Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula Angustifolia Mill.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soilless Cultivation
2.2. Analysis of Biometric Parameters and Performance
2.3. Analysis of Secondary Metabolites
2.4. Statistical Analyses
3. Results and Discussion
3.1. Influence of Cultivation Substrate on Morphology and Performance
3.2. Influence of Cultivation Substrate on Vocs
3.3. Influence of Cultivation Substrate on EO Yield and Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L): A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef]
- Lim, T.K. Lavandula angustifolia. In Edible Medicinal and Non Medicinal Plants: Volume 8, Flowers; Springer: Dordrecht, The Netherlands, 2014; pp. 156–185. ISBN 978-94-017-8748-2. [Google Scholar]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.-C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, H.M.A.; Wilkinson, J.M. Lavender essential oil: A review. Aust. Infect. Control 2005, 10, 35–37. [Google Scholar] [CrossRef]
- Soltani, R.; Soheilipour, S.; Hajhashemi, V.; Asghari, G.; Bagheri, M.; Molavi, M. Evaluation of the effect of aromatherapy with lavender essential oil on post-tonsillectomy pain in pediatric patients: A randomized controlled trial. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Palá-Paúl, J.; Brophy, J.J.; Goldsack, R.J.; Fontaniella, B. Analysis of the volatile components of Lavandula canariensis (L.) Mill., a Canary Islands endemic species, growing in Australia. Biochem. Syst. Ecol. 2004, 32, 55–62. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Lazari, D.M.; Vlachonasios, K.E. The effects of habitat type and diurnal harvest on essential oil yield and composition of Lavandula angustifolia Mill. Fresenius Environ. Bull. 2010, 19, 1491–1498. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. (Amsterdam) 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.-M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Fascella, G. Growing substrates alternative to peat for ornamental plants. In Soilless Culture–Use of Substrates for the Production of Quality Horticultural Crops; Asaduzzaman, M., Ed.; InTech: London, UK, 2015; pp. 47–67. [Google Scholar]
- Balliu, A.; Sallaku, G.; Nasto, T. Nursery management practices influence the quality of vegetable seedlings. Italus Hortus 2017, 24, 39–52. [Google Scholar]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! Horttechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Berruti, A.; Scariot, V. Efficacy of flurprimidol and peat alternatives on growth control of potted camellias. New Zeal. J. Crop Hortic. Sci. 2013, 41, 230–239. [Google Scholar] [CrossRef]
- Ganesh, S.; Kannan, M.; Lal, M.J.; Arulmozhiyan, R.; Jeyakumar, P. Standardization of growing medium for cut chrysanthemum (Dendranthema grandiflora Tzvelev) cv. Amalfi under protected conditions. J. Ornam. Hortic. 2015, 18, 48–55. [Google Scholar]
- Pagani, A.; Molinari, J.; Lavado, R.; Di Benedetto, A. Behavior of Impatiens wallerana Hook. F in alternative pot substrates: Mechanisms involved and research perspectives. J. Plant Nutr. 2015, 38, 2185–2203. [Google Scholar] [CrossRef]
- Hernández-Apaolaza, L.; Gascó, A.M.; Gascó, J.M.; Guerrero, F. Reuse of waste materials as growing media for ornamental plants. Bioresour. Technol. 2005, 96, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, G.Y.; Arachchi, I.D.D.L.L.; Tokashiki, Y. Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative. Resour. Conserv. Recycl. 2010, 54, 1412–1418. [Google Scholar] [CrossRef]
- Khomami, A.M.; Guilan, I. The possibility using the composted peanut shells in the growth of Marigold and Viola tricolor plants. J. Ornam. Plants 2015, 5, 61–66. [Google Scholar]
- Gong, X.; Li, S.; Sun, X.; Wang, L.; Cai, L.; Zhang, J.; Wei, L. Green waste compost and vermicompost as peat substitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.). Sci. Hortic. (Amsterdam) 2018, 236, 186–191. [Google Scholar] [CrossRef]
- Massa, D.; Malorgio, F.; Lazzereschi, S.; Carmassi, G.; Prisa, D.; Burchi, G. Evaluation of two green composts for peat substitution in geranium (Pelargonium zonale L.) cultivation: Effect on plant growth, quality, nutrition, and photosynthesis. Sci. Hortic. (Amsterdam) 2018, 228, 213–221. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Gu, M. Growth and development of Easter lily in response to container substrate with biochar. J. Hortic. Sci. Biotechnol. 2019, 94, 80–86. [Google Scholar] [CrossRef]
- Zhong, Z.; Bian, F.; Zhang, X. Testing composted bamboo residues with and without added effective microorganisms as a renewable alternative to peat in horticultural production. Ind. Crops Prod. 2018, 112, 602–607. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Pisciotta, A.; Santamaria, P.; Scariot, V. From soil to soil-less in horticulture: Quality and typicity. Ital. J. Agron. 2013, 8, 255–260. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Bustamante, M.A.; Ben Amara, M.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef] [PubMed]
- Zubek, S.; Stefanowicz, A.M.; Błaszkowski, J.; Niklińska, M.; Seidler-Łozykowska, K. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Appl. Soil Ecol. 2012, 59, 106–115. [Google Scholar] [CrossRef]
- Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Zheljazkov, V.D.; Gawde, A.; Boaro, C.S.F. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system. Ind. Crops Prod. 2015, 74, 249–254. [Google Scholar] [CrossRef]
- Najafian, S.; Zahedifar, M. Antioxidant activity and essential oil composition of Satureja hortensis L. as influenced by sulfur fertilizer. J. Sci. Food Agric. 2015, 95, 2404–2408. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Shrivastava, S.; Varma, A. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2015; Volume 42, ISBN 978-3-319-13400-0. [Google Scholar]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Drouza, C.; Tzortzakis, N. Optimization of potassium fertilization/nutrition for growth, physiological development, essential oil composition and antioxidant activity of Lavandula angustifolia Mill. J. Soil Sci. Plant Nutr. 2017, 17, 291–306. [Google Scholar] [CrossRef]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.L.; Pistelli, L.L.; Scariot, V. Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & BL Burtt. Ind. Crops Prod. 2016, 83, 680–692. [Google Scholar]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.L.; Pistelli, L.L.; Scariot, V. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind. Crops Prod. 2019, 129, 85–96. [Google Scholar] [CrossRef]
- Kleinwachter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2014, 35, 121–131. [Google Scholar] [CrossRef]
- Chu, C.J.; Kemper, K.J. Lavender (Lavandula spp.) 2001.
- Demasi, S.; Caser, M.; Lonati, M.; Cioni, P.L.; Pistelli, L.; Najar, B.; Scariot, V. Latitude and altitude influence secondary metabolite production in peripheral alpine populations of the mediterranean species Lavandula angustifolia Mill. Front. Plant Sci. 2018, 9, 983. [Google Scholar] [CrossRef] [PubMed]
- Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Usano-Alemany, J.; Palá-Paúl, J.; Rodríguez, M.S.-C.; Herraiz-Peñalver, D. Chemical description and essential oil yield variability of different accessions of Salvia lavandulifolia. Nat. Prod. Commun. 2014, 9. [Google Scholar] [CrossRef]
- Burdina, I.; Priss, O. Effect of the substrate composition on yield and quality of basil (Ocimum basilicum L.). J. Hortic. Res. 2016, 24, 109–118. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Usano-Alemany, J.; Palá-Paúl, J.; Herráiz-Peñalver, D. Temperature stress causes different profiles of volatile compounds in two chemotypes of Salvia lavandulifolia Vahl. Biochem. Syst. Ecol. 2014, 54, 166–171. [Google Scholar] [CrossRef]
- Kotsiris, G.; Nektarios, P.A.; Paraskevopoulou, A.T. Lavandula angustifolia growth and physiology is affected by substrate type and depth when grown under mediterranean semi-intensive green roof conditions. HortScience 2012, 47, 311–317. [Google Scholar] [CrossRef]
- Bolechowski, A.; Moral, R.; Bustamante, M.A.; Bartual, J.; Paredes, C.; Pérez-Murcia, M.D.; Carbonell-Barrachina, A.A. Winery-distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. (Amsterdam) 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Boyle, T.H.; Craker, L.E.; Simon, J.E. Growing medium and fertilization regime influence growth and essential oil content of rosemary. Hortscience 1991, 26, 33–34. [Google Scholar] [CrossRef]
- Sousa, G.; Monteiro, F.G.; Vasconcelos, E.; Ribeiro, H.M. Valorization of sieved crushed bricks as a component of compost-based substrates. Acta Hortic. 2017, 1168, 303–310. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Handa, T.; Kobayashi, N.; De Pascale, S.; Scariot, V. Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): Potential resources for breeding. Euphytica 2017, 213, 148. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Kobayashi, N.; Kurashige, Y.; Scariot, V. Hydroponic screening for iron deficiency tolerance in evergreen azaleas. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 210–213. [Google Scholar] [CrossRef]
- Puttanna, K.; Rao, E.V.S.P.; Singh, R.; Ramesh, S. Influence of Nitrogen and Potassium Fertilization on Yield and Quality of Rosemary in Relation to Harvest Number. Commun. Soil Sci. Plant Anal. 2010, 41, 190–198. [Google Scholar] [CrossRef]
- Economakis, C.D. Effect of potassium on growth and yield of Origanum dictamnus L. in solution culture. Acta Hortic. 1993, 339–344. [Google Scholar] [CrossRef]
- Șekeroğlu, N.; Özgüven, M. Determination of optimum phosphorus doses for high flower yield and essential oil content in common Lavender (Lavandula angustifolia Mill.). In Proceedings of the Fifth Conference on Medicinal and Aromatic Plants of Southeast European Countries, (5th CMAPSEEC), Brno, Czech Republic, 2–5 September 2008. [Google Scholar]
- Monteiro, C.M.; Calheiros, C.S.C.; Martins, J.P.; Costa, F.M.; Palha, P.; de Freitas, S.; Ramos, N.M.M.; Castro, P.M.L. Substrate influence on aromatic plant growth in extensive green roofs in a Mediterranean climate. Urban Ecosyst. 2017, 20, 1347–1357. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Calheiros, C.S.C.; Palha, P.; Castro, P.M.L. Growing substrates for aromatic plant species in green roofs and water runoff quality: Pilot experiments in a Mediterranean climate. Water Sci. Technol. 2017, 76, 1081–1089. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Nielsen, N.E. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 1996, 8, 259–274. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot. 2006, 58, 9–16. [Google Scholar] [CrossRef]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrhenian area of Tuscany (Italy). Ind. Crops Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D. Analysis of the volatile compounds of flowers and essential oils from Lavandula angustifolia cultivated in northeastern Italy by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry. Planta Med. 2008, 74, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Milina, R.; Mustafa, Z.; Stanev, S.; Zvezdova, D.; Stoeva, S. Headspace gas chromatographic analysis of Bulgarian Lavandula Angustifolia mill Herbs. I.optimization of the analysis conditions. Научни Трудoве На Русенския Университет (Sci. Works Univ. (Bulgarian) 2012, 51, 50–56. [Google Scholar]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Kanagendran, A.; Pazouki, L.; Bichele, R.; Külheim, C.; Niinemets, Ü. Temporal regulation of terpene synthase gene expression in Eucalyptus globulus leaves upon ozone and wounding stresses: Relationships with stomatal ozone uptake and emission responses. Environ. Exp. Bot. 2018, 155, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, V.; Hakola, H.; Hellén, H.; Bäck, J.; Hari, P.; Kulmala, M. Temperature and light dependence of the VOC emissions of Scots pine. Atmos. Chem. Phys. Discuss. 2004, 4, 6691–6718. [Google Scholar] [CrossRef]
- Nielsen, J.K.; Jakobsen, H.B.; Friis, P.; Hansen, K.; Møller, J.; Olsen, C.E. Asynchronous rhythms in the emission of volatiles from Hesperis matronalis flowers. Phytochemistry 1995, 38, 847–851. [Google Scholar] [CrossRef]
- Staudt, M.; Bertin, N.; Hansen, U.; Seufert, G.; Ciccioli, P.; Foster, P.; Frenzel, B.; Fugit, J.L. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos. Environ. 1997, 31, 145–156. [Google Scholar] [CrossRef]
- Woronuk, G.; Demissie, Z.; Rheault, M.; Mahmoud, S. Biosynthesis and therapeutic properties of lavandula essential oil constituents. Planta Med. 2011, 77, 7–15. [Google Scholar] [CrossRef]
- Sanz, J.; Soria, A.C.; Garcıa-Vallejo, M.C. Analysis of volatile components of Lavandula luisieri L. by direct thermal desorption–gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1024, 139–146. [Google Scholar] [CrossRef]
- An, M.; Haig, T.; Hatfield, P. On-site field sampling and analysis of fragrance from living Lavender (Lavandula angustifolia L.) flowers by solid-phase microextraction coupled to gas chromatography and ion-trap mass spectrometry. J. Chromatogr. A 2001, 917, 245–250. [Google Scholar] [CrossRef]
- Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of lavender (Lavandula angustifolia) essential oil on acute inflammatory response. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Younis, F.; Al-Naser, Z.; Al-Hakim, W. Chemical composition of lavandula angustifolia miller and rosmarinus officinalis L. Essential oils and fumigant toxicity against larvae of ephestia kuehniella zeller. Int. J. ChemTech Res. 2015, 8, 1382–1390. [Google Scholar]
- Pereira, S.I.; Santos, P.A.G.; Barroso, J.G.; Figueiredo, A.C.; Pedro, L.G.; Salgueiro, L.R.; Deans, S.G.; Scheffer, J.J.C. Chemical polymorphism of the essential oils from populations of Thymus caespititius grown on the island S. Jorge (Azores). Phytochemistry 2000, 55, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Mandoulakani, B.A.; Eyvazpour, E.; Ghadimzadeh, M. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 2017, 139, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tomescu, A.; Rus, C.; Pop, G.; Alexa, E.; Șumălan, R.; Copolovici, D.; Negrea, M. Chemical composition of Lavandula angustifolia L. and Rosmarinus officinalis L. essential oils cultivated in west Romania. Res. J. Agric. Sci. 2015, 47, 246–253. [Google Scholar]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological activities of Lavender essential oil. Phyther. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Venskutonis, P.R.; Dapkevicius, A.; Baranauskiene, M. Composition of the essential oil of Lavender (Lavandula angustifolia Mill.) from Lithuania. J. Essent. Oil Res. 1997, 9, 107–110. [Google Scholar] [CrossRef]
- Moon, T.; Cavanagh, H.M.A.; Wilkinson, J.M. Antifungal activity of australian grown Lavandula spp. essential oils against Aspergillus nidulans, Trichophyton mentagrophytes, Leptosphaeria maculans and Sclerotinia sclerotiorum. J. Essent. Oil Res. 2007, 19, 171–175. [Google Scholar] [CrossRef]
- Lis-Balchin, M. Lavender: The Genus Lavandula, 1st ed.; CRC Press: London, UK, 2005; Volume 12, ISBN 9780415284868. [Google Scholar]
- Bolechowski, A.; Moral, R.; Bustamante, M.A.; Paredes, C.; Agulló, E.; Bartual, J.; Carbonell-Barrachina, Á.A. Composition of oregano essential oil (origanum vulgare) as affected by the use of winery-distillery composts. J. Essent. Oil Res. 2011, 23, 32–38. [Google Scholar] [CrossRef]
Parameter | Units | P | C | A | P:C | P:A | P:C:A |
---|---|---|---|---|---|---|---|
pH 1 | 4.1 ± 0.70 | 8.0 ± 0.10 | 9.8 ± 0.20 | 5.1 ± 0.51 | 7.0 ± 0.11 | 8.2 ± 0.49 | |
C tot 2 | % | 25.4 ± 1.40 | 27.0 ± 0.60 | 2.0 ± 2.20 | 41.5 ± 0.70 | 28.1 ± 0.70 | 16.1 ± 1.30 |
N tot 2 | % | 1.8 ± 0.04 | 1.9 ± 0.08 | 0.02 ± 0.00 | 1.6 ± 0.08 | 0.8 ± 0.05 | 0.6 ± 0.00 |
C/N | 14.4 ± 0.03 | 14.6 ± 0.01 | 109.7 ± 0.07 | 26.1 ± 0.09 | 33.8 ± 0.51 | 25.5 ± 1.00 | |
Available P 3 | mg/kg | 18.1 ± 0.57 | 291.0 ± 0.40 | 11.6 ± 0.51 | 190.7 ± 0.52 | 14.7 ± 0.45 | 130.9 ± 0.49 |
Carbonates 4 | % | 0.4 ± 0.10 | 2.2 ± 0.05 | 13.1 ± 0.30 | 0.8 ± 0.71 | 6.6 ± 0.62 | 9.8 ± 0.10 |
CEC 5 | meq/100g | 108.4 ± 7.10 | 82.4 ± 12.00 | 7.4 ± 0.03 | 55.5 ± 0.05 | 25.9 ± 0.02 | 24.8 ± 0.40 |
Exchangeable Ca | meq/100g | 31.6 ± 2.50 | 39.1 ± 2.80 | 16.5 ± 0.06 | 32.7 ± 0.05 | 27.3 ± 0.03 | 27.5 ± 0.03 |
Exchangeable K | meq/100g | 0.2 ± 0.20 | 18.7 ± 0.03 | 0.9 ± 0.06 | 4.8 ± 0.06 | 0.5 ± 0.05 | 3.9 ± 0.03 |
Exchangeable Mg | meq/100g | 5.7 ± 0.01 | 19.2 ± 0.20 | 0.2 ± 0.01 | 7.6 ± 0.00 | 2.4 ± 0.00 | 4.2 ± 0.00 |
Cr 6 | mg/kg | 137.7 ± 8.70 | 135.8 ± 1.40 | 320.0 ± 0.04 | 137.2 ± 0.02 | 128.6 ± 0.11 | 232.6 ± 0.02 |
Cu 6 | mg/kg | 68.0 ± 4.70 | 69.2 ± 1.20 | 26.5 ± 0.01 | 23.3 ± 0.01 | 14.5 ± 0.00 | 29.6 ± 0.02 |
Ni 6 | mg/kg | 100.8 ± 5.50 | 99.6 ± 9.50 | 155.8 ± 0.06 | 29.5 ± 0.06 | 79.4 ± 0.05 | 119.7 ± 0.02 |
Gravel | % | - | - | 40 | - | 50 | 40 |
Substrate | Survival (%) | Height (cm) | Diameter (cm) | Spike (number) | Spike Length (cm) | Flower Yield (g Dry Flowers per Plant) |
---|---|---|---|---|---|---|
P:C | 61.1 ± 5.54 a 1 | 41.1 ± 0.77 b | 13.7 ± 0.42 b | 9.0 ± 0.52 a | 6.2 ± 0.20 | 3.7 ± 0.48 a |
P:A | 51.1 ± 3.49 a | 43.9 ± 0.77 a | 12.3 ± 0.32 c | 6.3 ± 0.33 c | 6.6 ± 0.43 | 1.4 ± 2.10 b |
P:C:A | 39.4 ± 0.44 b | 45.3 ± 0.75 a | 15.0 ± 0.41 a | 7.6 ± 0.44 b | 6.1 ± 0.19 | 1.6 ± 10.18 ab |
P | *** | ** | *** | *** | ns | * |
Substrate × Lavender selection p | ** | ns | ns | ns | ns | ns |
Compounds | Class * | LRI 1 | P:C | P:A | P:C:A | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sus | Stu | Tan | Sus | Stu | Tan | Sus | Stu | Tan | ||||
1 | 1-octene | NT | 810 | - | - | 0.1 2 ± 0.05 | - | - | - | - | - | - |
2 | 1-butyl acetate | NT | 811 | - | 0.1 ± 0.08 | - | 0.1 ± 0.15 | - | - | - | - | - |
3 | Hexyl methyl ether | NT | 832 | - | - | - | 0.2 ± 0.23 | - | 0.1 ± 0.10 | - | - | - |
4 | α-thujene | MH | 932 | - | - | 0.2 ± 0.06 | - | - | 0.1 ± 0.05 | 0.1 ± 0.05 | 0.1 ± 0.05 | 0.4 ± 0.27 |
5 | tricyclene | MH | 938 | 0.1 ± 0.02 | 0.2 ± 0.03 | 0.7 ± 0.51 | 0.1 ± 0.10 | 0.2 ± 0.18 | 0.4 ± 0.34 | 0.2 ± 0.18 | 0.4 ± 0.17 | 0.8 ± 0.20 |
6 | β-citronellene | MH | 946 | - | 0.1 ± 0.09 | - | - | - | - | 0.1 ± 0.09 | - | - |
7 | 4-methyl pent-2-enolide | NT | 951 | 0.1 ± 0.07 | 0.2 ± 0.20 | 0.1 ± 0.06 | - | 0.4 ± 0.04 | 0.1 ± 0.08 | 0.1 ± 0.04 | 0.1 ± 0.16 | - |
8 | camphene | MH | 955 | 0.4 ± 0.05 | 0.2 ± 0.03 | 0.3 ± 0.09 | 0.2 ± 0.09 | 0.2 ± 0.04 | 0.2 ± 0.06 | 1.0 ± 0.32 | 0.4 ± 0.03 | 0.3 ± 0.05 |
9 | sabinene | MH | 978 | - | - | 0.2 ± 0.05 | - | 0.2 ± 0.07 | - | - | 0.1 ± 0.04 | 0.1 ± 0.08 |
10 | 1-octen-3-one | NT | 980 | - | - | 0.1 ± 0.13 | - | - | - | - | - | - |
11 | β-pinene | MH | 981 | 0.1 ± 0.04 | - | 0.1 ± 0.08 | 0.1 ± 0.13 | - | - | 0.2 ± 0.09 | 0.1 ± 0.08 | 0.1 ± 0.08 |
12 | 1-octen-3-ol | NT | 982 | 0.1 ± 0.09 | 0.3 ± 0.26 | 0.2 ± 0.05 | - | 0.2 ± 0.05 | 0.3 ± 0.27 | 0.4 ± 0.39 | 0.4 ± 0.09 | 0.4 ± 0.04 |
13 | 3-octanone | NT | 987 | 2.3 ± 0.53 | 1.9 ± 0.18 | 2.7 ± 1.02 | 2.7 ± 1.25 | 1.1 ± 0.39 | 2.1 ± 1.07 | 3.3 ± 1.52 | 1.9 ± 0.36 | 1.9 ± 0.30 |
14 | butanoic acid, butyl ester | NT | 993 | 0.1 ± 0.06 | 0.3 ± 0.09 | 0.4 ± 0.02 | 0.4 ± 0.07 | 0.5 ± 0.46 | 0.2 ± 0.09 | 0.2 ± 0.03 | 0.2 ± 0.09 | |
15 | myrcene | MH | 993 | 6.5 ± 1.25 | 3.9 ± 0.27 | 0.8 ± 0.41 | 6.4 ± 0.55 | 0.9 ± 0.14 | 0.8 ± 0.03 | 3.7 ± 0.22 | 2.4 ± 0.50 | 1.3 ± 0.48 |
16 | 3-octanol | NT | 998 | 0.1 ± 0.08 | 0.1 ± 0.07 | 0.1 ± 0.03 | - | - | - | 0.1 ± 0.7 | 0.1 ± 0.08 | 0.1 ± 0.04 |
17 | α-phellandrene | MH | 1006 | - | - | 0.1 ± 0.01 | - | - | 0.1 ± 0.01 | - | 0.1 ± 0.10 | 0.1 ± 0.03 |
18 | δ-3-carene | MH | 1012 | - | - | 0.1 ± 0.06 | - | - | 0.1 ± 0.09 | - | 0.1 ± 0.06 | 0.2 ± 0.23 |
19 | n-hexyl acetate | NT | 1013 | 0.9 ± 0.10 | 0.8 ± 0.03 | 0.2 ± 0.09 | 2.1 ± 0.63 | 0.3 ± 0.01 | 0.2 ± 0.01 | 0.9 ± 0.86 | 0.6 ± 0.01 | 0.1 ± 0.08 |
20 | α-terpinene | MH | 1019 | - | - | - | - | 0.1 ± 0.01 | - | - | - | - |
21 | o-cymene | MH | 1026 | - | - | - | - | 0.2 ± 0.03 | - | 0.1 ± 0.10 | - | - |
22 | p-cymene | MH | 1028 | 0.2 ± 0.14 | 0.5 ± 0.04 | 0.8 ± 0.54 | 0.3 ± 0.21 | 0.7 ± 0.05 | 0.7 ± 0.60 | 0.3 ± 0.27 | 0.4 ± 0.31 | 0.9 ± 0.57 |
23 | limonene | MH | 1032 | 1.2 ± 0.97 | 0.5 ± 0.30 | 0.3 ± 0.08 | - | 1.0 ± 0.06 | 0.3 ± 0.12 | - | 1.7 ± 0.81 | 0.6 ± 0.41 |
24 | 1,8-cineole | OM | 1036 | 4.3 ± 2.76 | 1.3 ± 1.00 | 0.9 ± 0.41 | 7.3 ± 3.25 | 3.0 ± 0.56 | 0.7 ± 0.70 | 6.1 ± 3.58 | 0.4 ± 0.06 | 0.9 ± 1.12 |
25 | (Z)-β-ocimene | MH | 1042 | 2.9 ± 0.83 | 1.8 ± 1.01 | 1.6 ± 1.02 | 3.3 ± 1.34 | 1.0 ± 0.16 | 2.6 ± 0.12 | 2.9 ± 0.89 | 4.4 ± 1.34 | 3.3 ± 0.51 |
26 | lavender lactone | NT | 1046 | 0.5 ± 0.38 | 1.2 ± 0.76 | 0.9 ± 0.72 | 0.3 ± 0.41 | 0.6 ± 0.58 | 0.5 ± 0.46 | 0.4 ± 0.19 | 0.3 ± 0.09 | 0.5 ± 0.79 |
27 | (E)-β-ocimene | MH | 1053 | 4.1 ± 0.65 | 2.5 ± 1.69 | 1.8 ± 1.6 | 4.5 ± 1.23 | 1.2 ± 1.08 | 1.6 ± 0.92 | 2.5 ± 1.86 | 2.9 ± 0.05 | 3.6 ± 2.38 |
28 | γ-terpinene | MH | 1062 | - | - | 0.2 ± 0.25 | - | - | 0.1 ± 0.18 | - | 0.2 ± 0.11 | 0.4 ± 0.37 |
29 | trans-linalool oxide (furanoid) | OM | 1069 | 2.3 ± 1.14 | 8.3 ± 2.26 | 6.8 ± 4.5 | 1.7 ± 1.00 | 5.5 ± 3.82 | 5.8 ± 2.20 | 2.7 ± 1.22 | 2.7 ± 0.12 | 5.4 ± 0.11 |
30 | cis-sabinene hydrate | OM | 1072 | 0.1 ± 0.11 | 0.4 ± 0.35 | 0.9 ± 0.65 | 0.1 ± 0.11 | 0.4 ± 0.31 | 0.8 ± 0.78 | - | 0.3 ± 0.06 | 1.1 ± 0.44 |
31 | cis-linalool oxide (furanoid) | OM | 1075 | 2.1 ± 0.93 | 7.1 ± 3.54 | 5.5 ± 3.70 | 1.3 ± 1.02 | 4.5 ± 2.02 | 4.5 ± 3.08 | 2.2 ± 1.02 | 1.8 ± 0.72 | 4.5 ± 0.03 |
32 | 6,7-eoxymyrcene | OM | 1095 | - | - | - | - | - | - | - | 0.4 ± 0.15 | - |
33 | linalool | OM | 1102 | 19.1 ± 3.04 | 23.5 ± 1.90 | 33.4 ± 11.65 | 18.7 ± 1.05 | 26.1 ± 5.94 | 42.7 ± 2.44 | 28.5 ± 4.11 | 40.3 ± 7.86 | 35.4 ± 6.56 |
34 | n-nonanal | NT | 1104 | 0.1 ± 0.27 | - | - | - | - | - | - | - | - |
35 | (E)-2-heptyl acetate | NT | 1114 | - | 0.1 ± 0.18 | - | - | - | - | - | - | - |
36 | 1-octen-3-yl acetate | NT | 1117 | 4.9 ± 3.26 | 3.6 ± 2.82 | 1.0 ± 0.30 | 5.3 ± 4.27 | 6.5 ± 0.64 | 0.5 ± 0.51 | 3.9 ± 3.94 | 1.0 ± 0.26 | 0.3 ± 0.26 |
37 | 3-octanol acetate | NT | 1129 | 0.5 ± 0.08 | 0.3 ± 0.05 | 0.1 ± 0.02 | 0.7 ± 0.57 | 0.1 ± 0.03 | - | 0.8 ± 0.78 | 0.1 ± 0.06 | - |
38 | allo-ocimene | OM | 1133 | 0.1 ± 0.09 | 0.1 ± 0.03 | - | 0.1 ± 0.02 | - | - | 0.1 ± 0.08 | 0.1 ± 0.02 | 0.1 ± 0.07 |
39 | nopinone | OM | 1142 | - | - | - | - | 0.1 ± 0.07 | - | - | - | - |
40 | trans-pinocarveol | OM | 1144 | - | - | - | - | 0.1 ± 0.09 | - | - | - | - |
41 | eucarvone | OM | 1146 | - | - | - | - | 0.1 ± 0.07 | - | - | - | - |
42 | camphor | OM | 1148 | 0.6 ± 0.07 | 0.6 ± 0.01 | 0.2 ± 0.14 | 0.4 ± 0.10 | 0.9 ± 0.78 | 0.2 ± 0.20 | 0.7 ± 0.27 | 0.3 ± 0.08 | 0.4 ± 0.17 |
43 | hexyl isobutyrate | NT | 1153 | 0.1 ± 0.06 | 0.2 ± 0.12 | - | 0.2 ± 0.18 | 0.2 ± 0.02 | 0.1 ± 0.08 | 0.1 ± 0.03 | 0.1 ± 0.01 | - |
44 | pinocarvone | OM | 1166 | - | - | - | - | 0.1 ± 0.10 | - | - | - | - |
45 | borneol | OM | 1169 | 0.5 ± 0.05 | 0.5 ± 0.07 | 0.6 ± 0.43 | 0.3 ± 0.03 | 1.0 ± 0.80 | 0.6 ± 0.33 | 0.9 ± 0.74 | 0.2 ± 0.08 | 1.0 ± 0.43 |
46 | pinocampheol | OM | 1170 | - | - | - | - | - | - | - | 0.1 ± 0.02 | - |
47 | lavandulol | OM | 1172 | 0.1 ± 0.03 | - | 0.2 ± 0.07 | - | - | - | 0.1 ± 0.09 | 0.2 ± 0.03 | 0.1 ± 0.04 |
48 | trans-linalool oxide (pyranoid) | OM | 1177 | - | 0.4 ± 0.04 | - | - | - | - | - | - | - |
49 | 4-terpineol | OM | 1180 | 1.8 ± 0.96 | 2.5 ± 1.92 | 5.1 ± 1.36 | 1.1 ± 0.22 | 2.6 ± 1.09 | 5.3 ± 3.69 | 0.9 ± 0.50 | 3.3 ± 1.96 | 7.4 ± 1.98 |
50 | cryptone | NT | 1187 | 0.1 ± 0.08 | 0.3 ± 0.31 | - | - | 0.4 ± 0.58 | - | 0.3 ± 0.29 | - | - |
51 | octanoic acid | NT | 1191 | 0.1 ± 0.08 | - | - | - | - | - | 0.1 ± 0.04 | - | - |
52 | α-terpineol | OM | 1192 | - | - | 0.1 ± 0.08 | - | - | - | - | - | - |
53 | dihydro carveol | OM | 1194 | - | 0.1 ± 0.10 | - | - | - | - | - | - | - |
54 | hexyl butyrate | NT | 1195 | 0.7 ± 0.51 | 1.2 ± 0.68 | 0.5 ± 0.07 | 1.2 ± 0.53 | 0.8 ± 0.73 | 0.7 ± 0.63 | 0.2 ± 0.03 | 0.3 ± 0.08 | 0.3 ± 0.04 |
55 | myrtinal | OM | 1196 | - | - | - | - | 0.1 ± 0.18 | - | - | - | - |
56 | n-decanal | NT | 1206 | 0.1 ± 0.02 | - | - | 0.1 ± 0.07 | 0.2 ± 0.19 | - | - | - | - |
57 | verbenone | OM | 1214 | - | - | - | - | 0.1 ± 0.18 | - | - | - | - |
58 | isobornyl formate | OM | 1230 | - | 0.1 ± 0.10 | 1.4 ± 0.36 | - | 0.2 ± 0.13 | - | 0.1 ± 0.7 | - | - |
59 | hexyl 3-methyl butanoate | NT | 1242 | 0.1 ± 0.03 | 0.1 ± 0.04 | - | 0.1 ± 0.10 | 0.1 ± 0.09 | - | - | - | - |
60 | cuminaldehyde | OM | 1244 | - | - | 0.1 ± 0.04 | - | - | - | - | - | - |
61 | linalyl acetate | OM | 1260 | 27.0 ± 6.35 | 24.6 ± 6.72 | 23.0 ± 5.21 | 26.6 ± 5.95 | 32.0 ± 7.27 | 22.3 ± 3.75 | 24.4 ± 3.32 | 22.6 ± 4.66 | 20.6 ± 1.20 |
62 | isobornyl acetate | OM | 1287 | 0.9 ± 0.38 | 0.1 ± 0.10 | - | 0.2 ± 0.19 | - | - | 0.4 ± 0.28 | 0.1 ± 0.03 | - |
63 | lavandulyl acetate | OM | 1289 | 4.1 ± 1.98 | 3.4 ± 2.41 | 3.7 ± 1.90 | 5.3 ± 3.27 | 3.8 ± 0.74 | 1.4 ± 0.58 | 4.5 ± 3.03 | 2.7 ± 0.75 | 3.5 ± 1.84 |
64 | (Z)-8-hydroxylinalol | OM | 1360 | 0.6 ± 0.46 | 1.1 ± 0.85 | 0.4 ± 0.01 | 0.4 ± 0.45 | 0.4 ± 0.41 | 0.1 ± 0.20 | 0.6 ± 0.56 | 0.2 ± 0.15 | 0.2 ± 0.06 |
65 | neryl acetate | OM | 1368 | 1.8 ± 0.64 | 1.1 ± 0.91 | 0.2 ± 0.06 | 1.8 ± 0.04 | 0.2 ± 0.13 | 0.2 ± 0.03 | 1.1 ± 1.02 | 0.6 ± 0.03 | 0.2 ± 0.02 |
66 | α-copaene | SH | 1376 | - | - | 0.1 ± 0.08 | - | - | - | - | 0.1 ± 0.04 | 0.1 ± 0.09 |
67 | β-bourborene | SH | 1383 | - | - | 0.1 ± 0.04 | - | - | - | - | - | - |
68 | geranyl acetate | OM | 1386 | 3.9 ± 0.94 | 2.3 ± 1.74 | 0.4 ± 0.12 | 3.3 ± 0.11 | 0.5 ± 0.08 | 0.4 ± 0.04 | 2.2 ± 1.90 | 1.3 ± 0.67 | 0.5 ± 0.09 |
69 | (E)-caryophyllene | SH | 1418 | 2.7 ± 1.74 | 1.3 ± 1.00 | 1.7 ± 1.27 | 1.6 ± 1.03 | 1.3 ± 0.80 | 2.0 ± 0.58 | 2.0 ± 1.16 | 3.0 ± 1.22 | 1.8 ± 1.15 |
70 | α-santhalene | SH | 1419 | - | - | - | 0.2 ± 0.27 | - | - | - | - | - |
71 | trans-α-bergamotene | SH | 1437 | - | 0.1 ± 0.10 | 0.1 ± 0.02 | - | - | 0.1 ± 0.01 | - | - | 0.1 ± 0.02 |
72 | (E)-β-farnesene | SH | 1460 | 0.5 ± 0.04 | 0.3 ± 0.07 | 0.3 ± 0.27 | 1.0 ± 0.07 | 0.1 ± 0.09 | 0.4 ± 0.36 | 0.2 ± 0.19 | 0.3 ± 0.15 | 0.2 ± 0.21 |
73 | germacrene D | SH | 1481 | 0.1 ± 0.08 | - | 0.2 ± 0.19 | - | - | 0.2 ± 0.01 | - | 0.2 ± 0.16 | 0.2 ± 0.17 |
74 | trans-γ-cadinene | SH | 1513 | 0.1 ± 0.09 | - | - | - | - | - | 0.2 ± 0.07 | - | - |
75 | caryophyllene oxide | OS | 1582 | - | 0.1 ± 0.02 | - | 0.1 ± 0.02 | - | - | - | - | - |
Class of Compounds | P:C | P:A | P:C:A | |||||||||
Sus | Stu | Tan | Sus | Stu | Tan | Sus | Stu | Tan | ||||
Monoterpene hydrocarbons (MH) | 15.5 ± 2.3 | 9.7 ± 2.36 | 7.2 ± 4.81 | 14.9 ± 3.34 | 5.7 ± 1.42 | 7.0 ± 2.85 | 11.1 ± 3.3 | 13.3 ± 5.8 | 12.1 ± 4.46 | |||
Oxygenated monoterpenes (OM) | 69.4 ± 3.88 | 77.3 ± 4.18 | 83.0 ± 6.06 | 68.8 ± 4.90 | 81.8 ± 3.89 | 84.9 ± 5.73 | 75.5 ± 6.73 | 77.6 ± 4.00 | 81.4 ± 1.33 | |||
Sesquiterpene hydrocarbons (SH) | 3.4 ± 0.64 | 1.7 ± 0.80 | 2.4 ± 1.76 | 2.8 ± 1.96 | 2.5 ± 0.21 | 2.7 ± 0.83 | 2.4 ± 1.13 | 3.5 ± 1.41 | 2.3 ± 0.90 | |||
Oxygenated sesquiterpenes (OS) | - | 0.1 ± 0.12 | - | 0.1 ± 0.12 | - | - | - | - | - | |||
Non-terpene derivatives (NT) | 10.8 ± 2.80 | 10.7 ± 2.33 | 6.4 ± 3.53 | 13.4 ± 5.47 | 10.9 ± 1.03 | 4.4 ± 1.24 | 10.8 ± 4.11 | 4.7 ± 2.51 | 3.7 ± 1.50 | |||
Total identified | 99.1 ± 0.91 | 97.5 ± 2.57 | 98.5 ± 1.23 | 96.5 ± 3.31 | 99.9 ± 0.10 | 99.8 ± 0.22 | 99.9 ± 0.12 | 99.7 ± 0.11 | 99.7 ± 0.18 |
VOCs | F | p | Significant Pair-Wise Comparisons at p < 0.05 |
---|---|---|---|
Lavender selection | 3.27 | 0.0001 | Sus versus Tan |
Substrate | 0.69 | 0.2156 | - |
EOs | |||
Lavender selection | 2.94 | 0.0013 | Sus versus Tan |
Substrate | 2.48 | 0.0065 | P:A versus P:C:A |
Compounds | Class | LRI 1 | P:C | P:A | P:C:A | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sus | Stu | Tan | Sus | Stu | Tan | Sus | Stu | Tan | ||||
1 | α-thujene | MH | 932 | - | - | - | - | - | 0.1 2 ± 0.07 | - | - | 0.1 ± 0.04 |
2 | tricyclene | MH | 938 | 0.1 ± 0.10 | 0.1 ± 0.07 | 0.1 ± 0.07 | 0.1 ± 0.01 | - | 0.3 ± 0.06 | 0.1 ± 0.08 | 0.1 ± 0.09 | 0.3 ± 0.01 |
3 | camphene | MH | 955 | 0.6 ± 0.29 | 0.2 ± 0.03 | 0.2 ± 0.02 | 0.6 ± 0.2 | 0.1 ± 0.03 | 0.5 ± 0.11 | 0.4 ± 0.09 | 0.4 ± 0.19 | 0.6 ± 0.16 |
4 | 1-octen-3-one | NT | 980 | 0.2 ± 0.03 | 0.2 ± 0.10 | - | 0.1 ± 0.02 | - | - | 0.8 ± 0.47 | 0.1 ± 0.06 | - |
5 | β-pinene | MH | 981 | 0.3 ± 0.06 | - | - | 0.4 ± 0.04 | 0.1 ± 0.01 | 0.2 ± 0.06 | - | 0.1 ± 0.03 | 0.2 ± 0.05 |
6 | 1-octen-3-ol | NT | 982 | 0.2 ± 0.16 | 0.4 ± 0.26 | 0.3 ± 0.11 | 0.3 ± 0.12 | 0.3 ± 0.16 | 0.3 ± 0.12 | - | 0.7 ± 0.18 | 0.3 ± 0.09 |
7 | 3-octanone | NT | 987 | 0.7 ± 0.34 | 0.5 ± 0.17 | 0.4 ± 0.26 | 0.9 ± 0.38 | 0.5 ± 0.35 | 0.7 ± 0.26 | 1.3 ± 0.16 | 0.5 ± 0.07 | 0.6 ± 0.14 |
8 | myrcene | MH | 993 | 1.0 ± 0.24 | 0.7 ± 0.07 | 0.5 ± 0.10 | 1.0 ± 0.11 | 0.7 ± 0.16 | 0.9 ± 0.20 | 1.2 ± 0.59 | 0.6 ± 0.22 | 1.0 ± 0.39 |
9 | butanoic acid butyl ester | NT | 994 | - | 0.1 ± 0.08 | - | 0.2 ± 0.1 | 0.1 ± 0.08 | - | - | - | - |
10 | 3-octanol | NT | 998 | 0.1 ± 0.08 | 0.1 ± 0.10 | 0.1 ± 0.05 | 0.1 ± 0.06 | 0.1 ± 0.09 | 0.2 ± 0.08 | 0.2 ± 0.04 | 0.2 ± 0.05 | 0.2 ± 0.01 |
11 | cis-dehydroxylinalool oxide | OM | 1009 | 0.1 ± 0.06 | 0.1 ± 0.09 | - | 0.1 ± 0.08 | 0.1 ± 0.06 | - | 0.1 ± 0.08 | 0.1 ± 0.09 | - |
12 | N-hexyl acetate | NT | 1013 | 0.3 ± 0.04 | 0.2 ± 0.10 | - | 0.2 ± 0.52 | 0.2 ± 0.07 | 0.1 ± 0.09 | 0.7 ± 0.17 | - | - |
13 | α-terpinene | MH | 1019 | 0.1 ± 0.02 | 0.1 ± 0.08 | 0.1 ± 0.09 | 0.1 ± 0.09 | 0.1 ± 0.09 | 0.2 ± 0.03 | - | 0.1 ± 0.10 | 0.2 ± 0.05 |
14 | o-cymene | MH | 1026 | 0.1 ± 0.01 | 0.1 ± 0.10 | 0.1 ± 0.09 | 0.1 ± 0.06 | 0.1 ± 0.09 | 0.1 ± 0.01 | - | 0.1 ± 0.09 | 0.1 ± 0.04 |
15 | p-cymene | MH | 1028 | 0.3 ± 0.04 | 0.5 ± 0.24 | 0.4 ± 0.21 | 0.3 ± 0.06 | 0.5 ± 0.14 | 0.5 ± 0.07 | 0.2 ± 0.03 | 0.4 ± 0.24 | 0.5 ± 0.24 |
16 | limonene | MH | 1032 | - | 0.2 ± 0.06 | 0.3 ± 0.07 | - | 0.1 ± 0.03 | 0.2 ± 0.03 | - | 0.3 ± 030 | 0.3 ± 0.03 |
17 | 1,8-cineole | OM | 1036 | 6.3 ± 0.47 | 1.5 ± 0.45 | 1.0 ± 0.15 | 5.2 ± 1.84 | 1.6 ± 0.76 | 2.3 ± 0.29 | 3.6 ± 0.91 | 4.3 ± 0.88 | 2.0 ± 0.46 |
18 | (Z)-β-ocimene | MH | 1042 | 0.8 ± 0.33 | 0.4 ± 0.27 | 0.5 ± 0.20 | 0.9 ± 0.25 | 0.5 ± 0.33 | 0.9 ± 0.46 | 1.0 ± 0.16 | 0.8 ± 0.25 | 0.9 ± 0.47 |
19 | (E)-β-ocimene | MH | 1053 | 0.9 ± 0.24 | 0.6 ± 0.12 | 0.7 ± 0.18 | 1.0 ± 0.02 | 0.7 ± 0.38 | 1.1 ± 0.21 | 1.2 ± 0.42 | 0.5 ± 0.42 | 1.1 ± 0.42 |
20 | γ-terpinene | MH | 1062 | - | - | 0.1 ± 0.06 | - | - | 0.2 ± 0.02 | - | - | 0.2 ± 0.01 |
21 | trans-linalool oxide (furanoid) | OM | 1069 | 1.2 ± 0.28 | 2.0 ± 0.67 | 1.3 ± 0.43 | 1.7 ± 0.70 | 1.7 ± 0.18 | 2.2 ± 0.16 | 1.0 ± 0.13 | 1.7 ± 0.70 | 2.5 ± 0.57 |
22 | cis-sabinene hydrate | OM | 1072 | 0.2 ± 0.10 | 0.4 ± 0.16 | 0.4 ± 0.27 | 0.3 ± 0.04 | 0.4 ± 0.05 | 0.5 ± 0.35 | 0.2 ± 0.01 | 0.4 ± 0.18 | 0.4 ± 0.14 |
23 | cis-linalool oxide (furanoid) | OM | 1075 | 1.2 ± 0.20 | 1.8 ± 0.63 | 1.2 ± 0.33 | 1.6 ± 0.57 | 1.6 ± 0.92 | 2.2 ± 0.18 | 1.1 ± 0.25 | 1.5 ± 0.86 | 2.5 ± 0.17 |
24 | camphenilone | OM | 1086 | - | 0.1 ± 0.09 | - | - | - | - | - | - | - |
25 | 6,7-epoxymyrcene | OM | 1095 | 0.5 ± 0.13 | 0.5 ± 0.10 | 0.3 ± 0.15 | 0.5 ± 0.21 | 0.5 ± 0.02 | 0.2 ± 0.16 | 0.4 ± 0.06 | 0.3 ± 0.02 | 0.2 ± 0.05 |
26 | linalool | OM | 1102 | 21.0 ± 3.24 | 23.9 ± 3.36 | 29.5 ± 3.51 | 23.7 ± 3.77 | 20.4 ± 3.40 | 36.9 ± 5.38 | 33.8 ± 3.72 | 36.7 ± 4.03 | 38.5 ± 0.69 |
27 | 1-octen-3-yl acetate | NT | 1117 | 3.0 ± 0.73 | 2.4 ± 1.30 | 0.6 ± 0.08 | 3.1 ± 1.32 | 3.0 ± 0.56 | 0.5 ± 0.76 | 1.6 ± 0.17 | 0.8 ± 0.73 | 0.5 ± 0.06 |
28 | cis-p-menth-2-en-1-ol | OM | 1125 | - | 0.2 ± 0.11 | 0.1 ± 0.09 | - | 0.2 ± 0.14 | 0.1 ± 0.08 | 0.1 ± 0.08 | 0.2 ± 0.07 | 0.1 ± 0.02 |
29 | 3-octanol acetate | NT | 1129 | 0.5 ± 0.34 | 0.1 ± 0.07 | 0.1 ± 0.01 | 0.5 ± 0.23 | 0.1 ± 0.05 | 0.1 ± 0.06 | 0.5 ± 0.06 | - | 0.1 ± 0.02 |
30 | α-campholenal | OM | 1130 | - | 0.1 ± 0.07 | - | - | - | - | - | 0.1 ± 0.08 | - |
31 | (Z)-myroxide | OM | 1137 | 0.2 ± 0.09 | 0.2 ± 0.05 | 0.1 ± 0.09 | 0.2 ± 0.07 | 0.2 ± 0.05 | 0.1 ± 0.10 | 0.1 ± 0.09 | 0.1 ± 0.04 | - |
32 | trans-pinocarveol | OM | 1142 | 0.1 ± 0.10 | - | - | 0.1 ± 0.1 | 0.1 ± 0.08 | - | 0.1 ± 0.08 | 0.1 ± 0.08 | - |
33 | eucarvone | OM | 1146 | - | - | - | 0.1 ± 0.08 | - | - | - | 0.1 ± 0.05 | - |
34 | camphor | OM | 1148 | 1.6 ± 0.22 | 1.8 ± 0.16 | 1.2 ± 0.52 | 1.3 ± 0.27 | 1.4 ± 0.34 | 1.4 ± 0.6 | 1.3 ± 0.35 | 1.6 ± 0.38 | 1.3 ± 0.71 |
35 | trans-verbenol | OM | 1150 | 0.1 ± 0.01 | - | 0.1 ± 0.04 | 0.1 ± 0.09 | 0.1 ± 0.08 | 0.1 ± 0.01 | 0.1 ± 0.02 | - | 0.1 ± 0.07 |
36 | hexyl isobutyrate | NT | 1153 | 0.2 ± 0.08 | 0.2 ± 0.12 | - | 0.2 ± 0.02 | 0.2 ± 0.06 | 0.1 ± 0.08 | 0.1 ± 0.07 | 0.1 ± 0.08 | 0.1 ± 0.03 |
37 | nerol oxide | OM | 1158 | - | 0.1 ± 0.05 | - | 0.1 ± 0.08 | 0.1 ± 0.09 | - | - | 0.1 ± 0.03 | 0.1 ± 0.03 |
38 | pinocarvone | OM | 1166 | 0.3 ± 0.10 | 0.1 ± 0.10 | 0.1 ± 0.08 | 0.2 ± 0.11 | 0.2 ± 0.16 | 0.1 ± 0.08 | 0.1 ± 0.07 | 0.1 ± 0.08 | - |
39 | borneol | OM | 1169 | 4.4 ± 0.58 | 5.3 ± 1.09 | 4.6 ± 1.66 | 3.6 ± 0.45 | 4.6 ± 1.48 | 5.3 ± 2.08 | 4.0 ± 0.67 | 5.1 ± 0.59 | 5.3 ± 0.39 |
40 | 4-terpinenol | OM | 1180 | 0.9 ± 0.56 | 1.4 ± 0.55 | 3.0 ± 0.62 | 1.2 ± 0.67 | 2.3 ± 0.76 | 4.9 ± 0.80 | 1.7 ± 0.11 | 1.6 ± 0.11 | 4.1 ± 0.30 |
41 | cryptone | NT | 1187 | 0.7 ± 0.47 | 1.1 ± 0.56 | 0.8 ± 0.54 | 0.3 ± 0.06 | 1.1 ± 0.57 | 0.8 ± 0.30 | 0.3 ± 0.06 | 1.3 ± 0.28 | 0.8 ± 0.24 |
42 | p-cymen-8-ol | OM | 1189 | 0.2 ± 0.13 | 0.2 ± 0.10 | 0.1 ± 0.10 | 0.2 ± 0.05 | 0.2 ± 0.09 | 0.1 ± 0.01 | 0.1 ± 0.08 | - | 0.1 ± 0.04 |
43 | α-terpineol | OM | 1192 | 4.1 ± 0.98 | 3.1 ± 0.36 | 2.9 ± 0.51 | 4.5 ± 0.56 | 3.6 ± 1.10 | 4.1 ± 1.13 | 4.3 ± 0.20 | 2.9 ± 0.22 | 4.4 ± 0.13 |
44 | verbenone | OM | 1214 | 0.3 ± 0.12 | 0.4 ± 0.17 | 0.3 ± 0.11 | 0.2 ± 0.08 | 0.4 ± 0.19 | 0.3 ± 0.14 | 0.1 ± 0.03 | 0.3 ± 0.14 | 0.2 ± 0.10 |
45 | trans-carveol | OM | 1221 | 0.5 ± 0.38 | 0.6 ± 0.15 | 0.3 ± 0.20 | 0.5 ± 0.23 | 0.6 ± 0.08 | 0.2 ± 0.07 | 0.4 ± 0.26 | 0.3 ± 0.08 | 0.1 ± 0.06 |
46 | cis-p-mentha-1(7),8-dien-2-ol | OM | 1229 | 0.2 ± 0.17 | 0.3 ± 0.09 | 0.2 ± 0.11 | 0.1 ± 0.07 | 0.3 ± 0.16 | 0.1 ± 0.12 | - | 0.2 ± 0.10 | 0.1 ± 0.05 |
47 | isobornyl formate | OM | 1230 | 0.3 ± 0.05 | 0.3 ± 0.21 | 0.3 ± 0.14 | 0.2 ± 0.02 | 0.3 ± 0.13 | 0.2 ± 0.10 | 0.2 ± 0.01 | 0.3 ± 0.02 | 0.2 ± 0.13 |
48 | nerol | OM | 1232 | 1.0 ± 0.36 | 0.6 ± 0.08 | 0.7 ± 0.16 | 0.9 ± 0.07 | 0.7 ± 0.26 | 0.8 ± 0.23 | 1.1 ± 0.34 | 0.5 ± 0.17 | 0.9 ± 0.50 |
49 | 3-methyl-3hexen-1-yl butanoate | NT | 1236 | 0.1 ± 0.07 | 0.1 ± 0.09 | - | 0.1 ± 0.03 | 0.1 ± 0.07 | - | 0.1 ± 0.03 | - | - |
50 | cumin aldehyde | OM | 1244 | 0.4 ± 0.26 | 0.7 ± 0.41 | 0.4 ± 0.07 | 0.2 ± 0.17 | 0.7 ± 0.39 | 0.3 ± 0.18 | 0.2 ± 0.02 | 0.8 ± 0.26 | 0.2 ± 0.05 |
51 | carvone | OM | 1248 | 0.2 ± 0.13 | 0.3 ± 0.20 | 0.2 ± 0.17 | 0.1 ± 0.02 | 0.3 ± 0.20 | 0.1 ± 0.03 | 0.1 ± 0.01 | 0.4 ± 0.11 | 0.1 ± 0.06 |
52 | linalyl acetate | OM | 1260 | 17.7 ± 1.55 | 15.3 ± 2.33 | 14.9 ± 1.32 | 16.7 ± 3.95 | 16.2 ± 2.02 | 7.5 ± 2.89 | 16.5 ± 1.24 | 10.3 ± 0.79 | 8.8 ± 1.81 |
53 | isopulegol acetate | OS | 1273 | 0.1 ± 0.08 | - | - | 0.1 ± 0.08 | - | 1.8 ± 0.17 | 0.1 ± 0.07 | - | - |
54 | isobornyl acetate | OM | 1287 | 1.6 ± 0.31 | 0.6 ± 0.05 | 0.3 ± 0.06 | 1.1 ± 0.28 | 0.5 ± 0.4 | 0.2 ± 0.1 | 0.9 ± 0.29 | 0.3 ± 0.11 | 0.3 ± 0.09 |
55 | lavandulyl acetate | OM | 1289 | 3.3 ± 1.65 | 3.9 ± 1.08 | 3.8 ± 1.21 | 4.8 ± 1.03 | 5.0 ± 0.48 | 4.4 ± 1.19 | 2.7 ± 1.32 | 2.1 ± 0.88 | 5.1 ± 0.79 |
56 | carvacrol | OM | 1301 | - | 0.3 ± 0.14 | 0.4 ± 0.06 | - | 0.4 ± 0.23 | 0.1 ± 0.02 | - | 0.1 ± 0.08 | 0.1 ± 0.03 |
57 | hexyl tiglate | NT | 1333 | - | - | - | - | 0.1 ± 0.01 | - | 0.1 ± 0.02 | - | - |
58 | δ-elemene | SH | 1340 | 0.1 ± 0.01 | 0.5 ± 0.25 | 0.5 ± 0.23 | 0.1 ± 0.08 | 0.6 ± 0.4 | 0.2 ± 0.08 | - | 0.3 ± 0.14 | 0.3 ± 0.13 |
59 | (Z)-8-hydroxylinalol | OM | 1360 | 0.6 ± 0.28 | 0.5 ± 0.13 | 0.2 ± 0.05 | 0.6 ± 0.23 | 0.7 ± 0.26 | 0.2 ± 0.09 | 0.3 ± 0.08 | 0.4 ± 0.14 | - |
60 | neryl acetate | OM | 1368 | 1.5 ± 0.36 | 1.3 ± 0.33 | 1.3 ± 0.27 | 1.5 ± 0.09 | 1.4 ± 0.41 | 1.3 ± 0.33 | 1.9 ± 0.40 | 0.9 ± 0.20 | 1.2 ± 0.60 |
61 | α-copaene | SH | 1376 | - | - | 0.1 ± 0.10 | - | - | - | - | - | - |
62 | geranyl acetate | OM | 1386 | 3.1 ± 0.79 | 2.8 ± 0.57 | 2.8 ± 0.64 | 3.1 ± 0.23 | 2.9 ± 0.85 | 2.6 ± 0.73 | 3.6 ± 0.57 | 1.9 ± 0.20 | 2.5 ± 0,23 |
63 | (E)-caryophyllene | SH | 1418 | 1.3 ± 0.48 | 1.8 ± 0.68 | 3.2 ± 1.00 | 1.4 ± 0.49 | 2.4 ± 0.89 | 1.6 ± 0.28 | 2.0 ± 0.91 | 1.9 ± 0.38 | 1.4 ± 0.12 |
64 | trans-γ-bergamotene | SH | 1437 | - | 0.2 ± 0.10 | 0.3 ± 0.11 | - | 0.2 ± 0.12 | 0.1 ± 0.01 | - | 0.1 ± 0.07 | 0.1 ± 0.07 |
65 | aromadendrene | SH | 1445 | - | 0.1 ± 0.08 | 0.2 ± 0.07 | - | 0.1 ± 0.12 | 0.1 ± 0.08 | - | 0.1 ± 0.09 | - |
66 | epi-β-santalene | SH | 1447 | - | 0.1 ± 0.09 | 0.1 ± 0.08 | - | 0.1 ± 0.01 | - | - | - | - |
67 | α-humulene | SH | 1456 | - | - | - | - | 0.1 ± 0.07 | - | - | - | - |
68 | (E)-β-farnesene | SH | 1460 | 0.3 ± 0.06 | 0.4 ± 0.09 | 0.7 ± 0.06 | 0.4 ± 0.20 | 0.4 ± 0.23 | 0.5 ± 0.14 | 0.4 ± 0.08 | 0.3 ± 0.08 | 0.3 ± 0.16 |
69 | germacrene D | SH | 1481 | 0.1 ± 0.07 | 0.1 ± 0.07 | 0.5 ± 0.04 | 0.1 ± 0.07 | 0.1 ± 0.03 | 0.3 ± 0.11 | 0.2 ± 0.02 | 0.1 ± 0.16 | 0.3 ± 0.08 |
70 | γ-curcumene | SH | 1484 | - | - | 0.2 ± 0.09 | - | - | 0.1 ± 0.06 | - | 0.1 ± 0.06 | - |
71 | β-bisabolene | SH | 1509 | - | - | 0.6 ± 0.09 | - | - | - | - | - | - |
72 | trans-γ-cadinene | SH | 1513 | 0.5 ± 0.16 | 0.1 ± 0.06 | - | 0.3 ± 0.23 | 0.2 ± 0.11 | - | 0.2 ± 0.06 | 0.2 ± 0.25 | - |
73 | (Z)-γ-bisabolene | SH | 1515 | 0.5 ± 0.10 | 1.9 ± 0.80 | 1.3 ± 0.19 | 0.5 ± 0.18 | 2.0 ± 0.47 | 1.1 ± 0.38 | 0.3 ± 0.04 | 1.0 ± 0.54 | 0.9 ± 0.31 |
74 | (E)-γ-bisabolene | SH | 1535 | 0.2 ± 0.05 | 0.8 ± 0.41 | 0.9 ± 0.37 | 0.2 ± 0.07 | 1.1 ± 0.71 | 0.5 ± 0.16 | - | 0.3 ± 0.07 | 0.3 ± 0.13 |
75 | cis-sesquisabinene hydrate | OS | 1545 | - | 0.3 ± 0.16 | 0.3 ± 0.12 | 0.1 ± 0.04 | 0.3 ± 0.25 | 0.1 ± 0.03 | - | 0.1 ± 0.02 | 0.1 ± 0.07 |
76 | elemol | OS | 1553 | 0.5 ± 0.22 | 0.7 ± 0.06 | 0.6 ± 0.26 | 0.4 ± 0.06 | 0.6 ± 0.20 | 0.3 ± 0.11 | 0.3 ± 0.01 | 0.5 ± 0.21 | 0.3 ± 0.10 |
77 | germacrene B | SH | 1556 | - | 0.2 ± 0.08 | 0.3 ± 0.09 | - | 0.2 ± 0.08 | 0.1 ± 0.02 | - | 0.1 ± 0.08 | 0.1 ± 0.02 |
78 | spathulenol | OS | 1581 | 0.1 ± 0.01 | 0.3 ± 0.13 | 0.2 ± 0.08 | - | 0.3 ± 0.22 | 0.2 ± 0.04 | - | 0.2 ± 0.05 | 0.1 ± 0.02 |
79 | caryophyllene oxide | OS | 1582 | 6.1 ± 1.21 | 7.4 ± 1.40 | 6.6 ± 1.41 | 6.0 ± 2.52 | 6.2 ± 1.08 | 3.6 ± 1.05 | 4.8 ± 0.20 | 5.8 ± 0.67 | 3.4 ± 0.49 |
80 | thujapsan-2-α-ol | OS | 1589 | - | 1.4 ± 0.81 | 1.5 ± 0.77 | 0.1 ± 0.09 | 1.4 ± 0,42 | 0.9 ± 0.32 | - | 0.6 ± 0.26 | 0.7 ± 0.19 |
81 | β-oplopenone | OS | 1606 | - | - | - | - | 0.1 ± 0.09 | - | - | - | - |
82 | humulene epoxide II | OS | 1607 | 0.2 ± 0.06 | 0.2 ± 0.04 | 0.2 ± 0.07 | 0.1 ± 0.05 | 0.2 ± 0.05 | 0.1 ± 0.09 | - | 0.2 ± 0.07 | 0.1 ± 0.10 |
83 | 1,10-di-epi-cubenol | OS | 1614 | 0.3 ± 0.03 | 0.2 ± 0.07 | 0.2 ± 0.05 | 0.1 ± 0.07 | 0.2 ± 0.06 | - | 0.1 ± 0.02 | 0.2 ± 0.07 | - |
84 | α-acorenol | OS | 1633 | - | 0.1 ± 0.01 | - | - | 0.1 ± 0.02 | - | 0.1 ± 0.08 | - | - |
85 | β-acorenol | OS | 1636 | - | 0.1 ± 0.09 | 0.1 ± 0.12 | - | 0.1 ± 0.02 | - | - | - | - |
86 | β-caryophylla-4(14),8(15)-dien-5-ol | OS | 1639 | - | 0.2 ± 0.04 | 0.2 ± 0.09 | - | 0.1 ± 0.04 | 0.1 ± 0.03 | - | 0.1 ± 0.08 | 0.1 ± 0.04 |
87 | τ-cadinol | OS | 1642 | 3.0 ± 0.31 | 0.6 ± 0.37 | 0.2 ± 0.10 | 1.9 ± 0.15 | 1.1 ± 0.59 | 0.1 ± 0.03 | 0.8 ± 0.15 | 2.0 ± 0.97 | 0.1 ± 0.08 |
88 | α-cadinol | OS | 1655 | - | 0.1 ± 0.10 | 0.4 ± 0.11 | - | 0.2 ± 0.02 | 0.2 ± 0.06 | 0.2 ± 0.12 | 0.1 ± 0.06 | 0.1 ± 0.02 |
89 | neo-intermediol | OS | 1660 | - | 0.3 ± 0.02 | 0.2 ± 0.12 | - | 0.3 ± 0.08 | - | - | 0.2 ± 0.08 | - |
90 | (Z)-α-santalol | OS | 1665 | 0.7 ± 0.25 | 0.9 ± 0.34 | 1.0 ± 0.30 | 0.7 ± 0.34 | 0.4 ± 0.06 | 0.5 ± 0.08 | 0.3 ± 0.04 | 0.5 ± 0.21 | 0.4 ± 0.11 |
91 | (Z)-nerolidol acetate | OS | 1668 | - | - | 0.2 ± 0.15 | 0.1 ± 0.08 | - | 0.2 ± 0.08 | - | - | 0.1 ± 0.02 |
92 | 14-hydroxy-9-epi-(E)-caryophyllene | OS | 1672 | 0.1 ± 0.05 | 0.2 ± 0.10 | 0.1 ± 0.02 | 0.4 ± 0.05 | 0.3 ± 0.02 | - | - | 0.1 ± 0.09 | - |
93 | elemol acetate | OS | 1675 | - | 0.4 ± 0.33 | 0.4 ± 0.26 | - | 0.6 ± 0.06 | 0.3 ± 0.04 | - | 0.3 ± 0.09 | 0.1 ± 0.03 |
94 | cis-14-muurol-5-en-4-one | OS | 1684 | 0.7 ± 0.13 | 0.2 ± 0.16 | 0.3 ± 0.12 | 0.2 ± 0.02 | 0.4 ± 0.17 | 0.1 ± 0.01 | 0.2 ± 0.05 | 0.5 ± 0.07 | 0.1 ± 0.10 |
95 | 14-hydroxy-α-humulene | OS | 1714 | - | - | 0.1 ± 0.02 | - | 0.1 ± 0.10 | - | - | - | - |
96 | curcuphenol | OS | 1720 | - | - | - | - | - | - | - | 0.1 ± 0.01 | - |
97 | cedr-8(15)-en-9-α-ol acetate | OS | 1743 | 0.1 ± 0.02 | - | - | 0.1 ± 0.04 | - | - | - | - | - |
98 | cyclocolorenone | OS | 1758 | 0.5 ± 0.06 | 0.1 ± 0.10 | - | 0.4 ± 0.23 | 0.1 ± 0.02 | - | 0.2 ± 0.02 | 0.2 ± 0.06 | - |
99 | benzyl benzoate | NT | 1760 | 0.1 ± 0.09 | 0.2 ± 0.10 | - | 0.1 ± 0.08 | - | - | 0.1 ± 0.08 | 0.1 ± 0.08 | - |
100 | (Z)-α-santalol acetate | OS | 1763 | 0.1 ± 0.07 | 0.1 ± 0.09 | - | - | 0.2 ± 0.14 | - | - | 0.1 ± 0.08 | - |
101 | hexahydrofarnesylacetone | AC | 1845 | 0.2 ± 0.06 | 0.4 ± 0.12 | 0.2 ± 0.20 | 0.1 ± 0.03 | 0.2 ± 0.02 | 0.1 ± 0.07 | 0.1 ± 0.04 | 0.3 ± 0.14 | - |
Yield of EO (% w/w) | 0.4 ± 0.08 | 0.1 ± 0.05 | 0.2 ± 0.02 | 1.0 ± 0.53 | 0.4 ± 0.10 | 0.6 ± 0.25 | vl 3 | 0.2 ± 0.10 | 0.8 ± 0.37 | |||
P:C | P:A | P:C:A | ||||||||||
Class of Compounds | Sus | Stu | Tan | Sus | Stu | Tan | Sus | Stu | Tan | |||
Monoterpene Hydrocarbons (MH) | 4.4 ± 0.97 | 2.9 ± 0.57 | 2.8 ± 0.67 | 4.4 ± 1.08 | 2.9 ± 0.76 | 5.1 ± 0.51 | 4.1 ± 1.06 | 3.5 ± 1.35 | 5.6 ± 1.37 | |||
Oxygenated Monoterpenes (OM) | 73.2 ± 3.99 | 70.6 ± 2.36 | 72.2 ± 3.65 | 74.6 ± 3.37 | 69.6 ± 4.28 | 78.8 ± 1.45 | 79.6 ± 1.46 | 75.8 ± 2.97 | 81.8 ± 1.12 | |||
Sesquiterpene Hydrocarbons (SH) | 3.1 ± 0.47 | 6.2 ± 0.32 | 8.8 ± 1.97 | 3.1 ± 0.23 | 7.5 ± 1.97 | 4.6 ± 0.23 | 3.1 ± 1.04 | 4.5 ± 0.70 | 3.8 ± 0.33 | |||
Oxygenated Sesquiterpenes (OS) | 12.7 ± 2.20 | 13.7 ± 1.35 | 13.2 ± 2.88 | 10.9 ± 1.68 | 13.1 ± 2.54 | 8.7 ± 1.82 | 7.0 ± 1,81 | 11.6 ± 1.68 | 5.9 ± 0.73 | |||
Non-terpene derivatives (NT) | 6.0 ± 0.23 | 5.5 ± 0.22 | 2.4 ± 0.77 | 6.1 ± 1.70 | 6.0 ± 0.60 | 2.8 ± 0.85 | 5.7 ± 0.31 | 3.8 ± 1.12 | 2.8 ± 0.84 | |||
Apocarotenoids (AC) | 0.2 ± 0.06 | 0.4 ± 0.12 | 0.2 ± 0.20 | 0.1 ± 0.03 | 0.2 ± 0.02 | 0.1 ± 0.07 | 0.1 ± 0.04 | 0.3 ± 0.14 | - | |||
Total Identified | 99.5 ± 0.40 | 99.3 ± 0.36 | 99.5 ± 0.26 | 99.2 ± 0.14 | 99.3 ± 0.43 | 100.0 ± 0.01 | 99.7 ± 0.18 | 99.4 ± 0.55 | 99.9 ± 0.10 |
Contribution % | Cumulative % | Substrate P:C | Substrate P:A | Substrate P:C:A | Stat. Sign. | Significant Pair-Wise Comparisons at p < 0.05 | |
---|---|---|---|---|---|---|---|
linalool | 58.11 | 58.11 | 26.60 | 27.00 | 36.60 | * | P:C versus P:C:A |
linalyl acetate | 18.75 | 76.86 | 15.50 | 13.50 | 11.40 | ns | - |
1,8-cineole | 4.16 | 81.02 | 2.13 | 3.07 | 3.13 | ns | - |
caryophyllene oxide | 3.10 | 84.12 | 6.69 | 5.30 | 4.50 | * | P:C versus P:C:A |
lavandulyl acetate | 2.78 | 86.90 | 3.75 | 4.71 | 3.56 | ns | - |
4-terpineol | 1.80 | 88.70 | 2.23 | 2.82 | 2.84 | ns | - |
borneol | 1.76 | 90.46 | 4.74 | 4.51 | 4.90 | ns | - |
1-octen-3-yl acetate | 1.26 | 91.72 | 1.49 | 2.22 | 0.91 | ns | - |
τ-cadinol | 1.23 | 92.95 | 0.82 | 1.03 | 0.86 | ns | - |
α-terpineol | 0.74 | 93.69 | 3.17 | 4.06 | 3.94 | ns | - |
isopulegol acetate | 0.71 | 94.40 | 0.03 | 0.66 | 0.01 | ns | - |
(E)-caryophyllene | 0.66 | 95.06 | 2.50 | 1.81 | 1.70 | ns | - |
(Z)-γ-bisabolene | 0.57 | 95.63 | 1.29 | 1.21 | 0.79 | ns | - |
thujapsan-2-α-ol | 0.51 | 96.14 | 1.19 | 0.80 | 0.50 | ns | - |
geranyl acetate | 0.32 | 96.46 | 2.87 | 2.86 | 2.66 | ns | - |
trans-linalool oxide | 0.32 | 96.78 | 1.44 | 1.87 | 1.83 | ns | - |
cis-linalool oxide | 0.27 | 97.05 | 1.34 | 1.78 | 1.80 | ns | - |
β-bisabolene | 0.19 | 97.24 | 0.36 | 0.00 | 0.00 | ns | - |
camphor | 0.17 | 97.41 | 1.42 | 1.40 | 1.34 | ns | - |
cryptone | 0.17 | 97.58 | 0.83 | 0.74 | 0.79 | ns | - |
isobornyl acetate | 0.16 | 97.74 | 0.63 | 0.61 | 0.43 | ns | - |
(E)-γ-bisabolene | 0.16 | 97.90 | 0.74 | 0.56 | 0.24 | * | P:C versus P:C:A |
(Z)-α-santalol | 0.11 | 98.01 | 0.90 | 0.52 | 0.40 | * | P:C versus P:A; P:C versus P:C:A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula Angustifolia Mill. Agronomy 2019, 9, 411. https://doi.org/10.3390/agronomy9080411
Najar B, Demasi S, Caser M, Gaino W, Cioni PL, Pistelli L, Scariot V. Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula Angustifolia Mill. Agronomy. 2019; 9(8):411. https://doi.org/10.3390/agronomy9080411
Chicago/Turabian StyleNajar, Basma, Sonia Demasi, Matteo Caser, Walter Gaino, Pier Luigi Cioni, Luisa Pistelli, and Valentina Scariot. 2019. "Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula Angustifolia Mill." Agronomy 9, no. 8: 411. https://doi.org/10.3390/agronomy9080411
APA StyleNajar, B., Demasi, S., Caser, M., Gaino, W., Cioni, P. L., Pistelli, L., & Scariot, V. (2019). Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula Angustifolia Mill. Agronomy, 9(8), 411. https://doi.org/10.3390/agronomy9080411