Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Preparation
2.2. Cell Culture
2.3. Viability Assay
2.4. Immunofluorescence
2.5. Sholl Analysis
2.6. Synapse Quantification
2.7. Calcium Imaging
2.8. Whole Genome Bisulfite Sequencing
2.9. Statistics
3. Results
3.1. “Epilepsy-in-a-Dish”
3.2. Structure Determines Function
3.3. Epigenetic Regulation of Causative Gene Networks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumcke, I.; Spreafico, R.; Haaker, G.; Coras, R.; Kobow, K.; Bien, C.G.; Pfäfflin, M.; Elger, C.; Widman, G.; Schramm, J.; et al. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. N. Engl. J. Med. 2017, 377, 1648–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S. Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: The importance of the "latent period" and other concepts. Epilepsia 2008, 49 (Suppl. 9), 85–92. [Google Scholar] [CrossRef] [PubMed]
- Morrell, F. Secondary epileptogenesis in man. Arch. Neurol. 1985, 42, 318–335. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.O. Emerging insights into the genesis of epilepsy. Nature 1999, 399, A15–A22. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A.; Lukasiuk, K. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav. 2009, 14, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, S.C.; Campbell, S.L.; Haas, B.R.; Montana, V.; Robel, S.; Ogunrinu, T.; Sontheimer, H. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 2011, 17, 1269–1274. [Google Scholar] [CrossRef]
- Magloire, V.; Mercier, M.S.; Kullmann, D.M.; Pavlov, I. GABAergic Interneurons in Seizures: Investigating Causality With Optogenetics. Neuroscientist 2019, 25, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, E.M.; Coulter, D.A. Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 2013, 14, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Blumcke, I.; Schewe, J.C.; Normann, S.; Brustle, O.; Schramm, J.; Elger, C.E.; Wiestler, O.D. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 2001, 11, 311–321. [Google Scholar] [CrossRef]
- Jessberger, S.; Zhao, C.; Toni, N.; Clemenson, G.D., Jr.; Li, Y.; Gage, F.H. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J. Neurosci. 2007, 27, 9400–9407. [Google Scholar] [CrossRef]
- Kim, S.Y.; Buckwalter, M.; Soreq, H.; Vezzani, A.; Kaufer, D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 2012, 53 (Suppl. 6), 37–44. [Google Scholar] [CrossRef] [Green Version]
- Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 2011, 7, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Patel, M. A Metabolic Paradigm for Epilepsy. Epilepsy Curr. 2018, 18, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Debski, K.J.; Pitkanen, A.; Puhakka, N.; Bot, A.M.; Khurana, I.; Harikrishnan, K.N.; Ziemann, M.; Kaspi, A.; El-Osta, A.; Lukasiuk, K.; et al. Etiology matters—Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy. Sci. Rep. 2016, 6, 25668. [Google Scholar] [CrossRef]
- Kobow, K.; Kaspi, A.; Harikrishnan, K.N.; Kiese, K.; Ziemann, M.; Khurana, I.; Fritzsche, I.; Hauke, J.; Hahnen, E.; Coras, R.; et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol. 2013, 126, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Kobow, K.; Jabari, S.; Pieper, T.; Kudernatsch, M.; Polster, T.; Woermann, F.G.; Kalbhenn, T.; Hamer, H.; Rossler, K.; Muhlebner, A.; et al. Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathol. 2020, 140, 881–891. [Google Scholar] [CrossRef]
- Kobow, K.; Ziemann, M.; Kaipananickal, H.; Khurana, I.; Muhlebner, A.; Feucht, M.; Hainfellner, J.A.; Czech, T.; Aronica, E.; Pieper, T.; et al. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia 2019, 60, 1091–1103. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Loscher, W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem. Res. 2017, 42, 1873–1888. [Google Scholar] [CrossRef]
- Holtzman, D.; Obana, K.; Olson, J. Hyperthermia-Induced Seizures in the Rat Pup—a Model for Febrile Convulsions in Children. Science 1981, 213, 1034–1036. [Google Scholar] [CrossRef]
- Dube, C.; Chen, K.; Eghbal-Ahmadi, M.; Brunson, K.; Soltesz, I.; Baram, T.Z. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 2000, 47, 336–344. [Google Scholar] [CrossRef]
- Bergamasco, B.; Benna, P.; Ferrero, P.; Gavinelli, R. Neonatal hypoxia and epileptic risk: A clinical prospective study. Epilepsia 1984, 25, 131–136. [Google Scholar] [CrossRef]
- Chiba, S. Long-term effect of postnatal hypoxia on the seizure susceptibility in rats. Life Sci. 1985, 37, 1597–1604. [Google Scholar] [CrossRef]
- Jensen, F.E.; Wang, C. Hypoxia-induced hyperexcitability in vivo and in vitro in the immature hippocampus. Epilepsy Res. 1996, 26, 131–140. [Google Scholar] [CrossRef]
- Jensen, F.E.; Wang, C.; Stafstrom, C.E.; Liu, Z.; Geary, C.; Stevens, M.C. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia In vivo. J. Neurophysiol. 1998, 79, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Owens, J., Jr.; Robbins, C.A.; Wenzel, H.J.; Schwartzkroin, P.A. Acute and chronic effects of hypoxia on the developing hippocampus. Ann. Neurol. 1997, 41, 187–199. [Google Scholar] [CrossRef]
- Coulter, D.A.; Rafiq, A.; Shumate, M.; Gong, Q.Z.; DeLorenzo, R.J.; Lyeth, B.G. Brain injury-induced enhanced limbic epileptogenesis: Anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res. 1996, 26, 81–91. [Google Scholar] [CrossRef]
- Golarai, G.; Greenwood, A.C.; Feeney, D.M.; Connor, J.A. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J. Neurosci. 2001, 21, 8523–8537. [Google Scholar] [CrossRef]
- McIntosh, T.K.; Vink, R.; Noble, L.; Yamakami, I.; Fernyak, S.; Soares, H.; Faden, A.L. Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 1989, 28, 233–244. [Google Scholar] [CrossRef]
- Anderson, A.E.; Hrachovy, R.A.; Antalffy, B.A.; Armstrong, D.L.; Swann, J.W. A chronic focal epilepsy with mossy fiber sprouting follows recurrent seizures induced by intrahippocampal tetanus toxin injection in infant rats. Neuroscience 1999, 92, 73–82. [Google Scholar] [CrossRef]
- Jefferys, J.G.; Williams, S.F. Physiological and behavioural consequences of seizures induced in the rat by intrahippocampal tetanus toxin. Brain 1987, 110, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Gatherer, M.; Sundstrom, L.E. Loss of hilar somatostatin neurons following tetanus toxin-induced seizures. Acta Neuropathol. 1995, 89, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, D.G. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res. 1996, 725, 11–22. [Google Scholar] [CrossRef]
- Mello, L.E.; Cavalheiro, E.A.; Tan, A.M.; Kupfer, W.R.; Pretorius, J.K.; Babb, T.L.; Finch, D.M. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: Cell loss and mossy fiber sprouting. Epilepsia 1993, 34, 985–995. [Google Scholar] [CrossRef]
- Sutula, T.; Cavazos, J.; Golarai, G. Alteration of long-lasting structural and functional effects of kainic acid in the hippocampus by brief treatment with phenobarbital. J. Neurosci. 1992, 12, 4173–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, J.O.; Constant Byrne, M.; Dasheiff, R.M.; Gregory Fitz, J. The kindling model of epilepsy: A review. Prog. Neurobiol. 1980, 15, 139–159. [Google Scholar] [CrossRef]
- Mckinney, R.A.; Debanne, D.; Gähwiler, B.H.; Thompson, S.M. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy. Nat. Med. 1997, 3, 990–996. [Google Scholar] [CrossRef]
- Costamagna, G.; Andreoli, L.; Corti, S.; Faravelli, I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells 2019, 8, 1438. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.A.; Luithardt, H.H.; Metea, M.R.; Strock, C.J. In Vitro Screening for Seizure Liability Using Microelectrode Array Technology. Toxicol. Sci. 2018, 163, 240–253. [Google Scholar] [CrossRef]
- Giordano, G.; Costa, L.G. Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods Mol. Biol. 2011, 758, 13–27. [Google Scholar]
- Otto, F.; Görtz, P.; Fleischer, W.; Siebler, M. Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays. J. Neurosci. Methods 2003, 128, 173–181. [Google Scholar] [CrossRef]
- Kiese, K.; Jablonski, J.; Hackenbracht, J.; Wrosch, J.K.; Groemer, T.W.; Kornhuber, J.; Blumcke, I.; Kobow, K. Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons. Acta Neuropathol. Commun. 2017, 5, 79. [Google Scholar] [CrossRef] [Green Version]
- Basarsky, T.A.; Parpura, V.; Haydon, P.G. Hippocampal synaptogenesis in cell culture: Developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J. Neurosci. 1994, 14, 6402–6411. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, K.V.; Jain, R.; Saurav, S.; Sikdar, S.K. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur. J. Neurosci. 2007, 25, 3276–3286. [Google Scholar] [CrossRef]
- Ferreira, T.A.; Blackman, A.V.; Oyrer, J.; Jayabal, S.; Chung, A.J.; Watt, A.J.; Sjöström, P.J.; van Meyel, D.J. Neuronal morphometry directly from bitmap images. Nat. Methods 2014, 11, 982–984. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.; Ivenshitz, M.; Amor-Baroukh, V.; Greenberger, V.; Segal, M. Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res. 2008, 1235, 21–30. [Google Scholar] [CrossRef]
- Gnatkovsky, V.; Francione, S.; Cardinale, F.; Mai, R.; Tassi, L.; Lo Russo, G.; de Curtis, M. Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals. Epilepsia 2011, 52, 477–488. [Google Scholar] [CrossRef]
- Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013, 14, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.E.; Murakami, P.; Lee, H.; Leek, J.T.; Fallin, M.D.; Feinberg, A.P.; Irizarry, R.A. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 2012, 41, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Martinowich, K.; Hattori, D.; Wu, H.; Fouse, S.; He, F.; Hu, Y.; Fan, G.; Sun, Y.E. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003, 302, 890–893. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.U.; Ma, D.K.; Mo, H.; Ball, M.P.; Jang, M.H.; Bonaguidi, M.A.; Balazer, J.A.; Eaves, H.L.; Xie, B.; Ford, E.; et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 2011, 14, 1345–1351. [Google Scholar] [CrossRef]
- Blumcke, I.; Zuschratter, W.; Schewe, J.C.; Suter, B.; Lie, A.A.; Riederer, B.M.; Meyer, B.; Schramm, J.; Elger, C.E.; Wiestler, O.D. Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J. Comp. Neurol. 1999, 414, 437–453. [Google Scholar] [CrossRef]
- Miller-Delaney, S.F.; Bryan, K.; Das, S.; McKiernan, R.C.; Bray, I.M.; Reynolds, J.P.; Gwinn, R.; Stallings, R.L.; Henshall, D.C. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 2015, 138, 616–631. [Google Scholar] [CrossRef] [Green Version]
- Miller-Delaney, S.F.; Das, S.; Sano, T.; Jimenez-Mateos, E.M.; Bryan, K.; Buckley, P.G.; Stallings, R.L.; Henshall, D.C. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J. Neurosci. 2012, 32, 1577–1588. [Google Scholar] [CrossRef] [Green Version]
- Williams-Karnesky, R.L.; Sandau, U.S.; Lusardi, T.A.; Lytle, N.K.; Farrell, J.M.; Pritchard, E.M.; Kaplan, D.L.; Boison, D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013, 123, 3552–3563. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Symbol | 5mC | Compartment | Function | Disease Association |
---|---|---|---|---|---|
Collagen XIV a 1 | Col14a1 | ↑ | Extracellular space | ECM component | Epilepsy (FAME) |
Metalloproteinase 13 | Mmp13 | ↑ | ECM component, involved in neuroprotection and neurorepair | Alzheimer’s disease, stroke | |
Neural EGFL Like 1 | Nell1 | ↓ | Growth factor, control of cell growth and differentiation, nervous system development | Neuroblastoma, craniosynostosis | |
Transforming Growth Factor Alpha | Tgfa | ↑ | Growth factor, brain development | Hypothalamic hamartoma | |
Angiomotin Like 1 | Amotl1 | ↓ | Plasma membrane | Controls paracellular permeability and maintains cell polarity, tight junctions | ADHD |
CUB and Sushi Multiple Domains 2 | Csmd2 | ↓ | Synaptic transmembrane protein required for neuronal maturation, regulates the development, and maintenance of dendrites and synapses | Psychiatric disease | |
Catenin Alpha Like 1 | Ctnnal1 | ↓ | Cadherin binding, scaffolding protein | Hirschsprung disease | |
G Protein Subunit Beta 5 | Gnb5 | ↓ | Neuronal signaling | IDD, ADHD | |
Neuronal Membrane Glycoprotein M6B | Gpm6b | ↓ | Neuronal glycoprotein, involved in neuronal differentiation, myelination, maintenance of actin cytoskeleton, role in neuroplasticity | Depression | |
5-Hydroxytryptamine Receptor 6 | Htr6 | ↓ | GPCR, regulates cholinergic neuronal transmission in the brain, binds antidepressants | Alzheimer’s disease, schizophrenia | |
Potassium Voltage-Gated Channel Subfamily H Member 5 | Kcnh5 | ↓ | Outward-rectifying, non-inactivating channel regulating neurotransmitter and hormone release | Epilepsy (EIEE, Otahara Syndrome) | |
Semaphorin 6d | Sema6d | ↑ | Axon pathfinding | ||
Sorbin and SH3 Domain Containing 2 | Sorbs2 | ↓ | Part of the actin cytoskeleton, role in dendritic development, memory, stiffness sensing, and contractile force generation | Intellectual disability | |
Sortilin Related VPS10 Domain Containing Receptor 2 | Sorcs2 | ↓ | Neuropeptide receptor, binds precursor forms of NGF (proNGF) and BDNF (proBDNF), regulation of dendritic spine density, required for normal neurite branching and extension in response to BDNF, mediates BDNF-dependent synaptic plasticity, long-term depression, and long-term potentiation | Huntington’s disease | |
Trafficking Protein Particle Complex 9 | Trappc9 | ↑ | Activator of NF-kappa-B, role in neuronal differentiation | Intellectual disability, MCD | |
WD Repeat Domain 1 | Wdr1 | ↓ | Cofilin cofactor, involved in actin cytoskeletal dynamics, activator of NF-kappa-B, role in neuronal differentiation | Glioblastoma, intellectual disability, MCD | |
BCL2 Apoptosis Regulator | Bcl2 | ↑ | Cytoplasm | Suppresses apoptosis in neural cells | Glioma |
Doublecortin | Dcx | ↑ | Microtubule organization, neuronal migration, brain development | MCD, epilepsy | |
Growth Arrest Specific 7 | Gas7 | ↓ | Expressed primarily in terminally differentiated brain cells, role in neuronal development | ||
G-protein Coupled Receptor 137c | Gpr137c | ↓ | Regulates Rag and mTORC1 localization and activity | ||
Synaptotagmin 7 | Syt7 | ↑ | Ca2+ sensor involved in exocytosis of secretory and synaptic vesicles; short-term synaptic potentiation | Bipolar disorder | |
Synaptotagmin 17 | Syt17 | ↓ | Role in regulating fusion of intracellular vesicles with the plasma membrane, controls neurite outgrowth and synaptic plasticity | ||
Thymosin Beta 10 | Tmsb10 | ↓ | Important role in the organization of the cytoskeleton, binds to and sequesters actin monomers and therefore inhibits actin polymerization | ||
WD Repeat Domain, Phosphoinositide Interacting 1 | Wipi1 | ↓ | Scaffolding protein | Neurodegeneration | |
WW And C2 Domain Containing 1 | Wwc1 | ↓ | Regulator of Hippo signaling, regulates collagen-stimulated activation of the ERK/MAPK cascade, plays a role in cognition and memory performance | Intellectual disability | |
AF4/FMR2 Family Member 1 | Aff1 | ↑ | Nucleus | Transcription factor | Fragile X intellectual disability, ataxia |
AF4/FMR2 Family Member 2 | Aff2 | ↑ | Transcription factor | Fragile X intellectual disability | |
ID Complex Subunit 4 Homolog | Gid4 | ↓ | Mediator complex component, is required for activation of RNA Pol II transcription by DNA-bound transcription factors | Speech delay, intellectual disability, MCD | |
H2A Clustered Histone 21 | H2ac21 | ↑ | Chromatin organization, core component of nucleosome | ||
Nuclear Factor I B | Nfib | ↓ | Transcription factor, essential for proper brain development | Macrocephaly and mental retardation | |
RNA Binding Motif Protein X-Linked | Rbmx | ↑ | Regulates pre-mRNA alternative splice site selection, e.g., for Tau protein | ||
SET Domain Containing 5 | Setd5 | ↑ | Histone-Lysine Methyltransferase, mediates H3K36me3 | Autosomal dominant intellectual disability | |
Small Nuclear Ribonucleoprotein Polypeptide N | Snrpn | ↑ | pre-mRNA processing; may contribute to tissue-specific alternative splicing | Prader–Willi Syndrome | |
SNRPN Upstream Reading Frame | Snurf | ↑ | Prader–Willi Syndrome, Angelman Syndrome | ||
Sterile Alpha Motif Domain Containing 12 | Samd12 | ↓ | DNA-binding molecule of unclear function | FAME | |
TATA-Box Binding Protein Like 2 | Tbpl2 | ↓ | Transcription factor | Rolandic epilepsy | |
R3H Domain Containing 1CUB and Sushi Multiple Domains 2 | R3hdm1Csmd2 | ↓ | Required for neuronal maturation, regulates development and maintenance of dendrites and synapses | Mild intellectual disability, psychiatric disease | |
Willebrand Factor A Domain-Containing Protein 3BR3H Domain Containing 1 | Vwa3bR3hdm1 | ↓ | Other | Role in brain development, involved in apoptotic signaling in neuronal cells. Role in neuron dendritic growth and branching | Spinocerebellar ataxia with intellectual disability, mild intellectual disability |
Willebrand Factor A Domain-Containing Protein 3B | Vwa3b | ↓ | Role in brain development, involved in apoptotic signaling in neuronal cells | Spinocerebellar ataxia with intellectual disability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonski, J.; Hoffmann, L.; Blümcke, I.; Fejtová, A.; Uebe, S.; Ekici, A.B.; Gnatkovsky, V.; Kobow, K. Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study. Cells 2021, 10, 3004. https://doi.org/10.3390/cells10113004
Jablonski J, Hoffmann L, Blümcke I, Fejtová A, Uebe S, Ekici AB, Gnatkovsky V, Kobow K. Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study. Cells. 2021; 10(11):3004. https://doi.org/10.3390/cells10113004
Chicago/Turabian StyleJablonski, Janos, Lucas Hoffmann, Ingmar Blümcke, Anna Fejtová, Steffen Uebe, Arif B. Ekici, Vadym Gnatkovsky, and Katja Kobow. 2021. "Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study" Cells 10, no. 11: 3004. https://doi.org/10.3390/cells10113004
APA StyleJablonski, J., Hoffmann, L., Blümcke, I., Fejtová, A., Uebe, S., Ekici, A. B., Gnatkovsky, V., & Kobow, K. (2021). Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study. Cells, 10(11), 3004. https://doi.org/10.3390/cells10113004