Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications
Abstract
:1. Introduction
2. Amino Acid Transport and Signaling: Proline-Preferring Systems and Systems N, Gly, and B0,+
2.1. Proline-Preferring Systems
2.2. System N
2.3. System Gly
2.4. System B0,+
3. Amino Acid Transport and Signaling Sometimes Includes Metabolism: Systems L, b0,+, and b+ or y+
3.1. System L
3.2. System b0,+
3.3. System b+ or y+
4. Regulation through Amino Acid Signaling and Metabolism but Apparently Not Involving/Requiring Amino Acid Transporters in the Apical Membrane of the Trophectoderm
4.1. Threonine and Serine in the Inner Cell Mass
4.1.1. The Glycine Cleavage System (GCS) Is Also Needed to Maintain ES Cells
4.1.2. mES Cells Require Thr Catabolism for Specific Histone Modifications
4.1.3. Why Doesn’t TDH Knockout Block Mouse Blastocyst Development?
4.1.4. Clinical Implications of Altered Epigenetic Histone and DNA Modifications
4.1.5. Future Generations Likely Experience Effects from DNA and Histones Modified during the Development of Their Ancestors
4.2. Conversion of Lys to Glutamate in ICM Cells
4.2.1. How Is Lys Converted to Glu in hES Cells?
4.2.2. Function of Metabolically Produced Glu in ICM Cells
4.2.3. What Are the Possible Clinical Consequences of Lys Deficiencies Owing to LPDs?
5. Summary
6. Conclusions
6.1. Evolutionary Considerations
6.2. Several Ways to Foster the Development of Cleavage-Stage Embryos in the Hyperosmotic Oviductal Fluid
6.3. Redundant Mechanisms to Insure the Development of Trophoblast Motility and Implantation
6.4. Multiple Mechanisms to Maintain Pluripotent ICM Cells
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Winkle, L.J.; Ryznar, R. One-carbon metabolism regulates embryonic stem cell fate through epigenetic DNA and histone modifications: Implications for transgenerational metabolic disorders in adults. Front. Cell Dev. Biol. 2019, 7, 300. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.B.; Ozsoy, S.; Zada, M.; Zada, M.; Zamfirescu, R.C.; Todorova, M.G.; Day, M.L. Selected amino acids promote mouse pre-implantation embryo development in a growth factor-like manner. Front. Physiol. 2020, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J. Perspective: One-cell and cleavage-stage mouse embryos thrive in hyperosmotic oviductal fluid through expression of a glycine neurotransmitter transporter and a glycine-gated chloride channel: Clinical and transgenerational implications. Front. Physiol. 2020, 11, 1706. [Google Scholar] [CrossRef] [PubMed]
- Tscherner, A.K.; Macaulay, A.D.; Ortman, C.S.; Baltz, J.M. Initiation of cell volume regulation and unique cell volume regulatory mechanisms in mammalian oocytes and embryos. J. Cell. Physiol. 2021, 236, 7117–7133. [Google Scholar] [CrossRef]
- Nishizono, H.; Darwish, M.; Endo, T.A.; Uno, K.; Abe, H.; Yasuda, R. Glycine receptor α4 subunit facilitates the early embryonic development in mice. Reproduction 2020, 159, 41. [Google Scholar] [CrossRef] [PubMed]
- González, I.M.; Martin, P.M.; Burdsal, C.; Sloan, J.L.; Mager, S.; Harris, T.; Sutherland, A.E. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev. Biol. 2012, 361, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.M.; Sutherland, A.E.; Van Winkle, L.J. Amino acid transport regulates blastocyst implantation. Biol. Reprod. 2003, 69, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, L.J.; Tesch, J.K.; Shah, A.; Campione, A.L. System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood. Hum. Reprod. Update 2006, 12, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Winkle, L.J.; Ryznar, R. Can uterine secretion of modified histones alter blastocyst implantation, embryo nutrition, and transgenerational phenotype? Biomol. Concepts 2018, 9, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J. Amino acid transport in developing animal oocytes and early conceptuses. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1988, 947, 173–208. [Google Scholar] [CrossRef]
- Prather, R.S.; Peters, M.S.; Van Winkle, L.J. Alanine and leucine transport in unfertilized pig oocytes and early blastocysts. Mol. Reprod. Dev. 1993, 34, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.P.; Van Winkle, L.J.; Díaz de la Garza, R.I.; Dubrovsky, J.G. Interkingdom comparison of threonine metabolism for stem cell maintenance in plants and animals. Front. Cell Dev. Biol. Stem Cell Res. 2021, in press. [Google Scholar] [CrossRef]
- Treleaven, T.; Hardy, M.L.; Guttman-Jones, M.; Morris, M.B.; Day, M.L. In Vitro Fertilization of Mouse Oocytes in L-Proline and L-Pipecolic Acid Improves Subsequent Development. Cells 2021, 10, 1352. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Haghighat, N.; Campione, A.L.; Gorman, J.M. Glycine transport in mouse eggs ad preimplantation conceptuses. Biochim. Biophys. Acta (BBA)-Biomembr. 1988, 941, 241–256. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Haghighat, N.; Campione, A.L. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 1990, 253, 215–219. [Google Scholar] [CrossRef]
- Sun, H.; Kang, J.; Su, J.; Zhang, J.; Zhang, L.; Liu, X.; Zhang, J.; Wang, F.; Lu, Z.; Xing, X.; et al. Methionine adenosyltransferase 2A regulates mouse zygotic genome activation and morula to blastocyst transition. Biol. Reprod. 2019, 100, 601–617. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Campione, A.L.; Gorman, J.M.; Weimer, B.D. Changes in the activities of amino acid transport systems b0,+ and L during development of preimplantation mouse conceptuses. Biochim. Biophys. Acta (BBA)-Biomembr. 1990, 1021, 77–84. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Campione, A.L. Functional changes in cation-preferring amino acid transport during development of preimplantation mouse conceptuses. Biochim. Biophys. Acta (BBA)-Biomembr. 1990, 1028, 165–173. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Ryznar, R. Amino acid transporters: Roles for nutrition, signaling and epigenetic modifications in embryonic stem cells and their progenitors. eLS 2019, 1–13. [Google Scholar] [CrossRef]
- Formisano, T.M.; Van Winkle, L.J. At least three transporters likely mediate threonine uptake needed for mouse embryonic stem cell proliferation. Front. Cell Dev. Biol. 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Alexander, P.; Wu, L.; Hammer, R.; Cleaver, O.; McKnight, S.L. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009, 325, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.M.; Han, H.J. L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J. Biol. Chem. 2011, 286, 23667–23678. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, L.J.; Galat, V.; Iannaccone, P.M. Threonine appears to be essential for proliferation of human as well as mouse embryonic stem cells. Front. Cell Dev. Biol. 2014, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, L.J.; Galat, V.; Iannaccone, P.M. Lysine Deprivation during Maternal Consumption of Low-Protein Diets Could Adversely Affect Early Embryo Development and Health in Adulthood. Int. J. Environ. Res. Public Health 2020, 17, 5462. [Google Scholar] [CrossRef]
- Shiraki, N.; Shiraki, Y.; Tsuyama, T.; Obata, F.; Miura, M.; Nagae, G.; Aburatani, H.; Kume, K.; Endo, F.; Kume, S. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 2014, 19, 780–794. [Google Scholar] [CrossRef] [Green Version]
- Chatot, C.L.; Ziomek, C.A.; Bavister, B.D.; Lewis, J.L.; Torres, I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. Reproduction 1989, 86, 679–688. [Google Scholar] [CrossRef]
- Erbach, G.T.; Lawitts, J.A.; Papaioannou, V.E.; Biggers, J.D. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod. 1994, 50, 1027–1033. [Google Scholar] [CrossRef]
- Lane, M.; Gardner, D.K. Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J. Assist. Reprod. Genet. 1997, 14, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.M.; Wang, Y.; Mathieu, J.; Margaretha, L.; Song, C.; Jones, D.C.; Cavanaugh, C.; Miklas, J.W.; Mahen, E.; Showalter, M.R.; et al. Metabolic control over mTOR-dependent diapause-like state. Dev. Cell 2020, 52, 236–250. [Google Scholar] [CrossRef]
- Van der Weijden, V.A.; Bulut-Karslioglu, A. Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Front. Cell Dev. Biol. 2021, 9, 708318. [Google Scholar] [CrossRef]
- Lane, M.; Hooper, K.; Gardner, D.K. Animal experimentation: Effect of essential amino acids on mouse embryo viability and ammonium production. J. Assist. Reprod. Genet. 2001, 18, 519–525. [Google Scholar] [CrossRef]
- Biggers, J.D.; McGinnis, L.K.; Lawitts, J.A. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod. Biomed. Online 2004, 9, 59–69. [Google Scholar] [CrossRef]
- Roblero, L.; Biggers, J.D.; Lechene, C.P. Electron probe microanalysis of the elemental microenvironment of oviducal cleavage stages of the mouse. J. Reprod. Fert. 1976, 46, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Borland, R.M.; Hazra, S.; Biggers, J.D.; Lechene, C.P. The elemental composition of the environments of the gametes and preimplantation embryo during the initiation of pregnancy. Biol. Reprod. 1977, 16, 147–157. [Google Scholar] [CrossRef]
- Leese, H.J.; McKeegan, P.; Sturmey, R.G. Amino acids and the early mammalian embryo: Origin, fate, function and life-long legacy. Int. J. Environ. Res. Public Health 2021, 18, 9874. [Google Scholar] [CrossRef]
- Van Winkle, L.J. Amino acid transport regulation and early embryo development. Biol. Reprod. 2001, 64, 1–12. [Google Scholar] [CrossRef]
- Capra, E.; Lange-Consiglio, A. The Biological Function of Extracellular Vesicles during Fertilization, Early Embryo—Maternal Crosstalk and Their Involvement in Reproduction: Review and Overview. Biomolecules 2020, 10, 1510. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Christensen, H.N.; Campione, A.L. Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J. Biol. Chem. 1985, 260, 12118–12123. [Google Scholar] [CrossRef]
- Van Winkle, L.J. Uterine histone secretion likely fosters early embryo development so efforts to mitigate histone cytotoxicity should be cautious. Front. Cell Dev. Biol. 2017, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Nangami, G.; Koumangoye, R.; Goodwin, J.S.; Sakwe, A.M.; Marshall, D.; Higginbotham, J.; Ochieng, J. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp. Cell Res. 2014, 328, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998, 281, 1191–1193. [Google Scholar] [CrossRef]
- Baban, B.; Chandler, P.; McCool, D.; Marshall, B.; Munn, D.H.; Mellor, A.L. Indoleamine 2, 3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 2004, 61, 67–77. [Google Scholar] [CrossRef]
- To, C.Y.; Freeman, M.; Van Winkle, L.J. Consumption of a Branched-Chain Amino Acid (BCAA) during Days 2–10 of Pregnancy Causes Abnormal Fetal and Placental Growth: Implications for BCAA Supplementation in Humans. Int. J. Environ. Res. Public Health 2020, 17, 2445. [Google Scholar] [CrossRef] [Green Version]
- Caetano, L.; Eckert, J.; Johnston, D.; Chatelet, D.; Tumbarello, D.; Smyth, N.; Ingamells, S.; Price, A.; Fleming, T. Blastocyst trophectoderm endocytic activation, a marker of adverse developmental programming. Reproduction 2021, in press. [Google Scholar] [CrossRef]
- Eckert, J.J.; Porter, R.; Watkins, A.J.; Burt, E.; Brooks, S.; Leese, H.J.; Humpherson, P.G.; Cameron, I.T.; Fleming, T.P. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE 2012, 7, e52791. [Google Scholar] [CrossRef] [Green Version]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J.; et al. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef]
- Fleming, T.P.; Sun, C.; Denisenko, O.; Caetano, L.; Aljahdali, A.; Gould, J.M.; Khurana, P. Environmental Exposures around Conception: Developmental Pathways Leading to Lifetime Disease Risk. Int. J. Environ. Res. Public Health 2021, 18, 9380. [Google Scholar] [CrossRef]
- Jansova, D.; Koncicka, M.; Tetkova, A.; Cerna, R.; Malik, R.; Del Llano, E.; Kubelka, M.; Susor, A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 2017, 16, 927–939. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Campione, A.L.; Gorman, J.M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J. Biol. Chem. 1988, 263, 3150–3163. [Google Scholar] [CrossRef]
- Feliubadaló, L.; Arbonés, M.L.; Mañas, S.; Chillarón, J.; Visa, J.; Rodés, M.; Rousaud, F.; Zorzano, A.; Palacín, M.; Nunes, V. Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum. Mol. Genet. 2003, 12, 2097–2108. [Google Scholar] [CrossRef] [Green Version]
- Redel, B.K.; Tessanne, K.J.; Spate, L.D.; Murphy, C.N.; Prather, R.S. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod. Fertil. Dev. 2015, 27, 655–666. [Google Scholar] [CrossRef] [Green Version]
- White, M.F.; Gazzola, G.C.; Christensen, H.N. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. J. Biol. Chem. 1982, 257, 4443–4449. [Google Scholar] [CrossRef]
- White, M.F.; Christensen, H.N. Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines. J. Biol. Chem. 1982, 257, 4450–4457. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Finley, K.D.; Kakuda, D.K. y+-type cationic amino acid transport: Expression and regulation of the mCAT genes. J. Exp. Biol. 1994, 196, 109–121. [Google Scholar] [CrossRef]
- Terstappen, F.; Tol, A.J.; Gremmels, H.; Wever, K.E.; Paauw, N.D.; Joles, J.A.; van der Beek, E.M.; Lely, A.T. Prenatal amino acid supplementation to improve fetal growth: A systematic review and meta-analysis. Nutrients 2020, 12, 2535. [Google Scholar] [CrossRef]
- Hussain, T.; Bie Tan, G.M.; Metwally, E.; Yang, H.; Kalhoro, M.S.; Kalhoro, D.H.; Chughtai, M.I.; Yin, Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front. Pharmacol. 2020, 11, 586979. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, F.; Fan, X.; Yang, W.; Zhou, B.; Li, P.; Yin, Y.; Wu, G.; Wang, J. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J. Nutr. 2008, 138, 1421–1425. [Google Scholar] [CrossRef] [Green Version]
- Sprague Dawley® SD® Outbred Rats. Available online: envigo.com (accessed on 5 November 2021).
- Stapleton, P.; Hill, D.C. The effect of maternal dietary lysine and methionine levels on pregnancy and lactation in the rat. Nutr. Rep. Int. 1980, 21, 231–242. [Google Scholar]
- Funk, D.N.; Worthington-Roberts, B.; Fantel, A. Impact of supplemental lysine or tryptophan on pregnancy course and outcome in rats. Nutr. Res. 1991, 11, 501–512. [Google Scholar] [CrossRef]
- Najafzadeh, V.; Henderson, H.; Martinus, R.D.; Oback, B. Bovine blastocyst development depends on threonine catabolism. bioRxiv 2018. [Google Scholar] [CrossRef]
- Han, C.; Gu, H.; Wang, J.; Lu, W.; Mei, Y.; Wu, M. Regulation of l-threonine dehydrogenase in somatic cell reprogramming. Stem Cells 2013, 31, 953–965. [Google Scholar] [CrossRef]
- Shyh-Chang, N.; Locasale, J.W.; Lyssiotis, C.A.; Zheng, Y.; Teo, R.Y.; Ratanasirintrawoot, S.; Zhang, J.; Onder, T.; Unternaehrer, J.J.; Zhu, H.; et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013, 339, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Feng, J.; Cao, Y.; Shen, S.; Cai, Y.; Yang, D.; Yan, R.; Wang, L.; Zhang, H.; Zhong, X.; et al. Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of senescence and epigenetic modifications. Life Sci. Alliance 2019, 2, e201900413. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.L. Flow of cells from polar to mural trophectoderm is polarized in the mouse blastocyst. Hum. Reprod. 2000, 15, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, L.J.; Dickinson, H.R. Differences in amino acid content of preimplantation mouse embryos that develop in vitro versus in vivo: In vitro effects of five amino acids that are abundant in oviductal secretions. Biol. Reprod. 1995, 52, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Velazquez, M.A.; Marfy-Smith, S.; Sheth, B.; Cox, A.; Johnston, D.A.; Smyth, N.; Fleming, T.P. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 2014, 141, 1140–1150. [Google Scholar] [CrossRef] [Green Version]
- Najafzadeh, V. The Role of Amino Acids and the Threonine-SAM Pathway in the Development of Bovine Inner Cell Mass and Pluripotency. Ph.D. Dissertation, The University of Waikato, Hillcrest, Hamilton, 2018. [Google Scholar]
- Edgar, A.J. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet. 2002, 3, 1–13. [Google Scholar] [CrossRef]
- Kang, P.J.; Zheng, J.; Lee, G.; Son, D.; Kim, I.Y.; Song, G.; Park, G.; You, S. Glycine decarboxylase regulates the maintenance and induction of pluripotency via metabolic control. Metab. Eng. 2019, 53, 35–47. [Google Scholar] [CrossRef]
- Ang, Y.S.; Tsai, S.Y.; Lee, D.F.; Monk, J.; Su, J.; Ratnakumar, K.; Ding, J.; Ge, Y.; Darr, H.; Chang, B.; et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011, 145, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Kilberg, M.S.; Terada, N.; Shan, J. Influence of amino acid metabolism on embryonic stem cell function and differentiation. Adv. Nutr. 2016, 7, 780S–789S. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, J. A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2019; Volume 57, pp. 72–78. [Google Scholar]
- Spyrou, J.; Gardner, D.K.; Harvey, A.J. Metabolism is a key regulator of induced pluripotent stem cell reprogramming. Stem Cells Int. 2019, 2019, 7360121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Khvorostov, I.; Hong, J.S.; Oktay, Y.; Vergnes, L.; Nuebel, E.; Wahjudi, P.N.; Setoguchi, K.; Wang, G.; Do, A.; et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30, 4860–4873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarty, R.P.; Chandel, N.S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 2021, 28, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Wanet, A.; Arnould, T.; Najimi, M.; Renard, P. Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev. 2015, 24, 1957–1971. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.G.; Gardner, D.K.; Harvey, A.J. Pluripotent stem cell metabolism and mitochondria: Beyond ATP. Stem Cells Int. 2017, 2017, 2874283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, D.C. Mitochondrial heterogeneity: Evaluating mitochondrial subpopulation dynamics in stem cells. Stem Cells Int. 2017, 2017, 7068567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotti, M.; Stella, L.; Shearer, E.J.; Stover, P.J. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.J. Mitochondria in early development: Linking the microenvironment, metabolism and the epigenome. Reproduction 2019, 157, R159–R179. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.B. Requirement of a High-Flux Metabolic State for Mouse Embryonic Stem Cell Self-Renewal. Ph.D. Dissertation, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA, 2010. [Google Scholar]
- Alexander, P.B.; Wang, J.; McKnight, S.L. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc. Natl. Acad. Sci. USA 2011, 108, 15828–15833. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhu, P.; Yan, L.; Li, R.; Hu, B.; Lian, Y.; Yan, J.; Ren, X.; Lin, S.; Li, J.; et al. The DNA methylation landscape of human early embryos. Nature 2014, 511, 606–610. [Google Scholar] [CrossRef]
- Torrens, C.; Poston, L.; Hanson, M.A. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br. J. Nutr. 2008, 100, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, L.A.; Tran, M.; Moritz, K.M.; Jefferies, A.J.; Wlodek, M.E. Pregnancy in aged rats that were born small: Cardiorenal and metabolic adaptations and second-generation fetal growth. FASEB J. 2012, 26, 4337–4347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, J.S.; Thouas, G.A.; Harvey, A.J.; Sheedy, J.R.; Hannan, N.J.; Gardner, D.K.; Wlodek, M.E. Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development. Reproduction 2015, 149, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, N.; Jia, D.; Geary-Joo, C.; Wu, X.; Ferguson-Smith, A.C.; Fung, E.; Bieda, M.C.; Snyder, F.F.; Gravel, R.A.; Cross, J.C.; et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 2013, 155, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, A.J.; Dias, I.; Tsuro, H.; Allen, D.; Emes, R.D.; Moreton, J.; Wilson, R.; Ingram, R.J.; Sinclair, K.D. Paternal diet programs offspring health through sperm-and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10064–10069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, K.Y.; Glode, L.M.; Green, S.; Duncan, M.W. A comprehensive characterization of the peptide and protein constituents of human seminal fluid. Prostate 2004, 61, 171–181. [Google Scholar] [CrossRef]
- Miller, D.; Brinkworth, M.; Iles, D. Paternal DNA packaging in spermatozoa: More than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010, 139, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.J. The epic journey of sperm through the female reproductive tract. Animal 2018, 12, s110–s120. [Google Scholar] [CrossRef] [Green Version]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Patti, M.E. Paternal nongenetic intergenerational transmission of metabolic disease risk. Curr. Diabetes Rep. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Papes, F.; Surpili, M.J.; Langone, F.; Trigo, J.R.; Arruda, P. The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Lett. 2001, 488, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Sacksteder, K.A.; Biery, B.J.; Morrell, J.C.; Goodman, B.K.; Geisbrecht, B.V.; Cox, R.P.; Gould, S.J.; Geraghty, M.T. Identification of the α-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am. J. Hum. Genet. 2000, 66, 1736–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, L.M.; Mathis, D.; Poms, M.; Plecko, B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J. Inherit. Metab. Dis. 2019, 42, 620–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.; Maussion, G.; Jefri, M.; Peng, H.; Theroux, J.F.; Silveira, H.; Soubannier, V.; Wu, H.; Hu, P.; Galat, E.; et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 2018, 11, 183–196. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.C. The glutamate-glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res. 2007, 85, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, I.; Spinsanti, P.; Porcellini, A.; Desiderati, F.; De Vita, T.; Storto, M.; Capobianco, L.; Battaglia, G.; Nicoletti, F.; Melchiorri, D. Endogenous activation of mGlu5 metabotropic glutamate receptors supports self-renewal of cultured mouse embryonic stem cells. Neuropharmacology 2005, 49, 196–205. [Google Scholar] [CrossRef]
- Spinsanti, P.; De Vita, T.; Di Castro, S.; Storto, M.; Formisano, P.; Nicoletti, F.; Melchiorri, D. Endogenously activated mGlu5 metabotropic glutamate receptors sustain the increase in c-Myc expression induced by leukaemia inhibitory factor in cultured mouse embryonic stem cells. J. Neurochem. 2006, 99, 299–307. [Google Scholar] [CrossRef]
- Kaye, P.L.; Schultz, G.A.; Johnson, M.H.; Pratt, H.P.; Church, R.B. Amino acid transport and exchange in preimplantation mouse embryos. Reproduction 1982, 65, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Galili, G. New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Biol. 2002, 53, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Zamfirescu, R.C.; Day, M.L.; Morris, M.B. mTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am. J. Physiol. -Cell Physiol. 2021, 320, C30–C44. [Google Scholar] [CrossRef]
- Carey, B.W.; Finley, L.W.; Cross, J.R.; Allis, C.D.; Thompson, C.B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015, 518, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comes, S.; Gagliardi, M.; Laprano, N.; Fico, A.; Cimmino, A.; Palamidessi, A.; De Cesare, D.; De Falco, S.; Angelini, C.; Scita, G.; et al. L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep. 2013, 1, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopichandran, N.; Leese, H.J. Metabolic characterization of the bovine blastocyst, inner cell mass, trophectoderm and blastocoel fluid. Reproduction 2003, 126, 299–308. [Google Scholar] [CrossRef] [PubMed]
Transporter/System | Preferred Amino Acids | Effect [References] | Mechanism |
---|---|---|---|
Cleavage-stage embryos | |||
Proline-preferring | Proline | Blastocyst formation [2,13] | mTOR1, Akt, ERK signaling |
System N | Glutamine | Blastocyst formation [2,4] | Growth factor-like; Osmolyte |
System Gly | Glycine | Blastocyst formation [3,4,14,15] | Osmolyte in hypertonic oviductal fluid |
System B0,+ | Branched chain/Benzenoid | Oocyte nutrition in ungulates (e.g., pig) [11] | Amino acid uptake |
System L | Bulky side chain | Blastocyst formation [16] | Methionine uptake |
System b0,+ | Arginine | Embryo nutrition [17] | Amino acid uptake/exchange |
System b+ | Arginine | Embryo nutrition [18] | Arginine uptake |
Blastocysts | |||
System B0,+ | Branched chain/Benzenoid | Development of trophoblast motility; Suppression of invading blastocyst rejection [6,7,8] | Leucine uptake initiates mTOR1 signaling; Tryptophan removal suppresses T-cells |
System b0,+ | Arginine | Development of trophoblast motility [6,7,8] | mTOR1, nitric oxide, polyamine signaling |
System b+ | Arginine | Development of trophoblast motility [6,7,8] | mTOR1, nitric oxide, polyamine signaling |
ASCT1/2 | Threonine 1 | ICM cell pluripotency [19,20,21,22,23] | Transceptor; 2 Formation of H3K4me3 |
Lysine-preferring | Lysine 1 | ICM cell proliferation [24,25] | Glutamate formation |
CAT Expression in: | Ki (Km) Values (Mean +/− SEM, mM) 1 |
---|---|
Arginine Lysine | |
Fibroblasts (y+) | 0.041 ± 0.002 n.s. 0.040 ± 0.004 |
Hepatoma cells (y+) | 0.20 ± 0.04 n.s. 0.14 ± 0.01 |
Xenopus oocytes (CAT2) | 0.19 ± 0.03 n.s. 0.20 ± 0.03 |
One-cell embryos (b+1) | 0.13 ± 0.04 ** 1.25 ± 0.18 |
Blastocysts (b+2) | 0.084 ± 0.021 ** 8.10 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Winkle, L.J. Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications. Cells 2021, 10, 3154. https://doi.org/10.3390/cells10113154
Van Winkle LJ. Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications. Cells. 2021; 10(11):3154. https://doi.org/10.3390/cells10113154
Chicago/Turabian StyleVan Winkle, Lon J. 2021. "Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications" Cells 10, no. 11: 3154. https://doi.org/10.3390/cells10113154
APA StyleVan Winkle, L. J. (2021). Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications. Cells, 10(11), 3154. https://doi.org/10.3390/cells10113154