Evidence of Neuroinflammation and Blood–Brain Barrier Disruption in Women with Preeclampsia and Eclampsia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Sample Collection
2.3. Biomarker Assays
2.4. Statistics
2.5. Ethical Permission and Registration Details
3. Results
3.1. Neuroinflammatory Markers
3.2. Albumin Quotient
4. Discussion
4.1. Principal Findings
4.2. Results in Context
4.3. Clinical Implications
4.4. Research Implications
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Duley, L. The Global Impact of Pre-eclampsia and Eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Fishel Bartal, M.; Sibal, B.M. Eclampsia in the 21st century. Am. J. Obstet. Gynecol. 2020. [Google Scholar] [CrossRef]
- Basit, S.; Wohlfahrt, J.; A Boyd, H. Pre-eclampsia and risk of dementia later in life: Nationwide cohort study. BMJ 2018, 363, k4109. [Google Scholar] [CrossRef] [Green Version]
- Nerenberg, K.A.; Park, A.L.; Vigod, S.N.; Saposnik, G.; Berger, H.; Hladunewich, M.A.; Gandhi, S.; Silversides, C.K.; Ray, J.G. Long-term Risk of a Seizure Disorder After Eclampsia. Obstet. Gynecol. 2017, 130, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.D.; Malinowski, A.; Zhou, Q.; Yusuf, S.; Devereaux, P. Cardiovascular sequelae of preeclampsia/eclampsia: A systematic review and meta-analyses. Am. Heart J. 2008, 156, 918–930. [Google Scholar] [CrossRef]
- Altman, D.; Carroli, G.; Duley, L.; Farrell, B.; Moodley, J.; Neilson, J.; Smith, D.; Magpie Trial Collaboration Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: A randomised placebo-controlled trial. Lancet 2002, 359, 1877–1890. [Google Scholar] [CrossRef]
- Euser, A.; Bullinger, L.; Cipolla, M.J. Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats. Exp. Physiol. 2007, 93, 254–261. [Google Scholar] [CrossRef]
- Johnson, A.C.; Tremble, S.M.; Chan, S.-L.; Moseley, J.; Lamarca, B.; Nagle, K.J.; Cipolla, M.J. Magnesium Sulfate Treatment Reverses Seizure Susceptibility and Decreases Neuroinflammation in a Rat Model of Severe Preeclampsia. PLoS ONE 2014, 9, e113670. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, X.; Yang, J.; Bao, J.; Di, X.; Zhang, G.; Liu, H. Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Mol. Neurobiol. 2016, 54, 7938–7948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.W.; Warrington, J.P. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats. Front. Neurosci. 2016, 10, 561. [Google Scholar] [CrossRef]
- Ambugey, O.A.; Chapman, A.C.; May, V.; Bernstein, I.M.; Cipolla, M.J. Plasma from preeclamptic women increases blood-brain barrier permeability: Role of vascular endothelial growth factor signaling. Hypertension 2010, 56, 1003–1008. [Google Scholar]
- Warrington, J.P.; Fan, F.; Murphy, S.R.; Roman, R.J.; Drummond, H.A.; Granger, J.P.; Ryan, M.J. Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability. Physiol. Rep. 2014, 2, e12134. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Oras, J.; Thörn, S.E.; Karlsson, O.; Kälebo, P.; Zetterberg, H.; Blennow, K.; Bergman, L. Signs of neuroaxonal injury in preeclampsia—A case control study. PLoS ONE 2021, 16, e0246786. [Google Scholar] [CrossRef]
- Burwick, R.M.; Togioka, B.M.; Speranza, R.J.; Gaffney, J.E.; Roberts, V.H.; Frias, A.E.; Rincón, M. Assessment of blood-brain barrier integrity and neuroinflammation in preeclampsia. Am. J. Obstet. Gynecol. 2019, 221, 1–8. [Google Scholar] [CrossRef]
- Ciampa, E.; Li, Y.; Dillon, S.; Lecarpentier, E.; Sorabella, L.; Libermann, T.A.; Karumanchi, S.A.; Hess, P.E. Cerebrospinal Fluid Protein Changes in Preeclampsia. Hypertension 2018, 72, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, C.B.; Duvekot, J.J.; Guzel, C.; Hansson, S.R.; de Leeuw, T.G.; Steegers, E.A.P.; Versendaal, J.; Luider, T.M.; Stoop, M.T. Elevated levels of protein AMBP in cerebrospinal fluid of women with preeclampsia compared to normotensive pregnant women. Proteom. Clin. Appl. 2016, 11, 1600082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, L.; Bergman, K.; Langenegger, E.; Moodley, A.; Griffith-Richards, S.; Wikström, J.; Hall, D.; Joubert, L.; Herbst, P.; Schell, S.; et al. PROVE—Pre-Eclampsia Obstetric Adverse Events: Establishment of a Biobank and Database for Pre-Eclampsia. Cells 2021, 10, 959. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, 237–260. [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Tibbling, G.; Link, H.; Ohman, S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand. J. Clin. Lab. Invest. 1977, 37, 385–390. [Google Scholar]
- Clayton, A.M.; Shao, Q.; Paauw, N.D.; Giambrone, A.B.; Granger, J.P.; Warrington, J.P. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav. Immun. 2018, 70, 376–389. [Google Scholar] [CrossRef]
- Bergman, L.; Acurio, J.; Leon, J.; Gatu, E.; Friis, T.; Nelander, M.; Wikström, J.; Larsson, A.; Lara, E.; Aguayo, C.; et al. Preeclampsia and Increased Permeability Over the Blood–Brain Barrier: A Role of Vascular Endothelial Growth Receptor 2. Am. J. Hypertens. 2020, 34, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hegen, H.; Auer, M.; Zeileis, A.; Deisenhammer, F. Upper reference limits for cerebrospinal fluid total protein and albumin quotient based on a large cohort of control patients: Implications for increased clinical specificity. Clin. Chem. Lab. Med. 2016, 54, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Parrado-Fernandez, C.; Blennow, K.; Hansson, M.; Leoni, V.; Cedazo-Minguez, A.; Bjorkhem, I. Evidence for sex difference in the CSF/plasma albumin ratio in ~20 000 patients and 335 healthy volunteers. J. Cell Mol. Med. 2018, 22, 5151–5154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blennow, K.; Fredman, P.; Wallin, A.; Gottfries, C.G.; Karlsson, I.; Långström, G.; Skoog, I.; Svennerholm, L.; Wikkelsö, C. Protein analysis in cerebrospinal fluid. II. Reference values derived from healthy individuals 18-88 years of age. Eur. Neurol. 1993, 33, 129–133. [Google Scholar] [CrossRef]
- Aukes, A.M.; Wessel, I.; Dubois, A.M.; Aarnoudse, J.G.; Zeeman, G.G. Self-reported cognitive functioning in formerly eclamptic women. Am. J. Obstet. Gynecol. 2007, 197, 1–6. [Google Scholar] [CrossRef]
- Rengel, K.F.; Hayhurst, C.J.; Pandharipande, P.; Hughes, C.G. Long-term Cognitive and Functional Impairments After Critical Illness. Anesth. Analg. 2019, 128, 772–780. [Google Scholar] [CrossRef]
- Ling, H.; Hardy, J.; Zetterberg, H. Neurological consequences of traumatic brain injuries in sports. Mol. Cell. Neurosci. 2015, 66, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Stolp, H.B.; Dziegielewska, K.M. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol. Appl. Neurobiol. 2009, 35, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Elharram, M.; Dayan, N.; Kaur, A.; Landry, T.; Pilote, L. Long-Term Cognitive Impairment After Preeclampsia: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2018, 132, 355–364. [Google Scholar] [CrossRef] [PubMed]
Normotensiv Pregnancy | Preeclampsia | Eclampsia | |
---|---|---|---|
n | 7 | 4 | 4 |
At baseline | |||
Maternal age (years) | 30.9 (5.0) | 27.3 (6.4) | 18.3 (4.2) |
Nulliparous (%) | 1 (14) | 2 (50) | 3 (75) |
HIV positive(%) | 1 (14) | 1 (25) | 0 (0) |
Smoking (%) | 1 (14) | 1 (25) | 0 (0) |
Diabetes (%) | 0 (0) | 0 (0) | 0 (0) |
Chronic hypertension (%) | 0 (0) | 2 (50) | 0 (0) |
BMI (kg/m2) | 31.6 (5.7) | 19.8 (2.3) * | 24.6 (4.8) |
After inclusion | |||
GA at delivery (weeks) | 38.4 (0.8) | 33.3 (3.8) | 34.3 (3.6) |
Magnesium sulfate (%) | 0 (0) | 3 (75) | 4 (100) |
Hours before CSF sample | N/A | 3.5 (1.2–25.5) | 23 (12.5–30) |
Mode of delivery (%) | |||
Vaginal delivery | 0 (0) | 0 (0) | 0 (0) |
Elective CS | 7 (100) | 0 (0) | 0 (0) |
Emergency CS | 0 (0) | 4 (100) | 4 (100) |
Liveborn (%) | 7 (100) | 4 (100) | 4 (100) |
Birthweight (g) | 3279.3 (242.7) | 1713.8 (693.9) | 2235.0 (1087.3) |
Maternal complications | |||
Recurrent eclampsia | 0 (0) | 0 (0) | 3 (75) |
Severe hypertension | 0 (0) | 1 (25) | 1 (25) |
Normotensive | Preeclampsia | Eclampsia | |
---|---|---|---|
n | 7 | 4 | 4 |
IL-6 (pg/mL) | 0.54 (0.30–0.76) | 1.13 (0.59–1.90) | 4.23 (1.63–305.00) |
IL-8 (pg/mL | 31.36 (16.66–38.75) | 53.88 (28.10–74.45) | 137.81 (123.43–1150.00) |
TNF-alpha (pg/mL) | 0.17 (0.17–0.30) | 0.20 (0.17–0.28) | 0.40 (0.31–3.72) |
CSF/plasma albumin ratio | 3.15 (2.41–4.05) | 5.21 (2.83–14.79) | 10.42 (8.23–23.17) |
Biomarker | Preeclampsia vs. Normotensive | Eclampsia vs. Normotensive | Eclampsia vs. Preeclampsia |
---|---|---|---|
IL-6 (pg/mL) | 2.11 (1.18–3.85) p = 0.024 | 18.03 (3.17–121.15) p = 0.006 | 8.53 (0.86–521.37) p = 0.057 |
IL-8 (pg/mL) | 1.69 (1.03–2.79) p = 0.036 | 7.76 (3.58–18.75) p = 0.006 | 4.59 (1.66–40.92) p = 0.029 |
TNF-alpha (pg/mL) | 1.16 (0.75–1.58) p = 0.56 | 3.65 (1.53–7.70) p = 0.006 | 3.16 (1.10–22.53) p = 0.029 |
CSF/plasma albumin ratio | 1.86 (1.01–3.65) p = 0.048 | 3.83 (2.33–6.48) p = 0.006 | 2.05 (0.56–8.19) p = 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergman, L.; Hastie, R.; Zetterberg, H.; Blennow, K.; Schell, S.; Langenegger, E.; Moodley, A.; Walker, S.; Tong, S.; Cluver, C. Evidence of Neuroinflammation and Blood–Brain Barrier Disruption in Women with Preeclampsia and Eclampsia. Cells 2021, 10, 3045. https://doi.org/10.3390/cells10113045
Bergman L, Hastie R, Zetterberg H, Blennow K, Schell S, Langenegger E, Moodley A, Walker S, Tong S, Cluver C. Evidence of Neuroinflammation and Blood–Brain Barrier Disruption in Women with Preeclampsia and Eclampsia. Cells. 2021; 10(11):3045. https://doi.org/10.3390/cells10113045
Chicago/Turabian StyleBergman, Lina, Roxanne Hastie, Henrik Zetterberg, Kaj Blennow, Sonja Schell, Eduard Langenegger, Ashley Moodley, Susan Walker, Stephen Tong, and Catherine Cluver. 2021. "Evidence of Neuroinflammation and Blood–Brain Barrier Disruption in Women with Preeclampsia and Eclampsia" Cells 10, no. 11: 3045. https://doi.org/10.3390/cells10113045
APA StyleBergman, L., Hastie, R., Zetterberg, H., Blennow, K., Schell, S., Langenegger, E., Moodley, A., Walker, S., Tong, S., & Cluver, C. (2021). Evidence of Neuroinflammation and Blood–Brain Barrier Disruption in Women with Preeclampsia and Eclampsia. Cells, 10(11), 3045. https://doi.org/10.3390/cells10113045