Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Soil and Tissue Sampling and Laboratory Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Soil pH
3.2. Mehlich III Extractable Zinc (Zn)
3.3. Mehlich III Extractable Boron (B)
3.4. Mehlich III Extractable Manganese (Mn)
3.5. Mehlich III Extractable Iron (Fe) and Copper (Cu)
3.6. Micronutrient Accumulation in Wheat Straw and Grain over Time
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kopittke, P.M.; Dalal, R.C.; Menzies, N.W. Changes in exchangeable cations and micronutrients in soils and grains of long-term, low input cropping systems of subtropical Australia. Geoderma 2017, 285, 293–300. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Papendick, R.I. Then and now: 125 Years of dryland wheat farming in the Inland Pacific Northwest. Agron. J. 2008, 100, 166–182. [Google Scholar] [CrossRef]
- Carpenter-Boggs, L.; Stahl, P.P.D.; Lindstrom, M.J.; Schumacher, T.E. Soil microbial properties under permanent grass, conventional tillage, and no-till management in South Dakota. Soil Tillage Res. 2003, 71, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Follett, R.F.; Peterson, G.A. Surface soil nutrient distribution as afected by wheat-fallow tillage systems. Soil Sci. Soc. Am. J. 1988, 52, 141–147. [Google Scholar] [CrossRef]
- Shuman, L.; Hargrove, W.L. Effect of organic matter on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Sci. 1988, 146, 1117–1121. [Google Scholar] [CrossRef]
- Hickman, M. V Long-term tillage and crop rotation effects on soil chemical and mineral properties. J. Plant Nutr. 2002, 25, 1457–1470. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Parton, W.J. Long-term effects of residue management in wheat-fallow: I. Inputs, yield, and soil organic matter. Soil Sci. Soc. Am. J. 1994, 58, 523–530. [Google Scholar] [CrossRef]
- Williams, J.D. Effects of long-term winter wheat, summer fallow residue and nutrient management on field hydrology for a silt loam in north-central Oregon. Soil Tillage Res. 2004, 75, 109–119. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Macronutrients in soil and wheat as affected by a long-term tillage and nitrogen fertilization in winter wheat-fallow rotation. Agronomy 2019, 9, 178. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139. [Google Scholar] [CrossRef] [PubMed]
- Mahler, L.R.; Hammel, J.E.; Harder, R.W. The influence of crop rotation and tillage methods on the distribution of extractable boron in Northern Idaho Soils. Soil Sci. 1985, 139, 67–73. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Tillage Res. 1996, 39, 229–239. [Google Scholar] [CrossRef]
- Gollany, H.T.; Allmaras, R.R.; Copeland, S.M.; Albrecht, S.L.; Douglas, J.C.L. Tillage and nitrogen fertilizer influence on carbon and soluble silica relations in a Pacific Northwest mollisol. Soil Sci. Soc. Am. J. 2005, 69, 1102–1109. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Effect of tillage on macronutrients in soil and wheat of a long-term dryland wheat-pea rotation. Soil Tillage Res. 2019, 190, 194–201. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Papp, C.S.E.; Harms, T.F. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components. Analyst 1985, 110, 237–242. [Google Scholar] [CrossRef]
- Awale, R.; Emeson, M.A.; Machado, S. Soil organic carbon pools as early indicators for soil organic matter stock changes under different tillage practices in inland Pacific Northwest. Front. Ecol. Evol. 2017, 5, 96. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Rhinhart, K. Long-term crop residue and nitrogen management effects on soil profile carbon and nitrogen in wheat–fallow systems. Agron. J. 2015, 107, 2230–2240. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT 9.4 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Awale, R.; Machado, S.; Rhinhart, K. Soil carbon, nitrogen, pH, and crop Yields in winter wheat–spring pea systems. Agron. J. 2018, 110, 1523–1531. [Google Scholar] [CrossRef]
- Unger, P.W. Organic matter, nutrient, and pH distribution in no- and conventional-tillage semiarid soils. Agron. J. 1991, 83, 186–189. [Google Scholar] [CrossRef]
- De Santiago, A.; Quintero, J.M.; Delgado, A. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil Tillage Res. 2008, 98, 200–207. [Google Scholar] [CrossRef]
- Nath, D.; Talukdar, M.; Chowdhury, P.; Deka, K. Forms of boron under different cropping systems in soils of Morigaon district of Assam. Int. J. Chem. Stud. 2018, 6, 1161–1166. [Google Scholar]
- Srivastava, P.C.; Gupta, U.C. Trace Elements in Crop Production; Science Publishers, Inc.: Lebanon, NH, USA, 1996; ISBN 1886106622. [Google Scholar]
- Moreira, S.G.; Prochnow, L.I.; De Castro Kiehl, J.; Pauletti, V.; Martin-Neto, L. Chemical forms in soil and availability of manganese and zinc to soybean in soil under different tillage systems. Soil Tillage Res. 2016, 163, 41–53. [Google Scholar] [CrossRef]
- Edwards, J.H.; Wood, C.W.; Thurlow, D.L.; Ruf, M.E. Tillage and crop-rotation effects on fertility status of a Hapludult soil. Soil Sci. Soc. Am. J. 1992, 56, 1577–1582. [Google Scholar] [CrossRef]
Source of Variation | DF* | Boron | Manganese | Zinc | Iron | Copper |
---|---|---|---|---|---|---|
Year (Y) | 2 | 0.05 | 0.73 | <0.01 | 0.74 | 0.48 |
Depth (D) | 3 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Tillage (T) | 4 | 0.16 | <0.01 | <0.01 | 0.20 | 0.32 |
Y × D | 6 | 0.94 | <0.01 | 0.11 | 0.04 | 0.22 |
Y × T | 8 | 0.45 | <0.01 | 0.21 | 0.65 | 0.12 |
D × T | 12 | 0.45 | <0.01 | <0.01 | 0.08 | 0.22 |
Y × D × T | 24 | 0.03 | <0.01 | 0.14 | 0.21 | 0.199 |
Depth (cm) | Fall Tillage | Disk/Chisel Tillage | Spring Tillage | No Tillage |
---|---|---|---|---|
Boron (mg kg−1) | ||||
1995 | ||||
0–10 | A1 4.6 b2 | A 4.5 a | A 4.5 b | A 4.6 bc |
10–20 | A 4.5 b | A 4.5 a | A 4.5 b | A 4.6 bc |
20–30 | A 4.6 b | A 4.7 a | A 4.7 ab | A 4.9 abc |
30–60 | A 4.7 b | A 4.9 a | A 4.9 ab | A 4.9 abc |
2005 | ||||
0–10 | A 4.6 b | A 4.5 a | A 4.6 ab | A 4.5 c |
10–20 | A 4.8 b | A 4.7 a | A 4.5 b | A 4.8 bc |
20–30 | A 4.8 b | A 4.7 a | A 4.6 ab | A 4.8 abc |
30–60 | A 4.9 b | A 4.8 a | A 4.7 ab | A 4.9 abc |
2015 | ||||
0–10 | A 4.9 b | A 4.8 a | A 5.0 ab | A 5.1 abc |
10–20 | A 4.8 b | A 4.8 a | A 5.0 ab | A 5.1 abc |
20–30 | A 5.0 a | A 5.0 a | B 5.5 a | A 5.2 ab |
30–60 | A 5.5 a | A 5.1 a | A 5.0 ab | A 5.2 a |
Depth (cm) | Fall Tillage | Disk/Chisel Tillage | Spring Tillage | No Tillage | Grass Pasture |
---|---|---|---|---|---|
Manganese (mg kg−1) | |||||
1995 | |||||
0–10 | B1108 abc2 | B 121 a | B 107 abcd | B 127 ab | A 171 a |
10–20 | B 112 abc | B 110 a | B 111 abc | B 114 abcd | A 148 ab |
20–30 | A 84 bcd | A 82 a | A 80 bcd | A 84 bcd | A 90 d |
30–60 | A 69 d | A 76 a | A 74 cd | A 72 d | A 90 d |
2005 | |||||
0–10 | A 132 a | A 111 a | A 142 a | A 141 a | A 152 ab |
10–20 | A 124 ab | A 96 a | A 122 ab | A 104 abcd | A 90 d |
20–30 | A 102 abcd | A 87 a | A 97 abcd | A 92 abcd | A 80 d |
30–60 | A 81 cd | A 101 a | A 95 abcd | A 94 abcd | A 95 cd |
2015 | |||||
0–10 | B 97 abcd | B 113 a | B 92 abcd | AB 123 abc | A 175 a |
10–20 | B 104 abcd | B 89 a | B 91 bcd | B 96 abcd | A 157 a |
20–30 | A 81 cd | A 82 a | A 75 cd | A 73 d | A 121 bc |
30–60 | A 68 d | A 98 a | A 69 d | A 81 cd | A 104 cd |
Source of Variation | Degree of Freedom | Boron | Manganese | Zinc | Iron | Copper |
---|---|---|---|---|---|---|
Wheat Straw | ||||||
Year | 2 | <0.01 | <0.01 | <0.01 | 0.29 | <0.01 |
Tillage | 3 | 0.03 | <0.01 | 0.25 | 0.91 | 0.87 |
Year × Tillage | 6 | 0.25 | <0.01 | 0.37 | 0.73 | 0.46 |
Wheat Grain | ||||||
Year | 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Tillage | 3 | 0.55 | 0.10 | 0.17 | 0.16 | 0.32 |
Year × Tillage | 6 | 0.51 | 0.09 | 0.18 | 0.37 | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Xing, B.; Kleber, M. Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation. Agronomy 2019, 9, 359. https://doi.org/10.3390/agronomy9070359
Shiwakoti S, Zheljazkov VD, Gollany HT, Xing B, Kleber M. Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation. Agronomy. 2019; 9(7):359. https://doi.org/10.3390/agronomy9070359
Chicago/Turabian StyleShiwakoti, Santosh, Valtcho D. Zheljazkov, Hero T. Gollany, Baoshan Xing, and Markus Kleber. 2019. "Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation" Agronomy 9, no. 7: 359. https://doi.org/10.3390/agronomy9070359
APA StyleShiwakoti, S., Zheljazkov, V. D., Gollany, H. T., Xing, B., & Kleber, M. (2019). Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation. Agronomy, 9(7), 359. https://doi.org/10.3390/agronomy9070359