Comparative Assessment of Biochar Stability Using Multiple Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyrolysis Process for Biochar Preparation
2.2. Biochar Chemical Analysis
2.3. Estimation of Biochar Stability
2.3.1. Incubation Method: Biotic and Abiotic Degradation
- Dt: CO2 (mg) at t days during the incubation
- t: days elapsed from the start of the incubation (1, 2, 4, 8, 16, 32, 64, and 120)
- D0: CO2 (mg) at the start of incubation
- 12: the atomic mass of carbon
- 44: the atomic mass of CO2
- S: biochar amount (g)
- t: days elapsed from the start of the incubation (1, 2, 4, 8, 16, 32, 64, and 120)
2.3.2. Chemical Oxidation Method: Abiotic Degradation (“Edinburgh Stability Tool”)
2.4. Correlation Among Stability Indicators
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Physical Characteristics of Biochars
3.2. Evaluation of Biochar using Incubation Methods
3.3. Chemical Oxidation for Assessment of Biochar Stability
3.4. Correlation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alcalde, J.; Smith, P.; Haszeldine, R.S.; Bond, C.E. The potential for implementation of negative emission technologies in Scotland. Int. J. Greenh. Gas Control 2018, 76, 85–91. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, 1–19. [Google Scholar] [CrossRef]
- Kurt, S. Review of the stability of biochar in soils: predictability of O:C molar ratio. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Leng, L.; Xu, X.; Wei, L.; Fan, L.; Huang, H.; Li, J.; Zhou, W. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Sci. Total Environ. 2019, 664, 11–23. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.; Sohi, S.P. A method for screening the relative long-term stability of biochar. GCB Bioenergy 2013, 5, 215–220. [Google Scholar] [CrossRef]
- Mašek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of production conditions on the yield and environmental stability of biochar. Fuel 2013, 103, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Crombie, K.; Mašek, O.; Sohi, S.P.; Brownsort, P.; Cross, A. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 2013, 5, 122–131. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, L.; Gao, B.; Xu, X.; Cao, X. The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ. Sci. Technol. 2016, 50, 2264–2271. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Merino, A.; Bucheli, T.D.; Bryant, R.; Ascough, P.; Masiello, C.A. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plante, A.F.; Fernández, J.M.; Leifeld, J. Application of thermal analysis techniques in soil science. Geoderma 2009, 153, 1–10. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Restuccia, F.; Mašek, O.; Hadden, R.M.; Rein, G. Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature. Fuel 2019, 236, 201–213. [Google Scholar] [CrossRef]
- Backer, R.; Ghidotti, M.; Schwinghamer, T.; Saeed, W.; Grenier, C.; Dion-Laplante, C.; Smith, D.L. Getting to the root of the matter: Water-soluble and volatile components in thermally-treated biosolids and biochar differentially regulate maize (Zea mays) seedling growth. PLoS ONE 2018, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Suthar, R.; Wang, C.; Nunes, M.; Chen, J.; Sargent, S.; Bucklin, R.; Gao, B. Bamboo biochar pyrolyzed at low temperature improves tomato plant growth and fruit quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Till. Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Sun, D.; Lan, Y.; Xu, E.G.; Meng, J.; Chen, W. Biochar as a novel niche for culturing microbial communities in composting. Waste Manag. 2016, 54, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Maarifat, A.A.; Pfeiffer, E.M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2010, 43, 1768–1778. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Yang, S.; Wang, Y. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop Res. 2016, 191, 161–167. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Lu, H.; Wang, Y. Effects of biochar on spatial and temporal changes in soil temperature in cold waterlogged rice paddies. Soil Tillage Res. 2018, 181, 102–109. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Shen, J.; Chen, D.; Li, Y.; Jiang, B.; Wu, J. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agric. Ecosyst. Environ. 2018, 262, 83–96. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
Materials | Temperature (°C) | Volatile Content (%) 4 | Ash Content (%) 4 | Fixed Carbon 1 (%) 4 | Acid Functional Group (mmol/g) 4 | Degree of Aromaticity 2 (%) | W2/W1 3 |
---|---|---|---|---|---|---|---|
AB | 400 | 32.36 ± 0.05 | 4.37 ± 0.04 | 63.3 | 0.34 ± 0.05 | 55.2 | 2.6 |
500 | 18.27 ± 0.28 | 6.45 ± 0.13 | 74.5 | N.D. | 67.9 | 10.2 | |
600 | 11.07 ± 0.20 | 7.61 ± 0.07 | 81.3 | N.D. | 72.8 | 14.6 | |
800 | 6.82 ± 0.07 | 8.58 ± 0.02 | 84.8 | N.D. | 63.9 | 22.9 | |
OB | 400 | 32.06 ± 0.05 | 3.63 ± 0.02 | 64.3 | 0.32 ± 0.00 | 56.8 | 4.6 |
500 | 19.42 ± 0.27 | 5.10 ± 0.12 | 75.5 | 0.13 ± 0.28 | 66.7 | 10.0 | |
600 | 12.30 ± 0.01 | 5.54 ± 0.02 | 82.2 | 0.02 ± 0.20 | 73.2 | 21.7 | |
800 | 7.87 ± 0.06 | 8.25 ± 0.23 | 84.0 | N.D | 62.1 | 15.7 | |
RH | 400 | 22.00 ± 0.13 | 35.9 ± 0.06 | 42.1 | 0.58 ± 0.05 | 61.5 | 3.1 |
500 | 10.56 ± 0.11 | 46.2 ± 0.23 | 43.2 | 0.26 ± 0.05 | 64.8 | 10.9 | |
600 | 6.02 ± 0.27 | 52.8 ± 0.41 | 41.2 | 0.11 ± 0.00 | 72.4 | 18.0 | |
800 | 3.17 ± 0.19 | 62.6 ± 0.26 | 34.2 | N.D. | 54.0 | 18.0 | |
RS | 400 | 22.42 ± 0.09 | 34.0 ± 0.18 | 43.5 | 0.51 ± 0.03 | 54.2 | 1.8 |
500 | 12.80 ± 0.11 | 40.0 ± 0.31 | 43.9 | N.D. | 63.1 | 4.3 | |
600 | 8.36 ± 0.03 | 58.6 ± 0.07 | 33.0 | N.D. | 68.2 | 4.6 | |
800 | 4.47 ± 0.15 | 73.9 ± 0.05 | 21.6 | N.D. | 44.9 | 4.2 |
Materials | Stability (%) | |||
---|---|---|---|---|
400 °C | 500 °C | 600 °C | 800 °C | |
AB | 14.50 ± 0.24 | 69.35 ± 2.71 | 82.84 ± 0.36 | 84.63 ± 0.65 |
OB | 21.72 ± 0.72 | 62.55 ± 1.11 | 86.09 ± 0.67 | 100.44 ± 1.13 |
RH | 25.09 ± 0.24 | 63.35 ± 3.60 | 100.37 ± 3.72 | 84.72 ± 2.69 |
RS | 19.52 ± 0.74 | 102.19 ± 1.99 | 81.76 ± 5.67 | 86.47 ± 6.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jindo, K.; Sonoki, T. Comparative Assessment of Biochar Stability Using Multiple Indicators. Agronomy 2019, 9, 254. https://doi.org/10.3390/agronomy9050254
Jindo K, Sonoki T. Comparative Assessment of Biochar Stability Using Multiple Indicators. Agronomy. 2019; 9(5):254. https://doi.org/10.3390/agronomy9050254
Chicago/Turabian StyleJindo, Keiji, and Tomonori Sonoki. 2019. "Comparative Assessment of Biochar Stability Using Multiple Indicators" Agronomy 9, no. 5: 254. https://doi.org/10.3390/agronomy9050254
APA StyleJindo, K., & Sonoki, T. (2019). Comparative Assessment of Biochar Stability Using Multiple Indicators. Agronomy, 9(5), 254. https://doi.org/10.3390/agronomy9050254