Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Apsim Simulation
2.3. Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA)
2.4. Global Sensitivity Analysis
3. Results and Discussion
3.1. Emulator Accuracy
3.2. Sensitivity of Crop Growth and Yield to Changes in Plant and Cultivar Specific Parameters
3.3. Role of RUE4 on APSIM-Sugar Simulations
3.4. Investigation of Interannual Variation in Parameter Influence
3.5. Relationship between Statistical Dispersion and Climatological Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lisson, S.N.; Inman-Bamber, N.G.; Robertson, M.J.; Keating, B.A. The historical and future contribution of crop physiology and modelling research to sugarcane production systems. Field Crop. Res. 2005, 92, 321–335. [Google Scholar] [CrossRef]
- Sexton, J.; Everingham, Y.L.; Inman-Bamber, G. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia. Eur. J. Agron. 2017, 88, 96–105. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Kazuro, M.; Onodera, T.; Kaneshiro, H.; Uehara, H.; Wakasugi, K. Optimized subsurface irrigation system (OPSIS): Beyond traditional subsurface irrigation. Water 2017, 9, 599. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Momii, K.; Onodera, T.; Kaneshiro, H.; Uehara, H.; Wakasugi, K. Optimized subsurface irrigation system: The future of sugarcane irrigation. Water 2018, 10, 314. [Google Scholar] [CrossRef]
- Surendran, U.; Jayakumar, M.; Marimuthu, S. Science of the total environment low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Sci. Total Environ. 2016, 573, 1430–1440. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Keating, B.A.; Robertson, M.J.; Muchow, R.C.; Huth, N.I. Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crop. Res. 1999, 61, 253–271. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Everingham, Y.; Baillie, C.; Inman-Bamber, G.; Baillie, J. Forecasting water allocations for Bundaberg sugarcane farmers. Clim. Res. 2008, 36, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Inman-Bamber, N.G.; McGlinchey, M.G. Crop coefficients and water-use estimates for sugarcane based on long-term bowen ratio energy balance measurements. Field Crop. Res. 2003, 83, 125–138. [Google Scholar] [CrossRef]
- Bocca, F.F.; Rodrigues, L.H.A.; Arraes, N.A.M. When do I want to know and why? Different demands on sugarcane yield predictions. Agric. Syst. 2015, 135, 48–56. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; Chen, C.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crop. Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Singels, A.; Jones, M.; Marin, F.; Ruane, A.; Thorburn, P. Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the canegro model. Sugar Tech. 2014, 16, 347–355. [Google Scholar] [CrossRef]
- Thorburn, P.; Biggs, J.; Jones, M.R.; Singels, A.; Marin, F.; Martine, J.-F.; Chinorumba, S.; Viator, R.; Nunez, O. Evaluation of the APSIM-Sugar model for simulation sugarcane yield at sites in seven countries: Initial results. Proc. S. Afr. Sugar Technol. Assoc. 2014, 318–322. [Google Scholar]
- Zubair, L.; Nissanka, S.P.; Weerakoon, W.M.W.; Herath, D.I.; Karunaratne, A.S.; Agalawatte, P.; Herath, R.M.; Yahiya, S.Z.; Punyawardhene, B.V.R.; Vishwanathan, J.; et al. Climate change impacts on rice farming systems in Northwestern Sri Lanka. Handb. Clim. Chang. Agroecosyst. 2015, 3, 315–352. [Google Scholar]
- Basnayake, J.; Jackson, P.A.; Inman-Bamber, N.G.; Lakshmanan, P. Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. J. Exp. Bot. 2012, 63, 6023–6033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inman-Bamber, N.G.; Jackson, P.A.; Stokes, C.J.; Verrall, S.; Lakshmanan, P.; Basnayake, J. Sugarcane for water-limited environments: Enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply. Field Crop. Res. 2016, 196, 112–123. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470059975. [Google Scholar]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- O’Hagan, A. Bayesian analysis of computer code outputs: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Gima, H.; Yoshitake, T. A comparative study of energy security in okinawa prefecture and the state of hawaii. Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strateg. 2016, 3, 36–44. [Google Scholar] [CrossRef]
- Buysse, M. Irrigation water supply for non-irrigation purposes in Uda Walawe: Policy and effects. Int. Water Manag. Inst. Rep. 2002, 1–20. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Dias, H.B.; Inman-Bamber, G.; Bermejo, R.; Sentelhas, P.C.; Christodoulou, D. New APSIM-Sugar features and parameters required to account for high sugarcane yields in tropical environments. Field Crop. Res. 2019, 235, 38–53. [Google Scholar] [CrossRef]
- Keating, B.A.; Robertson, M.J.; Muchow, R.C.; Huth, N.I. Modelling sugarcane production systems: II: Analysis of system performance and methodology issues. Field Crop. Res. 2000, 68, 1–20. [Google Scholar]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Momii, K.; Kumari, M.K.N.; Amarasekara, M.G.T.S. Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil Tillage Res. 2019, 190, 109–119. [Google Scholar] [CrossRef]
- Dassanayake, A.R.; De Silva, G.G.R.; Mapa, R.B.; Kumaragamage, D. Benchmark Soils of the Dry Zone of Sri Lanka: Factsheets; Mapa, R.B., Somasiri, S., Dassanayake, A.R., Eds.; Soil Science Society of Sri Lanka: Peradeniya, Sri Lanka, 2010. [Google Scholar]
- Ruane, A.C.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248. [Google Scholar] [CrossRef]
- Kennedy, M.C.; Petropoulos, G.P. GEM-SA: The Gaussian Emulation Machine for Sensitivity Analysis; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128030318. [Google Scholar]
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 425–464. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, M.C.; Anderson, C.W.; Conti, S.; O’Hagan, A. Case studies in Gaussian process modelling of computer codes. Reliab. Eng. Syst. Saf. 2006, 91, 1301–1309. [Google Scholar] [CrossRef]
- Bakar, I.A.A.; Kamaruddin, M.K. Uncertain mesoscopic parameters in dry woven fabric with Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA). J. Phys. Conf. Ser. 2018, 1130. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Sakai, K.; Kumari, M.K.N. Sensitivity Analysis of APSIM model using GEM-SA software: Emulator accuracy assessment. In Proceedings of the ICESD International Conference, Sydney, Australia, 5–6 March 2019; pp. 6–10. [Google Scholar]
- Gunarathna, M.H.J.P.; Sakai, K.; Kumari, M.K.N. Can crop modeling sucess with estimated soil hydraulic parameters? In Proceedings of the PAWEES-INWEPF International Conference Nara 2018, Nara, Japan, 20–22 November 2018; pp. 461–470. [Google Scholar]
- Stanfill, B. apsimr: Edit, Run and Evaluate APSIM Simulations Easily Using R. R Package Version 1.2. 2015. Available online: https://CRAN.R-project.org/package=apsimr (accessed on 5 July 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Oakley, J.E.; Hagan, A.O. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. B 2004, 66, 751–769. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Griffiths, H.M.; Kennedy, M.C.; Ioannou-Katidis, P.; Kalivas, D.P. Extending the global sensitivity analysis of the SimSphere model in the context of its future exploitation by the scientific community. Water 2015, 7, 2101–2141. [Google Scholar] [CrossRef]
- Petropoulos, G.; Wooster, M.J.; Carlson, T.N.; Kennedy, M.C.; Scholze, M. A global Bayesian sensitivity analysis of the 1d SimSphere soil-vegetation-atmospheric transfer (SVAT) model using Gaussian model emulation. Ecol. Modell. 2009, 220, 2427–2440. [Google Scholar] [CrossRef]
- Lee, L.A.; Carslaw, K.S.; Pringle, K.J.; Mann, G.W.; Spracklen, D.V. Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys. 2011, 11, 12253–12273. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.; Everingham, Y.L. Global sensitivity analysis of key parameters in a process-based sugarcane growth model—A Bayesian approach. In Proceedings of the 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Zhao, G.; Bryan, B.A.; Song, X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol. Modell. 2014, 279, 1–11. [Google Scholar] [CrossRef]
- Martiné, J.-F.; Siband, P.; Bonhomme, R. Simulation of the maximum yield of sugar cane at different altitudes: Effect of temperature on the conversion of radiation into biomass Simulation of the maximum yield of sugar cane on the conversion of radiation into biomass. Agronomie 1999, 19, 3–12. [Google Scholar] [CrossRef]
- Ferreira, R.A., Jr.; De Souza, J.L.; Lyra, G.B.; Escobedo, J.F.; Santos, M.V.C. Energy conversion efficiency in sugarcane under two row spacings in northeast of Brazil. Rev. Bras. Eng. Agrícola e Ambient. 2015, 19, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Acreche, A. Nitrogen-, water- and radiation-use efficiencies affected by sugarcane breeding in Argentina. Plant Breed. 2017, 136, 174–181. [Google Scholar] [CrossRef]
- De Silva, A.L.C.; De Costa, W.A.J.M. Growth and radiation use efficiency of sugarcane under irrigated and rain-fed conditions in sri lanka. Sugar Tech. 2012, 14, 247–254. [Google Scholar] [CrossRef]
- Sexton, J.; Inman-bamber, N.G.; Everingham, Y.; Basnayake, J.; Lakshmanan, P.; Jackson, P. Detailed trait characterisation is needed for simulation of cultivar responses to water stress. Proc. Aust. Soc. Sugar Cane Technol. 2014, 36, 82–92. [Google Scholar]
- Grossi, M.C.; Justino, F.; Rodrigues, R.D.Á.; Andrade, C.L.T. Sensitivity of the sorghum yield to individual changes in climate parameters: Modelling based approach. Bragantia 2015, 74, 341–349. [Google Scholar] [CrossRef]
Location | Itoman, Okinawa, Japan | Sevanagala, Monaragala, Sri Lanka |
---|---|---|
26°7′58″N 127°40′52″E | 6°22′13″N 80°54′47″E | |
Soil | Shimajiri Mahji Depth: 110 cm PAWC: 68.4 mm Average bulk density 1.11 g/cm3 | Solodized Solonetz Depth: 100 cm PAWC: 91.6 mm Average bulk density 1.37 g/cm3 |
Planting | April 01 (Spring planting) | April 01 (Yala season planting) |
Crop duration | 315 days | 360 days |
Stalk density | 7 stalks/m2 | 8 stalks/m2 |
Fertilizer | 190 kg/ha as NH4-N | 200 kg/ha as Urea |
Fertilizer application time | 31 and 62 days after planting | 45 and 90 days after planting |
Irrigation | Automatic irrigation Fraction of ASW below which irrigation is applied = 0.5 Efficiency of the irrigation = 0.5 |
Parameter as Listed in APSIM-Sugar Model (Description) | Level | Code | Unit | Lower and Upper Bound |
---|---|---|---|---|
leaf_size (Leaf area of the respective leaf) | Leaf_size_no = 1 | LS1 | mm2 | 500–2000 |
Leaf_size_no = 14 | LS2 | mm2 | 25,000–70,000 | |
Leaf_size_no = 20 | LS3 | mm2 | 25,000–70,000 | |
cane_fraction (Fraction of accumulated biomass partitioned to cane) | CF | gg−1 | 0.65–0.80 | |
sucrose_fraction_stalk (Fraction of accumulated biomass partitioned to sucrose) | Stress factor = 1 | SF | gg−1 | 0.50–0.70 |
sucrose_delay (Sucrose accumulation delay) | SD | gm−2 | 0–600 | |
min_sstem_sucrose (Minimum stem biomass before partitioning to sucrose commences) | MSS | gm−2 | 450–1500 | |
min_sstem_sucrose_redn (reduction to minimum stem sucrose under stress) | MSSR | gm−2 | 0–20 | |
tt_emerg_to_begcane (Accumulated thermal time from emergence to beginning of cane) | EB | °C day | 1200–1900 | |
tt_begcane_to_flowering (Accumulated thermal time from beginning of cane to flowering) | BF | °C day | 5500–6500 | |
tt_flowering_to_crop_end (Accumulated thermal time from flowering to end of the crop) | FC | °C day | 1750–2250 | |
green_leaf_no (Maximum number of fully expanded green leaves) | GLN | No. | 9–14 | |
tillerf_leaf_size (Tillering factors according to the leaf numbers) | Tiller_leaf_size_no = 1 | TLS1 | mm2 mm−2 | 1–6 |
Tiller_leaf_size_no = 4 | TLS2 | mm2 mm−2 | 1–6 | |
Tiller_leaf_size_no = 10 | TLS3 | mm2 mm−2 | 1–6 | |
Tiller_leaf_size_no = 16 | TLS4 | mm2 mm−2 | 1–6 | |
Tiller_leaf_size_no = 26 | TLS5 | mm2 mm−2 | 1–6 | |
transp_eff (Transpiration efficiency) | Stage_code = 1 | TE1 | kg kPa/kg | 0.008–0.014 |
Stage_code = 2 | TE2 | kg kPa/kg | 0.008–0.014 | |
Stage_code = 3 | TE3 | kg kPa/kg | 0.008–0.014 | |
Stage_code = 4 | TE4 | kg kPa/kg | 0.008–0.014 | |
Stage_code = 5 | TE5 | kg kPa/kg | 0.008–0.014 | |
Stage_code = 6 | TE6 | kg kPa/kg | 0.008–0.014 | |
rue (Radiation use efficiency) | Stage_code = 3 | RUE3 | g/MJ | 1.2–2.5 |
Stage_code = 4 | RUE4 | g/MJ | 1.2–2.5 | |
Stage_code = 5 | RUE5 | g/MJ | 1.2–2.5 |
Parameter | Biomass | Cane Fresh Weight | CCS | Sucrose Weight | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | IR | RF | IR | RF | IR | RF | IR | |||||||||
Si | Rank | Si | Rank | Si | Rank | Si | Rank | Si | Rank | Si | Rank | Si | Rank | Si | Rank | |
Okinawa, Japan | ||||||||||||||||
RUE4 | 49.0 | 1 | 57.7 | 1 | 58.3 | 1 | 66.3 | 1 | 41.2 | 1 | 42.3 | 1 | 58.5 | 1 | 64.6 | 1 |
RUE3 | 18.0 | 2 | 23.6 | 2 | 12.6 | 2 | 17.2 | 2 | 5.4 | 3 | 7.0 | 3 | 9.2 | 3 | 11.2 | 2 |
GLN | 7.7 | 3 | 6.7 | 3 | 6.2 | 3 | 5.3 | 3 | 3.4 | 5 | 2.7 | 5 | 4.9 | 4 | 4.3 | 4 |
CF | 3.1 | 4 | 2.5 | 4 | 0.6 | 6 | 0.5 | 6 | 2.3 | 6 | 1.7 | 6 | 0.7 | 6 | 0.6 | 6 |
TE4 | 1.7 | 5 | 0.5 | 6 | 2.0 | 4 | 0.5 | 5 | 0.1 | 10 | 0.0 | 11 | 0.7 | 7 | 0.1 | 9 |
EB | 1.4 | 6 | 1.8 | 5 | 1.0 | 5 | 0.5 | 4 | 0.2 | 8 | 0.2 | 8 | 0.2 | 9 | 0.2 | 8 |
MSS | 0.0 | 22 | 0.0 | 18 | 0.0 | 22 | 0.0 | 16 | 28.5 | 2 | 27.3 | 2 | 10.1 | 2 | 8.8 | 3 |
MSSR | 0.0 | 17 | 0.0 | 25 | 0.0 | 21 | 0.0 | 25 | 1.2 | 7 | 0.5 | 7 | 0.3 | 8 | 0.3 | 7 |
SF | 0.0 | 14 | 0.0 | 16 | 0.0 | 16 | 0.0 | 19 | 5.0 | 4 | 4.8 | 4 | 2.2 | 5 | 1.6 | 5 |
Monaragala, Sri Lanka | ||||||||||||||||
RUE4 | 60.5 | 1 | 71.1 | 1 | 67.5 | 1 | 76.4 | 1 | 44.8 | 1 | 54.2 | 1 | 70.1 | 1 | 79.3 | 1 |
RUE3 | 14.5 | 2 | 13.0 | 2 | 13.1 | 2 | 11.7 | 2 | 5.1 | 4 | 2.5 | 6 | 9.4 | 2 | 7.4 | 2 |
GLN | 6.7 | 3 | 6.2 | 3 | 5.7 | 4 | 5.0 | 3 | 3.2 | 5 | 2.9 | 5 | 5.2 | 3 | 4.5 | 3 |
CF | 5.3 | 5 | 3.7 | 4 | 0.7 | 5 | 0.3 | 6 | 1.9 | 6 | 3.0 | 4 | 1.0 | 7 | 0.7 | 6 |
TE4 | 6.0 | 4 | 1.4 | 6 | 6.7 | 3 | 1.4 | 4 | 0.6 | 8 | 0.5 | 7 | 2.0 | 6 | 0.1 | 8 |
EB | 1.5 | 6 | 1.6 | 5 | 0.5 | 6 | 0.7 | 5 | 0.8 | 7 | 0.3 | 8 | 0.4 | 8 | 0.4 | 7 |
MSS | 0.0 | 18 | 0.0 | 11 | 0.0 | 23 | 0.0 | 13 | 19.5 | 2 | 14.8 | 2 | 3.8 | 4 | 2.5 | 4 |
MSSR | 0.0 | 16 | 0.0 | 12 | 0.0 | 21 | 0.0 | 20 | 0.3 | 9 | 0.1 | 9 | 0.1 | 9 | 0.0 | 9 |
SF | 0.0 | 23 | 0.0 | 8 | 0.0 | 26 | 0.0 | 18 | 10.4 | 3 | 10.5 | 3 | 2.6 | 5 | 2.3 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Momii, K.; Kumari, M.K.N. Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy 2019, 9, 242. https://doi.org/10.3390/agronomy9050242
Gunarathna MHJP, Sakai K, Nakandakari T, Momii K, Kumari MKN. Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy. 2019; 9(5):242. https://doi.org/10.3390/agronomy9050242
Chicago/Turabian StyleGunarathna, M.H.J.P., Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii, and M.K.N. Kumari. 2019. "Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions" Agronomy 9, no. 5: 242. https://doi.org/10.3390/agronomy9050242
APA StyleGunarathna, M. H. J. P., Sakai, K., Nakandakari, T., Momii, K., & Kumari, M. K. N. (2019). Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy, 9(5), 242. https://doi.org/10.3390/agronomy9050242