Nutrient Solution Strength Does Not Interact with the Daily Light Integral to Affect Hydroponic Cilantro, Dill, and Parsley Growth and Tissue Mineral Nutrient Concentrations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Nutrient Solution
3.2. Cilantro
3.3. Dill
3.4. Parsley
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Wyk, B.E. Culinary Herbs and Spices of the World; Briza Publications: Pretoria, South Africa, 2014. [Google Scholar]
- Wolf, M.M.; Spittler, A.; Ahern, J. A profile of farmers’ market consumers and the perceived advantages of produce sold at farmer markets. J. Food Distrib. Res. 2005, 36, 192–201. [Google Scholar]
- 1998 Census of Horticultural Specialties. 1997 USA Census of Agr. Volume 3 part 4. Available online: http://usda.mannlib.cornell.edu/usda/AgCensusImages/1997/03/04/1997-03-04.pdf (accessed on 13 March 2019).
- 2009 USA Census of Horticultural Specialties. 2007 USA Census of Agr. Volume 3 Part 3. Available online: https://www.nass.usda.gov/Publications/AgCensus/2007/Online_Highlights/Census_of_Horticulture_Specialties/HORTIC.pdf (accessed on 13 March 2019).
- 2014 USA Census of Horticultural Specialties. 2012 USA Cencus of Agr. Vol. 3 Part 3. Available online: https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_of_Horticulture_Specialties/HORTIC.pdf (accessed on 13 March 2019).
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 7th ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Bar-Yosef, B. Fertigation Management and Crops Response to Solution Recycling in Semi Closed Greenhouses. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: San Diego, CA, USA, 2009; pp. 343–424. [Google Scholar]
- Hochmuth, G.J.; Hochmuth, R.C. Nutrient solution formulation for hydroponic (perlite, rockwool, NFT) tomatoes in Florida. Univ. Fl. Inst. Food Agr. Sci. 1990, HS796. [Google Scholar]
- Abou-Hadid, A.F.; Abd-Elmoniem, E.M.; El-Shinawy, M.Z.; Abou-Elsoud, M. Electrical conductivity effect on growth and mineral composition of lettuce plants in hydroponic system. Acta Hort. 1996, 434, 59–66. [Google Scholar] [CrossRef]
- Udagawa, Y. Some responses of dill (Anethum graveolens) and thyme (Thymus vulgaris), grown in hydroponic, to the concentration of nutrient solution. Acta Hort. 1995, 396, 203–210. [Google Scholar] [CrossRef]
- Faust, J.E.; Logan, J. Daily light integral: A research review and high-resolution maps of the United States. Hort. Sci. 2018, 53, 1250–1257. [Google Scholar] [CrossRef]
- Currey, C.J.; Kopsell, D.A.; Mattson, N.S.; Craver, J.K.; Lopez, R.G.; Erwin, J.E.; Kubota, C. Supplemental and sole-source lighting of leafy greens, herbs, and microgreens. In Light Management in Controlled Environments; Lopez, R.G., Runkle, E.S., Eds.; Meister Media Worldwide: Willoughby, OH, USA, 2017; pp. 170–180. [Google Scholar]
- Morgan, L. Fresh Culinary Herb Production: A Technical Guide to the Hydroponic and Organic Production of Commercial Fresh Gourmet Herb Crops; Suntec NZ: Tokomaru, New Zealand, 2005. [Google Scholar]
- Walters, K.J.; Currey, C.J. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. Hort. Sci. 2018, 53, 1319–1332. [Google Scholar] [CrossRef]
- Hälvä, S.; Craker, L.E.; Simon, J.E.; Charles, J.D. Light levels, growth, and essential oil in dill (Anethum graveolens L.). J. Herbs Spices Medicinal Plants 1992, 1, 47–58. [Google Scholar] [CrossRef]
- Litvin, A.G.; Currey, C.J. Increasing daily light integrals enhances growth of height culinary herbs grown hydroponically. Hort Sci. 2019. (under review). [Google Scholar]
- Beaman, A.R.; Gladon, R.J.; Schrader, J.A. Sweet basil requires an irradiance of 500 µmol∙m−2∙s−1 for greatest edible biomass production. Hort. Sci. 2009, 44, 64–67. [Google Scholar]
- Hellgren, O.; Ingestad, T. A comparison between methods used to control nutrient supply. J. Exp. Bot. 1996, 47, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Faust, J.E.; Heins, R.D. Modeling shoot-tip temperature in the greenhouse. J. Amer. Soc. Hort. Sci. 1998, 123, 208–214. [Google Scholar] [CrossRef]
- Graper, D.F.; Healy, W. High pressure sodium irradiation and infrared radiation accelerate Petunia seedling growth. J. Amer. Soc. Hort. Sci. 1991, 116, 435–438. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PLoS ONE 2015, 10, e0138930. [Google Scholar] [CrossRef] [PubMed]
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hort. 2004, 648, 99–112. [Google Scholar] [CrossRef]
- Frantz, J.M.; Ritchie, G.; Cornetti, N.N.; Robinson, J.; Bugbee, B. Exploring the limits of crop productivity: Beyond the limits of tipburn in lettuce. J. Amer. Soc. Hort. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef]
- Krug, B.K.; Whipker, B.E.; McCall, I.; Frantz, J. Elevated relative humidity increases the incidence of distorted growth and boron deficiency in bedding plant plugs. Hort. Sci. 2013, 48, 311–313. [Google Scholar] [CrossRef]
- Peters, C. Tissue Analyses: Testing and Interpretation. In Water, Root Media, and Nutrient Management for Greenhouse Crops; Merhaut, D.J., Williams, K.A., Mangiafico, S.S., Eds.; University of California Agriculture and Natural Resources Communication Services: Davis, CA, USA, 2018; pp. 193–206. [Google Scholar]
- Whipker, B.; Gibson, J.; Scoggins, H. Visual Symptoms of Nutritional and Other Disorders. In Water, Root Media, and Nutrient Management for Greenhouse Crops; Merhaut, D.J., Williams, K.A., Mangiafico, S.S., Eds.; University of California Agriculture and Natural Resources Communication Services: Davis, CA, USA, 2018; pp. 207–224. [Google Scholar]
- Mengel, K.; Kirby, E.A. Principles of Plant Nutrition, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing Inc.: Athens, GA, USA, 2014. [Google Scholar]
Replication | Target DLI (mol∙m−2∙d −1) | DLI (mol∙m−2∙d −1) | Air Temperature (°C) |
---|---|---|---|
1 | 7.0 | 7.5 ± 1.6 | 21.8 ± 0.4 |
18.0 | 18.2 ± 2.0 | 22.1 ± 0.7 | |
2 | 7.0 | 7.4 ± 3.0 | 22.0 ± 0.3 |
18.0 | 17.9 ± 2.9 | 21.4 ± 0.6 | |
3 | 7.0 | 6.3 ± 2.2 | 22.3 ± 0.7 |
18.0 | 19.2 ± 4.4 | 22.2 ± 0.6 |
Nutrient Concentration (mg·L−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Target DLI | EC | Time | N | P | K | Mg | Ca | S | Zn | Mn | Cu | Fe | B |
Low | 0.5 | Initial | 52 | 21 | 46 | 12 | 14 | 32 | 0.17 | 0.1 | 0.05 | 0.60 | 0.08 |
Δ | −8 | +5 | +30 | 0 | +1 | −4 | −0.05 | +0.2 | −0.003 | +0.20 | 0 | ||
1.0 | Initial | 110 | 47 | 99 | 23 | 29 | 62 | 0.39 | 0.3 | 0.11 | 1.37 | 0.16 | |
Δ | −09 | +2 | +55 | −2 | −2 | −7 | −0.06 | −0.1 | −0.007 | +0.02 | 0.003 | ||
2.0 | Initial | 217 | 97 | 204 | 46 | 55 | 112 | 0.87 | 0.7 | 0.23 | 3.54 | 0.32 | |
Δ | −27 | −5 | +175 | −2 | −3 | −5 | −0.10 | −0.2 | −0.02 | 0.43 | −0.01 | ||
3.0 | Initial | 320 | 135 | 296 | 76 | 89 | 184 | 1.20 | 1.1 | 0.31 | 4.57 | 0.49 | |
Δ | −44 | −6 | +247 | −2 | 0 | −6 | −0.08 | −0.1 | −0.007 | +0.09 | 0 | ||
4.0 | Initial | 396 | 191 | 428 | 98 | 117 | 240 | 1.72 | 2.1 | 0.46 | 7.25 | 0.68 | |
Δ | −46 | −10 | +203 | 0 | −8 | −6 | −0.17 | +1.5 | −0.02 | −0.49 | −0.01 | ||
High | 0.5 | Initial | 53 | 21 | 44 | 13 | 14 | 31 | 0.15 | 0.1 | 0.04 | 0.56 | 0.08 |
Δ | −6 | +4 | +29 | −4 | +3 | −17 | −0.02 | +10.1 | +0.05 | +0.69 | +0.03 | ||
1.0 | Initial | 113 | 47 | 91 | 24 | 27 | 61 | 0.37 | 0.3 | 0.1 | 1.45 | 0.16 | |
Δ | −16 | +9 | +65 | −3 | +1 | −19 | −0.18 | −0.2 | +0.01 | +0.04 | +0.003 | ||
2.0 | Initial | 221 | 92 | 191 | 53 | 54 | 121 | 0.76 | 3.5 | 0.21 | 3.2 | 0.30 | |
Δ | −29 | −26 | +136 | −8 | +7 | −24 | −0.18 | −3.2 | +0.007 | −0.20 | +0.01 | ||
3.0 | Initial | 316 | 135 | 291 | 78 | 81 | 176 | 1.19 | 2.3 | 0.34 | 4.80 | 0.49 | |
Δ | −78 | −30 | +255 | −13 | +1 | −24 | −0.35 | −1.7 | −0.08 | −1.34 | −0.06 | ||
4.0 | Initial | 416 | 180 | 410 | 98 | 115 | 207 | 1.63 | 3.6 | 0.44 | 6.67 | 0.67 | |
Δ | −105 | −39 | +277 | −11 | +2 | −25 | −0.35 | −2.6 | −0.04 | −0.61 | −0.03 |
DLI | EC | DLI × EC | DLI | EC | DLI × EC | DLI | EC | DLI × EC | |
---|---|---|---|---|---|---|---|---|---|
Parameter | Cilantro | Dill | Parsley | ||||||
Fresh mass | *** | NS | NS | *** | NS | NS | *** | NS | NS |
Dry mass | *** | NS | NS | *** | NS | NS | *** | NS | NS |
Leaf no. | *** | NS | NS | *** | NS | NS | *** | * | * |
N | NS | NS | NS | NS | NS | NS | NS | NS | NS |
P | NS | NS | NS | *** | NS | NS | *** | NS | NS |
K | *** | NS | NS | *** | * | * | ** | NS | NS |
Mg | NS | *** | NS | NS | * | NS | NS | NS | NS |
Ca | *** | *** | NS | NS | * | NS | NS | * | NS |
S | NS | NS | NS | NS | * | NS | ** | NS | NS |
Zn | NS | ** | NS | NS | * | NS | NS | * | NS |
Mn | NS | NS | NS | * | ** | NS | NS | NS | NS |
Cu | * | NS | NS | NS | NS | NS | NS | NS | NS |
Fe | NS | NS | NS | NS | NS | NS | NS | NS | NS |
B | ** | NS | NS | NS | NS | NS | *** | NS | NS |
Parameter | Low DLI | High DLI |
---|---|---|
Fresh mass (g) | 13.6 | 34.6 |
Dry mass (g) | 1.27 | 3.71 |
Leaf no. | 9.3 | 18.3 |
K (%) | 8.8 | 7.4 |
Ca (%) | 0.74 | 0.94 |
Cu (mg·kg−1) | 14 | 16 |
B (mg·kg−1) | 51 | 62 |
Parameter | Low DLI | High DLI |
---|---|---|
Fresh mass (g) | 7.1 | 24.2 |
Dry mass (g) | 0.72 | 3.12 |
Leaf no. | 6.0 | 8.5 |
P (%) | 1.1 | 1.4 |
K (%) | 5.6 | 4.5 |
Mn (mg·kg−1) | 168 | 139 |
Parameter | Low DLI | High DLI |
---|---|---|
Fresh mass (g) | 11.1 | 24.4 |
Dry mass (g) | 1.3 | 3.6 |
Leaf no. | 5.5 | 6.6 |
P (%) | 0.72 | 0.90 |
K (%) | 6.8 | 5.8 |
S (%) | 0.48 | 0.60 |
B (mg·kg−1) | 39 | 51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currey, C.J.; Walters, K.J.; Flax, N.J. Nutrient Solution Strength Does Not Interact with the Daily Light Integral to Affect Hydroponic Cilantro, Dill, and Parsley Growth and Tissue Mineral Nutrient Concentrations. Agronomy 2019, 9, 389. https://doi.org/10.3390/agronomy9070389
Currey CJ, Walters KJ, Flax NJ. Nutrient Solution Strength Does Not Interact with the Daily Light Integral to Affect Hydroponic Cilantro, Dill, and Parsley Growth and Tissue Mineral Nutrient Concentrations. Agronomy. 2019; 9(7):389. https://doi.org/10.3390/agronomy9070389
Chicago/Turabian StyleCurrey, Christopher J., Kellie J. Walters, and Nicholas J. Flax. 2019. "Nutrient Solution Strength Does Not Interact with the Daily Light Integral to Affect Hydroponic Cilantro, Dill, and Parsley Growth and Tissue Mineral Nutrient Concentrations" Agronomy 9, no. 7: 389. https://doi.org/10.3390/agronomy9070389
APA StyleCurrey, C. J., Walters, K. J., & Flax, N. J. (2019). Nutrient Solution Strength Does Not Interact with the Daily Light Integral to Affect Hydroponic Cilantro, Dill, and Parsley Growth and Tissue Mineral Nutrient Concentrations. Agronomy, 9(7), 389. https://doi.org/10.3390/agronomy9070389