in Río de la Plata Grasslands" Agronomy 9, no. 5: 239. https://doi.org/10.3390/agronomy9050239
APA StyleTiscornia, G., Jaurena, M., & Baethgen, W. (2019). Drivers, Process, and Consequences of Native Grassland Degradation: Insights from a Literature Review and a Survey in Río de la Plata Grasslands. Agronomy, 9(5), 239. https://doi.org/10.3390/agronomy9050239