Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design, and Soil Sampling
2.2. Total C content and SOM Fractionation
2.3. Incubation of Soil Samples and Charcoal
2.4. Solid-State 13C Nuclear Magnetic Resonance (NMR) Cross Polarization Magic-Angle Spinning CPMAS Spectroscopy
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total C Content and Humic Substances
3.2. SOM and Charcoal Biodegradability
3.3. Alteration of SOM and Charcoal Chemical Composition after Incubation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehman, J.; Gaunt, J.; Rondin, M. Bio-char sequestration in terrestrial Ecosystems—A review. Mitig. Adapt. Strateg. Glob. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Lehman, J.; Joseph, S. Biochar for Environmental Management, 2nd ed.; Routledge: London, UK, 2015; pp. 1–14. [Google Scholar]
- Glaser, B.; Lehman, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehman, J.; Nehls, T.; Macêdo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Maia, C.M.B.F.; Madari, B.E.; Novotny, E.H. Advances in biochar research in Brazil. Dyn. Soil Dyn. Plant 2011, 5, 53–58. [Google Scholar]
- Schneider, M.P.W.; Lehmann, J.; Schmidt, M.W.I. Charcoal quality does not change over a century in a tropical agro-ecosystem. Soil Biol. Biochem. 2011, 43, 1992–1994. [Google Scholar] [CrossRef]
- Bayer, C.; Zschornack, T.; Pedroso, G.M.; Da Rosa, C.M.; Camargo, E.S.; Boeni, M.; Marcolin, E.; Reis, C.E.S.; Santos, D.C. A seven-year study on the effects of fall soil tillage on yield-scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate. Soil Till. Res. 2015, 145, 118–125. [Google Scholar] [CrossRef]
- Godoi, E.G.; Neufeld, A.D.H.; Ibarr, M.A.; Ferreto, D.O.C.; Bayer, C.; Lorentz, L.H.; Vieira, F.C.B. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions. J. Environ. Manag. 2016, 15, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.C.A.; Coscione, A.R.; Abreu, C.A.; Puga, A.P.; Camargo, O.A. Influence of pyrolisis temperature on Cadmiun and Zinc sorption capacity of sugar cane straw-derived biochar. Bioresources 2013, 8, 4992–5004. [Google Scholar] [CrossRef]
- Eykelbosh, A.J.; Johnson, M.S.; Queiroz, E.S.; Dalmagro, H.J.; Couto, E.G. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly- weathered tropical soil. PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.A.; Bibar, M.P.S.; Coscione, A.R.; Pires, A.M.M.; Soares, A.G. Mineralização e efeitos de biocarvão de cama de frango sobre a capacidade de troca catiônica do solo. Pesq. Agropec. Bras. 2015, 50, 407–416. [Google Scholar] [CrossRef]
- Conz, R.F. Caracterização de matérias-primas e biochars para aplicação na agricultura. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2015. [Google Scholar]
- Sousa, A.A.T.C.; Figueiredo, C.C. Sewage sludge biochar: Effects on soil fertility and growth of radish. Biol. Agric. Hortic. 2015, 32, 1–12. [Google Scholar] [CrossRef]
- Angelo, L.C.; Mangrich, A.S.; Mantovani, K.M.; Santos, S.S. Loading of VO2+ and Cu2+ to partially oxidized charcoal fines rejected from Brazilian metallurgical industry. J. Soils Sediments 2014, 14, 353–359. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Montanarella, L.; Bastos, A.C. Sustainability, certification, and regulation of biochar. Pesq. Agropec. Bras. 2012, 47, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Combrie, K.; Masek, O.; Sohi, S.P.; Brownsort, P.; Cross, A. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 2013, 5, 122–131. [Google Scholar] [CrossRef]
- Novotny, E.H.; Maia, C.M.B.F.; Carvalho, M.T.M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. Cienc. Solo 2015, 39, 321–344. [Google Scholar] [CrossRef]
- Novotny, E.H.; Hayes, M.H.B.; Madari, B.E.; Bonagamba, T.J.; Azevedo, E.R.; Souza, A.A.; Song, G.; Nogueira, C.M.; Mangrich, A.S. Lessons from the Terra Preta de Índios of the Amazon region for the utilization of charcoal for soil amendment. J. Braz. Chem. Soc. 2009, 20, 1003–1010. [Google Scholar] [CrossRef]
- Knoblauch, C.; Maarifat, A.A.; Pfeiffer, E.M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2011, 43, 1768–1778. [Google Scholar] [CrossRef]
- Bruun, S.; El-Zehery, T. Biochar effect on the mineralization of soil organic matter. Pesq. Agropec. Bras. 2012, 47, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Torn, M.S.; Bird, J.A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. 2012, 51, 115–124. [Google Scholar] [CrossRef]
- Maestrini, B.; Herrmann, A.M.; Nannipieri, P.; Shmidt, M.W.I.; Abiven, S. Ryegrass-derived pyrogenic organic matter changes organic matter and nitrogen mineralization in a temperate forest soil. Soil Biol. Biochem. 2014, 69, 291–301. [Google Scholar] [CrossRef]
- Knicker, H.; González-Vila, F.J.; González-Vásquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 2013, 56, 31–39. [Google Scholar] [CrossRef]
- Vasilyeva, N.A.; Abiven, S.; Milanovskiy, Y.; Hilf, M.; Rizkov, O.V.; Schmidt, M.W.I. Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem. Soil Biol. Biochem. 2011, 43, 1985–1988. [Google Scholar] [CrossRef]
- Leal, O.A.; Dick, D.P.; Lombardi, K.C.; Maciel, V.G.; González-Pérez, J.A.; Knicker, H. Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation. J. Soils Sediments 2015, 15, 805–815. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Rosado, M.; Paneque, M.; Miller, A.Z.; Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 2018, 613–614, 969–976. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soils Resources 2006; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 128.
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Woiciechowski, T. Evaluation of the Attributes of a Cambisol and Early Growth of Eucalyptus benthamii after Application of Biochar in Irati City, Paraná State, Brazil. Master’s Thesis, Universidade Estadual do Centro-Oeste, Paraná, Brazil, 2011. [Google Scholar]
- SWIFT, R.S. Organic matter characterization. In Methods of soil Analysis. Part 3. Chemical Methods, 1st ed.; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; Volume 1, pp. 1001–1069. [Google Scholar]
- Dick, D.P.; Gomes, J.; Rosinha, P.B. Caracterização de substâncias húmicas extraídas de solos e de lodo orgânico. Rev. Bras. Cienc. Solo 1998, 22, 603–611. [Google Scholar] [CrossRef]
- Nordgren, A. Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol. Biochem. 1988, 20, 955–957. [Google Scholar] [CrossRef]
- Gonçalves, C.N.; Dalmolin, R.S.D.; Dick, D.P.; Knicker, H.; Klamt, E.; Kögel-Knaber, I. The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferrasols. Geoderma 2003, 116, 373–392. [Google Scholar] [CrossRef]
- Schaefer, J.; Stejskal, E.O. C-13 nuclear magnetic-resonance of polymers spinning at magic angle. J. Am. Chem. Soc. 1976, 98, 1031–1032. [Google Scholar] [CrossRef]
- Peersen, O.B.; Wu, X.L.; Kustanovich, I.; Smith, S.O. Variable-amplitude crosspolarization MAS NMR. J. Magn. Reson. Ser. A 1993, 104, 334–339. [Google Scholar] [CrossRef]
- Cook, R.L.; Langford, C. A modified crosspolarization magic angle spinning C-13 NMR procedure for the study of humic materials. Anal. Chem. 1996, 68, 3979–3986. [Google Scholar] [CrossRef]
- Knicker, H.; Totsche, K.U.; Almendros, G.; González-Vila, F.J. Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material. Org. Geochem. 2005, 36, 1359–1377. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing. 2013. Available online: http://www.R-project.org (accessed on 4 July 2019).
- Santana, G.S.; Dick, D.P.; Jacques, A.V.A.; Chitarra, G.S. Substâncias húmicas e suas interações com Fe e Al em Latossolo subtropical sob diferentes sistemas de manejo de pastagem. Rev. Bras. Cienc. Solo 2011, 35, 461–472. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Knicker, H. Bioavailability of N released from N-rich pyrogenic organic matter: An incubation study. Soil Biol. Biochem. 2011, 43, 2368–2373. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Miller, A.Z.; Knicker, H. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Tech. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Abiven, S.; Hengartner, P.; Schneider, M.P.W.; Singh, N.; Schmidt, M.W.I. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 2011, 43, 1615–1617. [Google Scholar] [CrossRef]
- Hilscher, A.; Knicker, H. Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment. Org. Geochem. 2011, 42, 42–54. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, M.A.; De la Rosa, J.M.; Jimenez-Morillo, N.T.; Almendros, G.; Gonzalez-Perez, J.A.; Knicker, H. Post-fire recovery of soil organic matter in a Cambisol from typical Mediterranean forest in Southwestern Spain. Sci. Total Environ. 2016, 572, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Dieckow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knaber, I. Composition of organic matter in a subtropical Acrisol as influenced by land use cropping and N fertilization, assessed by CPMAS 13C NMR spectroscopy. Eur. J. Soil Sci. 2005, 56, 705–715. [Google Scholar] [CrossRef]
- Knicker, H.; Almendros, G.; González-Vila, F.J.; González-Pérez, J.A.; Povillo, O. Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: A solid-state 13C NMR study. Eur. J. Soil Sci. 2006, 57, 558–569. [Google Scholar] [CrossRef]
- Knicker, H.; Nikolova, R.; Dick, D.P.; Dalmolin, R.S.D. Alteration of quality and stability of organic matter in grassland soils of Southern Brazil highlands after ceasing biannual burning. Geoderma 2012, 181–182, 11–21. [Google Scholar] [CrossRef]
- Lima, H.N.; Schaefer, C.E.R.; Mello, J.W.V.; Gilkes, R.J.; Ker, J.C. Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma 2002, 110, 1–17. [Google Scholar] [CrossRef]
- Cunha, T.J.F.; Madari, B.E.; Benites, V.M.; canellas, L.P.; Novotny, E.H.; Moutta, R.O.; Trompowsky, P.M.; Santos, G.A. Fracionamento químico da matéria orgânica e características de ácidos húmicos de solos com horizonte a antrópico da amazônia (Terra Preta). Acta Amazon. 2007, 37, 91–98. [Google Scholar] [CrossRef]
- Cunha, T.J.F.; Novotny, E.H.; Madari, B.E.; martin-Neto, L.; Rezende, M.O.O.; Canellas, L.P.; Benites, V.M. Spectroscopy characterization of humic acids isolated from Amazonian dark earth soils (Terra preta de índio). In Amazonian Dark Earths: Wim Sombroek’s Vision, 1st ed.; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., WinklerPrins, A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 1, pp. 363–372. [Google Scholar]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralisation. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Farrel, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Singh, B.P.; Baumann, K.; Krull, E.S.; Baldock, J.A. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef]
- Zavalloni, C.; Alberti, G.; Biasiol, S.; Vedove, G.D.; Fornasier, F.; Liu, J.; Peressotti, A. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Eco. 2011, 50, 45–51. [Google Scholar] [CrossRef]
- De La Rosa, J.M.; Knicker, H.; López-Capel, E.; Maning, D.A.C.; González-Pérez, J.A.; González-Vila, F.J. Direct detection of black carbon in soils by Py-GC/MS, Carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J. 2008, 72, 258–267. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochem. 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Knicker, H.; Hilscher, A.; González-Vila, F.J.; Almendros, G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 2008, 39, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- MacDonald, L.M.; Farrel, M.; Zwieten, L.V.; Krull, E.S. Plant growth responses to biochar addition: An Australian soils perspective. Biol. Fertil. Soils. 2014. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhanyu, G.; Zengqiang, Z.; Ronghua, L.; Mahar, A.; Awasthi, M.; Feng, S.; Sial, T.A.; Kumbhar, F.; Ping, W.; et al. Use of biochar as an amendment for remediation of heavy metal-contamined soils: Prospects and challenges. Pedosphere 2017, 6, 991–1014. [Google Scholar] [CrossRef]
- Vista, S.P.; Khadka, A. Determining appropriate dose of biochar for vegetables. J. Pharm. Phytochem. 2017, SP1, 673–677. [Google Scholar]
- Spokas, K.A.; Novak, J.M.; Masiello, C.A.; Johnson, M.G.; Colosky, E.C.; Ippolito, J.A.; Trigo, C. Physical disintegration of biochar: An overlooked process. Environ. Sci. Tech. 2014, 1, 326–332. [Google Scholar] [CrossRef]
- Baldock, J.A.; Oades, J.M.; Waters, A.G.; Peng, X.; Vassalo, A.M.; Wilson, M.A. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 1992, 16, 1–42. [Google Scholar] [CrossRef]
- López-Martins, M.; González-Vila, F.J.; Knicker, H. Distribution of black carbon and black nitrogen in physical fractions from soils seven years after an intense forest fire and their role as C sink. Sci. Total Environ. 2018, 637–638, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
Treatments | TC | CHCl | CFA | CHA | CHU | CHA/CFA | (CFA + CHA) /CHU |
---|---|---|---|---|---|---|---|
-----------------------------g kg−1------------------------------- | |||||||
0–5 cm | |||||||
T1 | 41.1 *** | 1.4 ns | 7.6 ns | 9.2 ns | 22.8 ** | 1.3 ns | 0.8 * |
T4 | 56.6 | 1.4 | 8.1 | 11.5 | 35.6 | 1.4 | 0.6 |
5–10 cm | |||||||
T1 | 36.2 ns | 1.2 ns | 5.2 ns | 8.8 ns | 20.9 ns | 1.8 ns | 0.7 ns |
T4 | 40.8 | 1.0 | 6.8 | 8.1 | 24.9 | 1.2 | 0.6 |
10–20 cm | |||||||
T1 | 29.3 ** | 1.8 ns | 4.3 | 5.4 ** | 17.8 ns | 1.2 ns | 0.6 * |
T4 | 36.0 | 1.6 | 6.7* | 8.8 | 18.9 | 1.3 | 0.8 |
20–30 cm | |||||||
T1 | 24.8 ns | 2.2 ns | 3.2 ns | 5.0 ** | 14.5 ns | 1.7 ns | 0.6 * |
T4 | 28.8 | 1.7 | 4.3 | 7.9 | 14.9 | 1.9 | 0.8 |
Treatments | C loss | A1 | k1 | MRT1 | A2 | k2 | MRT2 | t1/2 long | R2 * |
---|---|---|---|---|---|---|---|---|---|
% of TC | % of TC | year−1 | years | % of TC | year−1 | years | years | ||
0–5 cm | |||||||||
T1 | 6.5 ns | 3.7 ns | 19.5 ns | 0.05 ns | 96.3 ns | 0.066 ns | 15.7 ns | 10.9 ns | 0.998 |
T4 | 5.2 | 2.9 | 22.7 | 0.04 | 97.3 | 0.058 | 17.4 | 12.1 | 0.998 |
5–10 cm | |||||||||
T1 | 4.7 ns | 3.1 ns | 22.6 ns | 0.05 ns | 97.1 ns | 0.041 ns | 25.2 ns | 17.5 ns | 0.991 |
T4 | 4.3 | 3.0 | 21.2 | 0.05 | 97.2 | 0.034 | 29.7 | 20.6 | 0.990 |
10–20 cm | |||||||||
T1 | 4.2 ns | 3.1 ns | 23.3 ns | 0.04 ns | 97.2 ns | 0.030 ns | 34.3 ns | 23.8 ns | 0.979 |
T4 | 3.8 | 2.8 | 22.1 | 0.05 | 97.4 | 0.027 | 37.8 | 26.2 | 0.982 |
20–30 cm | |||||||||
T1 | 4.3 ns | 3.6 ns | 21.5 ns | 0.05 ns | 96.9 ns | 0.025 ns | 42.1 ns | 29.2 ns | 0.965 |
T4 | 3.9 | 3.1 | 20.6 | 0.05 | 97.3 | 0.024 | 41.9 | 29.1 | 0.967 |
Charcoal | |||||||||
0.73 (0.09) 1 | 0.23 (0.04) | 21.9 (0.00) | 0.05 (0.00) | 99.8 (0.05) | 0.012 (0.00) | 87.0 (8.19) | 60.3 (5.68) | 0.998 |
Treatments 1 | Incubation | Carboxyl C | Aryl C | O-Alkyl C | N-Alkyl C | Alkyl C |
---|---|---|---|---|---|---|
220–160 | 160–110 | 110–60 | 60–45 | 45–0 | ||
% | ||||||
0–5 cm | ||||||
T1 | Before | 6.5 | 12.3 | 38.3 | 12.9 | 30.0 |
After | 8.4 | 12.7 | 35.2 | 9.0 | 28.3 | |
Before-after | −2 | 0 | 3 | 4 | 2 | |
T4 | Before | 8.7 | 22.9 | 33.1 | 8.7 | 24.8 |
After | 8.8 | 25.4 | 31.6 | 8.3 | 24.0 | |
Before-after | 0 | −2.5 | 1.5 | 0 | 1 | |
10–20 cm | ||||||
T1 | Before | 6.5 | 13.4 | 37.0 | 12.4 | 30.7 |
After | 9.5 | 13.4 | 33.8 | 8.7 | 30.5 | |
Before-after | −3 | 0 | 3 | 4 | 0 | |
T4 | Before | 7.5 | 15.4 | 34.8 | 11.3 | 30.9 |
After | 9.2 | 15.5 | 32.0 | 8.4 | 31.1 | |
Before-after | −2 | 0 | 3 | 3 | 0 | |
Charcoal | ||||||
Before | 6.1 | 78.3 | 8.0 | 2.7 | 4.9 | |
After | 6.7 | 66.6 | 11.6 | 3.8 | 10.5 | |
Before-after | −1 | 12 | −4 | −1 | −6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, O.d.A.; Dick, D.P.; de la Rosa, J.M.; Leal, D.P.B.; González-Pérez, J.A.; Campos, G.S.; Knicker, H. Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability. Agronomy 2019, 9, 384. https://doi.org/10.3390/agronomy9070384
Leal OdA, Dick DP, de la Rosa JM, Leal DPB, González-Pérez JA, Campos GS, Knicker H. Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability. Agronomy. 2019; 9(7):384. https://doi.org/10.3390/agronomy9070384
Chicago/Turabian StyleLeal, Otávio dos Anjos, Deborah Pinheiro Dick, José María de la Rosa, Daniela Piaz Barbosa Leal, José A. González-Pérez, Gabriel Soares Campos, and Heike Knicker. 2019. "Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability" Agronomy 9, no. 7: 384. https://doi.org/10.3390/agronomy9070384
APA StyleLeal, O. d. A., Dick, D. P., de la Rosa, J. M., Leal, D. P. B., González-Pérez, J. A., Campos, G. S., & Knicker, H. (2019). Charcoal Fine Residues Effects on Soil Organic Matter Humic Substances, Composition, and Biodegradability. Agronomy, 9(7), 384. https://doi.org/10.3390/agronomy9070384