Rice Blast: A Disease with Implications for Global Food Security
Abstract
:1. Impact of Population Growth on Land and Water Resources
2. Rice Production in Food Security
3. Impact of Climate Change on Rice Production
4. Impact of Elevated Carbon Dioxide on Rice
5. Impact of Warmer Air Temperature on Rice
6. Disease Cycle of Rice Blast
7. Strategies to Circumvent Rice Blast for Food Security
Author Contributions
Funding
Conflicts of Interest
References
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar]
- Food and Agriculture Organization (FAO). Legislation on Water Users’ Organization. A Comparative Analysis. Legislative Study 79. 2003. Available online: http://www.fao.org (accessed on 10 April 2019).
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk. 2011. Available online: http://faostat.fao.org (accessed on 10 April 2019).
- Darwin, R.; Tsigas, M.; Lewandrowski, J.; Raneses, A. World Agriculture and Climate Change: Economic Adaptations; Agricultural Economic Report No. 703, USDA: Washington, DC, USA, 2005; p. 86. [Google Scholar]
- FAO. FAOSTAT Database. 2010. Available online: http://faostat.fao.org (accessed on 10 April 2019).
- Emodi, A.I.; Madukwe, M.C. Influence of consumers’ socio-economic characteristics on rice consumption in South East Nigeria. Libyan Agric. Res. Cent. J. Int. 2011, 2, 105–111. [Google Scholar]
- Darsono, N.; Yoon, D.H.; Raju, K. Effects of the sintering conditions on the structural phase evolution and T C of Bi1.6 Pb0.4 Sr2 Ca2 Cu3 O7 prepared using the citrate sol–gel method. J. Supercond. Nov. Magn. 2016, 29, 1491–1497. [Google Scholar]
- Smith, B.D. The Emergence of Agriculture; Scientific American Library: A Division of HPHLP; Diane Pub Co.: New York, NY, USA, 1998; ISBN 0-7167-6030-4. [Google Scholar]
- Byerlee, D.R.; Dawe, D.; Dobermann, A.; Mohanty, S.; Rozelle, S.; Hardy, B. Rice in the Global Economy. Strategic Research and Policy Issues for Food Security; No. 164488; International Rice Research Institute: Los Baños, Philippines, 2010. [Google Scholar]
- Maclean, J.; Hardy, B.; Hettel, G. Rice Almanac: Source Book for One of the Most Important Economic Activities on Earth; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Mohanty, S.; Wassmann, R.; Nelson, A.; Moya, P.; Jagadish, S.V.K. Rice and Climate Change: Significance for Food Security and Vulnerability; International Rice Research Institute: Los Baños, Philippines, 2013; p. 14. [Google Scholar]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [PubMed]
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Statistical Database. Available online: http://www.fao.org (accessed on 10 April 2019).
- Lopez, S.J. TaqMan based real time PCR method for quantitative detection of basmati rice adulteration with non-basmati rice. Eur. Food Res. Technol. 2008, 227, 619–622. [Google Scholar]
- Kari, S.; Korhonen-Kurki, K. Framing local outcomes of biodiversity conservation through ecosystem services: A case study from Ranomafana, Madagascar. Ecosyst. Serv. 2013, 3, 32–39. [Google Scholar] [CrossRef]
- McCouch, S.R.; Wright, M.H.; Tung, C.W.; Maron, L.G.; McNally, K.L.; Fitzgerald, M.; Singh, N.; DeClerck, G.; Agosto-Perez, F.; Korniliev, P.; et al. Open access resources for genome-wide association mapping in rice. Nat. Commun. 2016, 7, 10–532. [Google Scholar]
- Nguyen, N.V. Global Climate Changes and Rice Food Security; FAO: Rome, Italy, 2002. [Google Scholar]
- Indian Institute of Rice Research (IIRR). Annual Progress Report; IIRR: Hyderabad, India, 2005; Volume 3, pp. 133–135. [Google Scholar]
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide; Springer: Berlin/Heidelberg, Germany, 2017; Volume 247. [Google Scholar]
- Sasaki, T.; Burr, B. International rice genome sequencing project: The effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 2000, 3, 138–142. [Google Scholar] [PubMed]
- Thirze, H. Modelling Grain Surplus and Deficit in Cameroon for 2030. Master’s Thesis, Lund University, Lund, Sweden, 2016; p. 59. [Google Scholar]
- Gnanamanickam, S.S. Rice and its importance to human life. In Biological Control of Rice Diseases; Springer: Dordrecht, The Netherlands, 2009; pp. 1–11. [Google Scholar]
- Khush, G.S. Strategies for increasing the yield potential of cereals: The case of rice as an example. Plant Breed. 2013, 132, 433–436. [Google Scholar]
- Zhang, F.; Xie, J. Genes and QTLs Resistant to Biotic and Abiotic Stresses From Wild Rice and Their Applications in Cultivar Improvements, Rice-Germplasm, Genetics and Improvement; Yan, W., Bao, J., Eds.; IntechOpen: Rijeka, Croatia, 2014. [Google Scholar]
- Newton, A.C.; Young, I.M. Temporary partial breakdown of Mloresistance in spring barley by the sudden relief of soil water stress. Plant Pathol. 1996, 45, 973–977. [Google Scholar] [CrossRef]
- Goodman, B.A.; Newton, A.C. Effects of drought stress and its sudden relief on free radical processes in barley. J. Sci. Food Agric. 2005, 85, 47–53. [Google Scholar]
- Bevitori, R.; Ghini, R. Rice blast disease in climate change times. Embrapa Arroze Feijao-Artigo em periodico indexado (ALICE). 2014. Available online: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1022268 (accessed on 8 August 2019).
- Coakley, S.M.; Scherm, H.; Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 1999, 37, 399–426. [Google Scholar] [PubMed]
- Chakraborty, S.; Tiedemann, A.V.; Teng, P.S. Climate change: Potential impact on plant diseases. Environ. Pollut. 2000, 108, 317–326. [Google Scholar] [CrossRef]
- Luck, J.; Spackman, M.; Freeman, A.; Piotr Tre˛ bicki, P.; Griffiths, W.; Finlay, K.; Chakraborty, S. Climate change and diseases of food crops. Plant Pathol. 2011, 60, 113–121. [Google Scholar]
- Agrios, G.N. Introduction to Plant Pathology, 5th ed.; Elsevier Academic Press Publication: San Diego, CA, USA, 2005; pp. 125–170. [Google Scholar]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants. Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar]
- Rosenzweig, C.; Yang, X.B.; Anderson, P.; Epstein, P.; Vicarelli, M. Agriculture: Climate change, crop pests and diseases. In Climte Change Futures: Health Ecological Economic Dimensios; The Center for Health and the Global Environment at Harvard Medical School: Cambridge, MA, USA, 2005; pp. 70–77. [Google Scholar]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security. An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar]
- Zeigler, R.S.; Puckridge, D.W. Improving sustainable productivity in rice-based rainfed lowland systems of South and Southeast Asia. GeoJournal 1995, 35, 307–324. [Google Scholar]
- Kuyek, D. Blast, Biotech and Big Business: Implications of Corporate Strategies on Rice Research in Asia; GRAIN: Barcelona, Spain, 2000. [Google Scholar]
- Kato, H. Rice blast disease. Pestic. Outlook 2001, 12, 23–25. [Google Scholar]
- Talbot, N.J. On the trail of a cereal killer: Exploring the biology of (Magnaporthe grisea). Annu. Rev. Microbiol. 2003, 57, 177–202. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Read, N.D. The genome sequence of the rice blast fungus. Magnaporthe Grisea Nat. 2005, 434, 980. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Jenkinson, J.M.; Holcombe, L.J.; Soanes, D.M.; Veneault-Fourrey, C.; Bhambra, G.K.; Talbot, N.J. The molecular biology of appressorium turgor generation by the rice blast fungus (Magnaporthe grisea). Biochem. Soc. Trans. 2005, 33, 384–388. [Google Scholar] [CrossRef] [PubMed]
- International Plant Protection Convention (IPPC). Detection of Rice Blast Caused by (Magnaporthe grisea) in the Ord River Irrigation Area (ORIA) of Western Australia. Report AUS-2011, 46/1. Available online: https://www.ippc.int/index (accessed on 6 March 2019).
- Wilson, R.A.; Talbot, N.J. Under pressure: Investigating the biology of plant infection by (Magnaporthe oryzae). Nat. Rev. Microbiol. 2009, 7, 185. [Google Scholar] [PubMed]
- Ashkani, S.; Yusop, M.R.; Shabanimofrad, M.; Harun, A.R.; Sahebi, M.; Latif, M.A. Genetic analysis of resistance to rice blast. A study on the inheritance of resistance to the blast disease pathogen in an F3 population of rice. J. Phytopathol. 2015, 163, 300–309. [Google Scholar]
- Sakulkoo, W.; Osés-Ruiz, M.; Oliveira Garcia, E.; Soanes, D.M.; Littlejohn, G.R.; Hacker, C.; Correia, A.; Valent, B.; Talbot, N.J. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 2018, 359, 1399–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musiime, O.; Tenywa, M.M.; Majaliwa, M.J.G.; Lufafa, A.; Nanfumba, D.; Wasige, J.E.; Woomer, P.L.; Kyondha, M. Constraints to rice production in Bugiri District. Afr. Crop Sci. Conf. Proc. 2005, 7, 1495–1499. [Google Scholar]
- Araujo, L.G.D.; Prabhu, A.S.; Freire, A.D.B. Development of blast resistant somaclones of the upland rice cultivar Araguaia. Pesqui. Agropecu. Bras. 2000, 35, 357–367. [Google Scholar] [CrossRef]
- Meybeck, A. Building resilience for adaptation to climate change in the agriculture sector. In Proceedings of the a Joint FAO/OECD workshop, Rome, Italy, 23–24 April 2012. [Google Scholar]
- Laha, G.S.; Singh, R.; Ladhalakshmi, D.; Sunder, S.; Prasad, M.S.; Dagar, C.S.; Babu, V.R. Importance and management of rice diseases: A global perspective. In Rice Production Worldwide; Springer: Cham, Switzerland, 2017; pp. 303–360. [Google Scholar]
- Briggs, S. Functional genomics and the development of new plants. Presented at the Agriculture Biotechnology International Conference, Toronto, ON, Canada, 8 June 2000; pp. 2308–2309. [Google Scholar]
- Rehmani, M.I.A.; Zhang, J.; Li, G.; Ata-Ul-Karim, S.T.; Wang, S.; Kimball, B.A.; Yan, C.; Liu, Z.; Ding, Y. Simulation of future global warming scenarios in rice paddies with an open-field warming facility. Plant Methods 2011, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Shiba, Y.; Nagata, T. The mode of action of tricyclazole in controlling rice blast. Ann. Phytopath. Soc. Jpn. 1981, 47, 662–667. [Google Scholar] [CrossRef]
- Phong, T.K.; Nhung, D.T.T.; Yamazaki, K.; Takagi, K.; Watanabe, H. Behavior of sprayed tricyclazole in rice paddy lysimeters. Chemosphere 2009, 74, 1085–1089. [Google Scholar]
- Suzuki, H. Meteorological factors in the epidemiology of rice blast. Annu. Rev. Phytopathol. 1975, 13, 239–256. [Google Scholar] [CrossRef]
- Yamanaka, I. Forecasting techniques in warm southern Japan based on weather conditions. Ann. Phytopathol. Soc. Jpn. 1965, 31, 278–282. [Google Scholar]
- Shahjahan, A.K.M. Practical Approaches to Rice Blast Management in Tropical Monsoon Ecosystems, with Special Reference. In Rice Blast Disease; International Rice Research Institute: Manila, Philippines; Cambridge University Press: Cambridge, MA, USA, 1994; p. 465. [Google Scholar]
- Lassa, J.A.; Lai, A.Y.H.; Goh, T. Climate extremes: An observation and projection of its impacts on food production in ASEAN. Nat. Hazards 2016, 84, 19–33. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Sea-Level Rise and Storm Surges: A Comparative Analysis of Impacts in Developing Countries; World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2009; p. 4901. [Google Scholar]
- Zou, L.L.; Wei, Y.M. Driving factors for social vulnerability to coastal hazards in Southeast Asia: Results from the meta-analysis. Nat. Hazards 2010, 54, 901–929. [Google Scholar] [CrossRef]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
- Luo, Y.; Teng, P.S.; Fabellar, N.G.; TeBeest, D.O. Risk analysis of yield losses caused by rice leaf blast associated with temperature changes above and below for five Asian countries. Agric. Ecosyst. Environ. 1998, 68, 197–205. [Google Scholar] [CrossRef]
- Ainsworth, E.A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Chang. Biol. 2008, 14, 1642–1650. [Google Scholar] [CrossRef]
- McElrone, A.J.; Reid, C.D.; Hoye, K.A.; Hart, E.; Jackson, R.B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Chang. Biol. 2005, 11, 1828–1836. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ishiguro, K.; Nakajima, T.; Kim, H.Y.; Okada, M.; Kobayashi, K. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology 2006, 96, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Gória, M.M.; Ghini, R.; Bettiol, W. Elevated atmospheric CO2 concentration increases rice blast severity. Trop. Plant Pathol. 2013, 38, 253–257. [Google Scholar]
- Erda, L.; Wei, X.; Hui, J.; Yinlong, X.; Yue, L.; Liping, B.; Liyong, X. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2149–2154. [Google Scholar] [CrossRef]
- Eastburn, D.M.; McElrone, A.J.; Bilgin, D.D. Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol. 2011, 60, 54–69. [Google Scholar] [CrossRef]
- Ghini, R.; Bettiol, W.; Hamada, E. Diseases in tropical and plantation crops as affected by climate changes. Current knowledge and perspectives. Plant Pathol. 2011, 60, 60,122–132. [Google Scholar] [CrossRef]
- World Bank. Bangladesh: Climate Change and Sustainable Development; Report No. 21104, BD; World Bank: Dhaka, Bangladesh, 2000. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress. Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Ziska, L.H.; Manalo, P.A.; Ordonez, R.A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: Growth and yield response of 17 cultivars. J. Exp. Bot. 1996, 47, 1353–1359. [Google Scholar] [CrossRef]
- Ziska, L.H.; Weerakoon, W.; Namuco, O.S.; Pamplona, R. The influence of nitrogen on the elevated CO2 response in field-grown rice. Funct. Plant Biol. 1996, 23, 45–52. [Google Scholar] [CrossRef]
- Matsui, T.; Namuco, O.S.; Ziska, L.H.; Horie, T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop. Res. 1997, 51, 213–219. [Google Scholar] [CrossRef]
- Moya, T.B.; Ziska, L.H.; Namuco, O.S.; Olszyk, D. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Glob. Chang. Biol. 1998, 4, 645–656. [Google Scholar] [CrossRef]
- Sheehy, J.; Elmido, A.; Centeno, G.; Pablico, P. Searching for new plants for climate change. J. Agric. Meteorol. 2005, 60, 463–468. [Google Scholar] [CrossRef]
- Baker, J.F.T.; Allen, L.H.A., Jr.; Boote, K.N.J.; Pickering, N.B. Direct effects of atmospheric carbon dioxide concentration on whole canopy dark respiration of rice. Glob. Chang. Biol. 2000, 6, 275–6286. [Google Scholar] [CrossRef]
- Manning, W.J.; Tiedemann, A.V. Climate change: Potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 1995, 88, 219–245. [Google Scholar] [CrossRef]
- Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 2003, 97, 1–20. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Reich, P.B.; Tilman, D.; Groth, J.V. Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Glob. Chang. Biol. 2003, 9, 438–451. [Google Scholar] [CrossRef]
- Pangga, I.B.; Chakraborty, S.; Yates, D. Canopy size and induced resistance in (Stylosanthes scabra) determine anthracnose severity at high CO2. Phytopathology 2004, 94, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Murray, G.M.; Magarey, P.A.; Yonow, T.; O’Brien, R.G.; Croft, B.J.; Barbetti, M.J.; Sivasithamparam, K.; Old, K.M.; Dudzinski, M.J.; et al. Potential impact of climate change on plant diseases of economic significance to Australia. Australas. Plant Pathol. 1998, 27, 15–35. [Google Scholar] [CrossRef]
- Plessl, M.; Heller, W.; Payer, H.D.; Elstner, E.F.; Habermeyer, J.; Heiser, I. Growth parameters and resistance against (Drechslera teres) of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biol. 2005, 7, 694–705. [Google Scholar] [CrossRef]
- Matros, A.; Amme, S.; Kettig, B.; Buck Sorlin, G.H.; Sonnewald, U.W.E.; Mock, H.P. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environ. 2006, 29, 126–137. [Google Scholar] [CrossRef]
- Prabhu, A.S.; Silva, C.S.; Filippi, M.C. Impacto Potencial das Mudanças Climáticas Sobre as Doenças de Arroz no Brasil. In Mudanças Climáticas: Impactos sobre doenças de plantas no Brasil; Ghini, R., Hamada, E., Eds.; Embrapa Informação Tecnológica: Brasília, DF, Brazil; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2008; pp. 140–158. [Google Scholar]
- Sakamoto, M. On the facilitated infection of the rice blast fungus, Piricularia oryzae Cav. due to the wind. I. Ann. Phytopathol. Soc. Jpn. 1940, 10, 119–126. [Google Scholar] [CrossRef]
- Kumagaya, S.; Goto, Y.; Hori, C.; Matsuoka, M.; Nakano, R. Annual change of silicate absorption and effect of calcium silicate in the rice plant. Rept. Tokushima Agric. Exp. Stn. 1957, 2, 13–14. [Google Scholar]
- Houghton, J.T.; Ding, Y.D.J.G.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change: The Scientific Basis; The Press Syndicate of the University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- Baker, J.T.; Boote, K.J.; Allen, L.H. Potential Climate Change Effects on Rice. Carbon Dioxide and Temperature, Climate Change and Agriculture; Analysis of Potential International Impacts; American Society of Agronomy: Madison, WI, USA, 1995; pp. 31–47. [Google Scholar]
- Saini, H.S.; Aspinall, D. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann. Bot. 1982, 49, 835–846. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop. Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Craufurd, P.Q.; Wheeler, T.R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.K.; Mall, R.K. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim. Chang. 2002, 52, 331–343. [Google Scholar] [CrossRef]
- Shah, F.; Nie, L.; Cui, K.; Shah, T.; Wu, W.; Chen, C.; Zhu, L.; Ali, F.; Fahad, S.; Huang, J. Rice grain yield and component responses to near 200C of warming. Field Crop. Res. 2014, 157, 98–110. [Google Scholar] [CrossRef]
- Rajput, L.S.; Sharma, T.; Madhusudhan, P.; Sinha, P. Effect of temperature on growth and sporulation of rice leaf blast pathogen (Magnoporthe oryzae). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 6394–6401. [Google Scholar]
- Asai, G.N.; Jones, M.W.; Rorie, F.G. Influence of Certain Environmental Factors in the Field on Infection of Rice by Piricularia oryzae; Army Biological Labs: Frederick, MD, USA, 1966. [Google Scholar]
- Luo, Y.; TeBeest, D.O.; Teng, P.S.; Fabellar, N.G. Simulation studies on risk analysis of rice blast epidemics associated with global climate in several Asian countries. J. Biogeogr. 1995, 22, 673–678. [Google Scholar] [CrossRef]
- Greer, C.A.; Webster, R.K. Occurrence, distribution, epidemiology, cultivar reaction, and management of rice blast disease in California. Plant Dis. 2001, 85, 1096–1102. [Google Scholar] [CrossRef]
- Castejón-Muñoz, M. The effect of temperature and relative humidity on the airborne concentration of Pyricularia oryzae spores and the development of rice blast in southern Spain. Span. J. Agric. Res. 2008, 6, 61–69. [Google Scholar] [CrossRef]
- Espinoza, I.G.; Shohara, K. Investigación Relativa a la Ocurrencia de Piricularia en Trigo. (v.2); Centro Tecnológico Agropecuário en: Santa Cruz, Bolívia, 2003. [Google Scholar]
- Ou, S.H. Rice Diseases, 2nd ed.; Common Wealth Mycological Institute: Kew, UK, 1985; p. 380. [Google Scholar]
- Couch, B.C.; Fudal, I.; Lebrun, M.-H.; Tharreau, D.; Valent, B.; van Kim, P.; Notteghem, J.-L.; Kohn, L.M. Origins of host specific populations of the blast pathogen (Magnaporthe oryzae) in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 2005, 170, 613–630. [Google Scholar] [CrossRef]
- Ebbole, D.J. Magnaporthe as a model for understanding host pathogen interactions. Annu. Rev. Phytopathol. 2007, 45, 437–456. [Google Scholar] [CrossRef]
- Pennisi, E. Armed and dangerous. Science 2010, 327, 804–805. [Google Scholar]
- Hamer, J.E.; Howard, R.J.; Chumley, F.G.; Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 1988, 239, 288–290. [Google Scholar] [CrossRef]
- Bourett, T.M.; Howard, R.J. In vitro development of penetration structures in the rice blast fungus (Magnaporthe grisea). Can. J. Bot. 1990, 68, 329–342. [Google Scholar] [CrossRef]
- Veneault-Fourrey, C.; Barooah, M.; Egan, M.; Wakley, G.; Talbot, N.J. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 2006, 312, 580–583. [Google Scholar] [CrossRef]
- Dagdas, Y.F.; Yoshino, K.; Dagdas, G.; Ryder, L.S.; Bielska, E.; Steinberg, G.; Talbot, N.J. Septin-mediated plant cell invasion by the rice blast fungus (Magnaporthe oryzae). Science 2012, 336, 1590–1595. [Google Scholar] [CrossRef]
- Giraldo, M.C.; Dagdas, Y.F.; Gupta, Y.K.; Mentlak, T.A.; Yi, M.; Martinez-Rocha, A.L.; Valent, B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus (Magnaporthe oryzae). Nat. Commun. 2013, 4, 1996. [Google Scholar] [CrossRef]
- Mosquera, G.; Giraldo, M.C.; Khang, C.H.; Coughlan, S.; Valent, B. Interaction transcriptome analysis identifies (Magnaporthe oryzae) BAS1–4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 2009, 21, 1273–1290. [Google Scholar] [CrossRef]
- Khang, C.H.; Berruyer, R.; Giraldo, M.C.; Kankanala, P.; Park, S.Y.; Czymmek, K.; Valent, B. Translocation of (Magnaporthe oryzae) effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 2010, 22, 1388–1403. [Google Scholar] [CrossRef]
- Mochizuki, S.; Minami, E.; Nishizawa, Y. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus. Magnaporthe Oryzae Microbiol. Open 2015, 4, 952–966. [Google Scholar] [CrossRef]
- Sesma, A.; Osbourn, A.E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 2004, 431, 582. [Google Scholar] [CrossRef]
- Fernandez, J.; Wilson, R.A. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus (Magnaporthe oryzae). Mol. Plant Microbe Interact. 2012, 25, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.G.; Dagdas, Y.F.; Talbot, N.J. Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus (Magnaporthe oryzae). Plant Cell. 2010, 22, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- De Jong, J.C.; McCormack, B.J.; Smirnoff, N.; Talbot, N.J. Glycerol generates turgor in rice blast. Nature 1997, 389, 244–245. [Google Scholar] [CrossRef]
- Kankanala, P.; Czymmek, K.; Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 2007, 19, 706–724. [Google Scholar] [CrossRef] [PubMed]
- Patkar, R.N.; Benke, P.I.; Qu, Z.; Chen, Y.Y.C.; Yang, F.; Swarup, S.; Naqvi, N.I. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 2015, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Ryder, L.S.; Dagdas, Y.F.; Mentlak, T.A.; Kershaw, M.J.; Thornton, C.R.; Schuster, M.; Talbot, N.J. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. USA 2013, 110, 3179–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsolver, C.H.; Barkside, T.H.; Marchetti, M.A. Rice Blast Epidemiology: Bulletin of the Pennsylvania Agricultural Experiment Station; No.853; Pennsylvania State College, Agricultural Experiment Station: State College, PA, USA, 1984; pp. 29–40. [Google Scholar]
- Guerber, C.; TeBeest, D.O. Infection of rice seed grown in Arkansas by (Pyricularia grisea) and transmission to seedlings in the field. Plant Dis. 2006, 90, 170–176. [Google Scholar] [CrossRef]
- Raveloson, H.; Ratsimiala Ramonta, I.; Tharreau, D.; Sester, M. Long term survival of blast pathogen in infected rice residues as major source of primary inoculum in high altitude upland ecology. Plant Pathol. 2018, 67, 610–618. [Google Scholar] [CrossRef]
- Lamari, L. Assess: Image Analysis Software for Plant Disease Quantification; St Paul. V.2.0.; The American Phytophatological Society: St. Paul, MN, USA; APS Press: St. Paul, MN, USA, 2009. [Google Scholar]
- Ghatak, A.; Willocquet, L.; Savary, S.; Kumar, J. Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks. A case of pathogen specialization. PLoS ONE 2013, 8, e66180. [Google Scholar] [CrossRef]
- Padmanabhan, S.Y. Studies on forecasting outbreaks of blast disease of rice. Proc. Indian Acad. Sci.-Sect. B 1965, 62, 117–129. [Google Scholar]
- Bonman, J.; Garrity, D. Effects of nitrogen timing and split application on blast disease in upland rice. Plant Dis. 1992, 76, 384–389. [Google Scholar]
- Long, D.H.; Lee, F.N.; TeBeest, D.O. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 2000, 84, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Fukai, S.; Cooper, M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crop. Res. 1995, 40, 67–86. [Google Scholar] [CrossRef]
- Deng, Y.; Zhai, K.; Xie, Z.; Yang, D.; Zhu, X.; Liu, J.; Wang, X.; Qin, P.; Yang, Y.; Zhang, G.; et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 2017, 355, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Somado, E.A.; Guei, R.G.; Keya, S.O. NERICA: The New Rice for Africa. A Compendium; Africa Rice Center (WARDA): Côte d’Ivoire, Abidjan, 2008; pp. 10–14. [Google Scholar]
- Singh, U.; Ritchie, J. Simulating the impact of climate change on crop growth and nutrient dynamics using the CERES-rice model. J. Agric. Meteorol. 1993, 48, 819–822. [Google Scholar] [CrossRef]
- Drenth, H.; Ten Berge, H.F.M.; Riethoven, J.J.M. ORYZA Simulation Modules for Potential and Nitrogen Limited Rice Production; SARP Research Proceedings; IRRI/AB-DLO: Wageningen, The Netherlands, 1994. [Google Scholar]
- Evans, N.; Baierl, A.; Semenov, M.A.; Gladders, P.; Fitt, B.D. Range and severity of a plant disease increased by global warming. J. R. Soc. Interface 2007, 5, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, M.H.; Semenov, M.A.; Barnes, A.; Moran, D.; West, J.S.; Fitt, B.D. North–South divide. Contrasting impacts of climate change on crop yields in Scotland and England. J. R. Soc. Interface 2009, 7, 123–130. [Google Scholar] [CrossRef]
- Fitt, B.D.L.; Fraaije, B.A.; Chandramohan, P.; Shaw, M.W. Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathol. 2011, 60, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.C.; Gravouil, C.; Fountaine, J.M. Managing the ecology of foliar pathogens: Ecological tolerance in crops. Ann. Appl. Biol. 2010, 157, 343–359. [Google Scholar] [CrossRef]
- Kurahashi, Y.; Sakawa, S.; Kimboraund, T.; Kagabu, S. Biological activity of Carpropamid (KTU 3616). A New Fungic. Rice Blast Dis. 1997, 22, 108–112. [Google Scholar] [CrossRef]
- Kato, H.; Kozada, T. Effect of temperature on lesion enlargement and sporulation of (Pyricularia oryzae) in rice leaves. Phytopathology 1974, 64, 828–830. [Google Scholar] [CrossRef]
- Orford, A.; Beard, J. Making the state safe for the market: The World Bank’s World Development Report 1997. Melb. UL Rev. 1998, 22, 195. [Google Scholar]
- World Bank. Comprehensive Development Framework. 1999. Available online: http://www.worldbank.org. (accessed on 8 April 2019).
- Ojha, G.P.; Morin, S.R. Partnership in agricultural extension: Lessons from Chitwan (Nepal). In Agricultural Research and Extension Network; Overseas Development Institute (ODI): London, UK, 2001. [Google Scholar]
- FAO. Global Review of Good Agricultural Extension and Advisory Service Practices. 2008. Available online: http://faostat.fao.org (accessed on 10 April 2019).
- Jeger, M.J.; Pautasso, M. Plant disease and global change: The importance of long term data sets. New Phytol. 2008, 177, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Pangga, I.B.; Hanan, J.; Chakraborty, S. Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathol. 2011, 60, 70–81. [Google Scholar] [CrossRef]
- Suprapta, D.N. Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J. ISSAAS 2012, 18, 1–8. [Google Scholar]
- Martinez, J.A.; Dhanasekaran, D. Natural Fungicides Obtained From Plants, Fungicides for Plant and Animal Diseases. Fungicides for Plant Animal Diseases; InTech: Rijeka, Croatia; Available online: https://www.intechopen.com/books/fungicides-for-plant-and-animal-diseases/natural-fungicides-obtained-from-plants (accessed on 8 April 2019).
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1. [Google Scholar] [CrossRef]
- Law, J.W.F.; Ser, H.L.; Khan, T.M.; Chuah, L.H.; Pusparajah, P.; Chan, K.G.; Goh, B.H.; Lee, L.H. The potential of Streptomyces as biocontrol agents against the rice blast fungus, (Magnaporthe oryzae) (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Valasubramanian, R. Biological Control of Rice Blast with (Pseudomonas fluorescens Migula): Role of Antifungal Antibiotic in Disease Suppression; Universidad de Madras: Chennai, India, 1994. [Google Scholar]
- Rossman, A.Y.; Howard, R.J.; Valent, B. (Pyricularia grisea): The correct name for the rice blast disease fungus. Mycology 1990, 82, 509–512. [Google Scholar]
- Baker, B.; Zambryski, P.; Staskawicz, B.; Dinesh-Kumar, S.P. Signaling in plant-microbe interactions. Science 1997, 276, 726–733. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Bonaldi, M.; Cortesi, P. Sensitivity of nonexposed and exposed populations of (Magnaporthe oryzae) from rice to tricyclazole and azoxystrobin. Plant Dis. 2014, 98, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. Breaking the yield frontier of rice. GeoJournal 1995, 35, 329–332. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems. Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.X.; Chen, X.W.; Wang, Y.P.; Zhu, L.H.; Li, S.G. Genetic transformation of rice with Pi-d2 gene enhances resistance to rice blast fungus Magnaporthe Oryzae. Rice Sci. 2010, 17, 19–27. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Koga, H.; Ono, K.; Shimizu, T.; Ebana, K.; Yano, M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 2009, 325, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, X.; Jia, Y.; Minkenberg, B.; Wheatley, M.; Fan, J.; Valent, B. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun. 2018, 9, 2039. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhu, X.; Shen, Y.; He, Z. Genetic characterization and fine mapping of the blast resistance locus Pigm (t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor. Appl. Genet. 2006, 113, 705–713. [Google Scholar] [CrossRef]
- Hittalmani, S.; Parco, A.; Mew, T.V.; Zeigler, R.S.; Huang, N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor. Appl. Genet. 2000, 100, 1121–1128. [Google Scholar] [CrossRef]
- Mahmuti, M.; West, J.S.; Watts, J.; Gladders, P.; Fitt, B.D. Controlling crop disease contributes to both food security and climate change mitigation. Int. J. Agric. Sustain. 2009, 7, 189–202. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice Blast: A Disease with Implications for Global Food Security. Agronomy 2019, 9, 451. https://doi.org/10.3390/agronomy9080451
Asibi AE, Chai Q, Coulter JA. Rice Blast: A Disease with Implications for Global Food Security. Agronomy. 2019; 9(8):451. https://doi.org/10.3390/agronomy9080451
Chicago/Turabian StyleAsibi, Aziiba Emmanuel, Qiang Chai, and Jeffrey A. Coulter. 2019. "Rice Blast: A Disease with Implications for Global Food Security" Agronomy 9, no. 8: 451. https://doi.org/10.3390/agronomy9080451
APA StyleAsibi, A. E., Chai, Q., & Coulter, J. A. (2019). Rice Blast: A Disease with Implications for Global Food Security. Agronomy, 9(8), 451. https://doi.org/10.3390/agronomy9080451