Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Myocardial Infarction Model
2.2. Tissue Collection and RNA Extraction
2.3. Microarray Gene Expression Analysis
2.4. Compilation of Transcriptomic Data
2.5. Molecular Characterization of Pathology
2.6. Therapeutic Performance Mapping System (TPMS) Generation of Mathematical Models
2.7. Analyzing and Solving the Mathematical Models
2.8. Biomarker Identification
2.9. Generating A Molecular Model of Cardiac Remodeling
2.10. Data Integration
3. Results
3.1. High-Dimensional Data Integration of Microarray Gene Expression during 6 Weeks of MI Progression
3.2. Time-Dependent Identification of MI-Derived Biomarkers Strongly Related to Cardiac Remodeling
3.3. Description of the Molecular Mechanistic Relationships Defining MI Evolution
3.4. Identification of Key Proteins Driving Post-MI Alterations
3.5. Unraveling the Molecular Mechanism of Action Relating the Source Proteins to Cardiac Remodeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fishbein, M.C.; Maclean, D.; Maroko, P.R. The Histopathologic Evolution of Myocardial Infarction. Chest 1978, 73, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, Y.; Jaffe, A.S. Type 2 Myocardial Infarction: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1846–1860. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Nasir, K.; Blaha, M.J. Myocardial Infarction as a Clinical End Point in Research. Circ. Res. 2019, 124, 1701–1703. [Google Scholar] [CrossRef]
- Berezin, A.E.; Berezin, A.A. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Dis. Markers 2020, 2020, 1215802. [Google Scholar] [CrossRef]
- Van der Bijl, P.; Abou, R.; Goedemans, L.; Gersh, B.J.; Holmes, D.R., Jr.; Marsan, N.A.; Delgado, V.; Bax, J.J. Left ventricular remodelling after ST-segment elevation myocardial infarction: Sex differences and prognosis. ESC Heart Fail. 2020, 7, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, M.A.; Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990, 81, 1161–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, M.G.S.J.; Sharpe, N. Left Ventricular Remodeling After Myocardial Infarction. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Jenča, D.; Melenovský, V.; Stehlik, J.; Staněk, V.; Kettner, J.; Kautzner, J.; Adámková, V.; Wohlfahrt, P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2020, 8, 222–237. [Google Scholar] [CrossRef]
- Mudd, J.O.; Kass, D.A. Tackling heart failure in the twenty-first century. Nature 2008, 451, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Stanton, L.W.; Garrard, L.J.; Damm, D.; Garrick, B.L.; Lam, A.; Kapoun, A.M.; Zheng, Q.; Protter, A.A.; Schreiner, G.F.; White, R.T. Altered Patterns of Gene Expression in Response to Myocardial Infarction. Circ. Res. 2000, 86, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Harpster, M.H.; Bandyopadhyay, S.; Thomas, D.P.; Ivanov, P.S.; Keele, J.A.; Pineguina, N.; Gao, B.; Amarendran, V.; Gomelsky, M.; McCormick, R.J.; et al. Earliest changes in the left ventricular transcriptome post-myocardial infarction. Mamm. Genome 2006, 17, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Witt, H.; Schubert, C.; Jaekel, J.; Fliegner, D.; Penkalla, A.; Tiemann, K.; Stypmann, J.; Roepcke, S.; Brokat, S.; Mahmoodzadeh, S.; et al. Sex-specific pathways in early cardiac response to pressure overload in mice. J. Mol. Med. 2008, 86, 1013–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, A. From ‘differential expression’ to ‘differential networking’—Identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010, 26, 326–333. [Google Scholar] [CrossRef]
- Ruiz-Villalba, A.; Romero, J.P.; Hernandez, S.C.; Vilas-Zornoza, A.; Fortelny, N.; Castro-Labrador, L.; Martin-Uriz, P.S.; Lorenzo-Vivas, E.; García-Olloqui, P.; Palacios, M.; et al. Single-Cell RNA-seq Analysis Reveals a Crucial Role for Collagen Triple Helix Repeat Containing 1 (CTHRC1) Cardiac Fibroblasts after Myocardial Infarction. Circulation 2020, 142, 1831–1847. [Google Scholar] [CrossRef] [PubMed]
- Van Heesch, S.; Witte, F.; Schneider-Lunitz, V.; Schulz, J.F.; Adami, E.; Faber, A.B.; Kirchner, M.; Maatz, H.; Blachut, S.; Sandmann, C.-L.; et al. The Translational Landscape of the Human Heart. Cell 2019, 178, 242–260.e29. [Google Scholar] [CrossRef] [Green Version]
- León, P.; Wang, J.; Huertas-Vazquez, A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front. Cardiovasc. Med. 2019, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Prat-Vidal, C.; Gálvez-Montón, C.; Nonell, L.; Puigdecanet, E.; Astier, L.; Solé, F.; Bayes-Genis, A. Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine. PLoS ONE 2013, 8, e54785. [Google Scholar] [CrossRef]
- Anaxomics Biotech SL. TPMS Technology. Available online: http://www.anaxomics.com/ourtechnology/tpms/#tpms. (accessed on 8 February 2019).
- Gálvez-Montón, C.; Prat-Vidal, C.; Roura, S.; Farré, J.; Soler-Botija, C.; Llucià-Valldeperas, A.; Díaz-Güemes, I.; Sánchez-Margallo, F.M.; Arís, A.; Bayes-Genis, A. Transposition of a pericardial-derived vascular adipose flap for myocardial salvage after infarct. Cardiovasc. Res. 2011, 91, 659–667. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Sonnhammer, E.L.; Östlund, G. InParanoid 8: Orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 2015, 43, D234–D239. [Google Scholar] [CrossRef]
- Edfors, F.; Danielsson, F.; Hallström, B.M.; Käll, L.; Lundberg, E.; Pontén, F.; Forsström, B.; Uhlén, M. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016, 12, 883. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical And Powerful Approach To Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wright, S.P. Adjusted P-Values for Simultaneous Inference. Biometrics 1992, 48, 1005. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2006; ISBN 978-1-4939-3843-8. [Google Scholar]
- Emitrea, C.; Etaghavi, Z.; Ebokanizad, B.; Ehanoudi, S.; Etagett, R.; Edonato, M.; Evoichita, C.; Edraghici, S. Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol. 2013, 4, 278. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Tripathi, S.; Pohl, M.; Zhou, Y.; Rodriguez-Frandsen, A.; Wang, G.; Stein, D.A.; Moulton, H.M.; DeJesus, P.; Che, J.; Mulder, L.C.; et al. Meta- and Orthogonal Integration of Influenza “OMICs” Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 2015, 18, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- De Kleijn, D.P.V.; Chong, S.Y.; Wang, X.; Yatim, S.M.J.M.; Fairhurst, A.-M.; Vernooij, F.; Zharkova, O.; Chan, Y.Y.M.; Foo, R.; Timmers, L.; et al. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 2019, 115, 1791–1803. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, B.A.; Kramer, C.M. Mechanisms of postinfarct left ventricular remodeling. Drug Discov. Today Dis. Mech. 2007, 4, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalera, M.; Frangogiannis, N.G. Targeting the chemokines in cardiac repair. Curr. Pharm. Des. 2014, 20, 1971–1979. [Google Scholar] [CrossRef] [Green Version]
- Madhusoodanan, J. Matrix mimics shape cell studies. Nature 2019, 566, 563–565. [Google Scholar] [CrossRef] [PubMed]
Protein Localization | C6 | C30 | C45 | R6 | R30 | R45 |
---|---|---|---|---|---|---|
# of proteins mechanistically related to cardiac remodeling | 3302 | 3267 | 2930 | 83 | 77 | 13 |
Protein Information | Identification Method | Identified as Classifier | Secreted | Related to MI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
UniProt | Protein Name | C6 | C30 | C45 | R6 | R30 | R45 | |||
P27487 | DPP4 | Models, models/HT | 1 | 1 | 1 | − | 1 | 1 | 1 | 1 |
Q6R327 | RICTR | Models | 1 | 1 | 1 | − | − | 1 | 0 | 1 |
Q15759 | MK11 | Models | 1 | 1 | 1 | − | − | − | 1 | 1 |
P53778 | MK12 | Models, models/HT, HT/models | 1 | − | 1 | 1 | 1 | − | 1 | 1 |
P07585 | PGS2 | Models | − | 1 | 1 | 1 | − | 1 | 1 | 1 |
O75676 | KS6A4 | Models | − | 1 | 1 | 1 | − | − | 1 | 0 |
Q9UKL0 | RCOR1 | Models | − | − | 1 | 1 | 1 | − | 1 | 0 |
C6 | Uniprot | Protein Name | Generalization Capability | Accuracy | Type of Results | Secreted a | Related to MI b |
---|---|---|---|---|---|---|---|
Combination 1 | P19838 | NFKB1 | 100% | 100% | Models/HT | ✓ | ✓ |
O14641 | DVL2 | ✓ | × | ||||
Q06187 | BTK | ✓ | × | ||||
P01100 | FOS | ✓ | ✓ | ||||
P61981 | 1433G | ✓ | × | ||||
Combination 2 | P53778 | MAPK12 | 100% | 100% | Models/HT | ✓ | ✓ |
Q9Y243 | AKT3 | ✓ | ✓ | ||||
P28482 | MAPK01 | ✓ | ✓ | ||||
P19838 | NFKB1 | ✓ | ✓ | ||||
P45984 | MAPK09 | ✓ | ✓ | ||||
C30 | |||||||
Combination 1 | P62942 | FKB1A | 100% | 100% | Models/HT | ✓ | ✓ |
Q14790 | CASP8 | ✓ | ✓ | ||||
Combination 2 | P62942 | FKB1A | 100% | 100% | Models/HT | ✓ | ✓ |
P30559 | OXYR | ✓ | ✓ | ||||
C45 | |||||||
Combination 1 | P27487 | DPP4 | 100% | 100% | Models/HT | ✓ | ✓ |
O75330 | HMMR | ✓ | ✓ | ||||
P03952 | KLKB1 | ||||||
P07203 | GPX1 | ||||||
P31645 | SLC6A4 | ||||||
Combination 2 | P62942 | FKB1A | 100% | 100% | Models/HT | ✓ | ✓ |
P03952 | KLKB1 | ✓ | ✓ |
Time-Points of Protein Expression in the Core MI Area | C6 | C30 | C45 |
---|---|---|---|
Proteins available for analysis a | 1182 | 1150 | 1033 |
Maximum % of proteins explained by other differential proteins b | 49% | 48% | 48% |
Number of source proteins c | 16 | 18 | 11 |
% of explainable proteins explained by triggering proteins d | 92% | 93% | 89% |
Entry Name | UniProt Code | Log Ratio C6 | Log Ratio C30 | Log Ratio C45 |
---|---|---|---|---|
TNFA | P01375 | - | - | - |
RAF1 | P04049 | −0.69 | −0.90 | −0.71 |
P53 | P04637 | 0.82 | 0.84 | - |
JUN | P05412 | −1.49 | −1.46 | −1.36 |
IGF1R | P08069 | −1.61 | −0.993 | −1.54 |
THB | P10828 | −1.59 | −2.30 | −1.44 |
KPCA9 | P17252 | 2.61 | 2.30 | 1.79 |
SLC9A1 | P19634 | - | −0.56 | - |
MAPK03 | P27361 | 0.60 | 0.84 | - |
MAPK01 | P28482 | - | - | −0.78 |
MTOR | P42345 | −0.57 | −0.7 | −0.59 |
TSC2 | P49815 | - | - | 0.75 |
MMP14 | P50281 | 1.32 | 1.74 | 1.40 |
RPS6KA3 | P51812 | - | - | −0.49 |
PTNP11 | Q06124 | 0.86 | 0.58 | 0.64 |
RPS6KA2 | Q15349 | - | - | - |
RPS6KA1 | Q15418 | - | - | - |
BAD | Q92934 | 0.90 | 1.07 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iborra-Egea, O.; Gálvez-Montón, C.; Prat-Vidal, C.; Roura, S.; Soler-Botija, C.; Revuelta-López, E.; Ferrer-Curriu, G.; Segú-Vergés, C.; Mellado-Bergillos, A.; Gomez-Puchades, P.; et al. Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells 2021, 10, 3268. https://doi.org/10.3390/cells10123268
Iborra-Egea O, Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Revuelta-López E, Ferrer-Curriu G, Segú-Vergés C, Mellado-Bergillos A, Gomez-Puchades P, et al. Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells. 2021; 10(12):3268. https://doi.org/10.3390/cells10123268
Chicago/Turabian StyleIborra-Egea, Oriol, Carolina Gálvez-Montón, Cristina Prat-Vidal, Santiago Roura, Carolina Soler-Botija, Elena Revuelta-López, Gemma Ferrer-Curriu, Cristina Segú-Vergés, Araceli Mellado-Bergillos, Pol Gomez-Puchades, and et al. 2021. "Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction" Cells 10, no. 12: 3268. https://doi.org/10.3390/cells10123268
APA StyleIborra-Egea, O., Gálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., Revuelta-López, E., Ferrer-Curriu, G., Segú-Vergés, C., Mellado-Bergillos, A., Gomez-Puchades, P., Gastelurrutia, P., & Bayes-Genis, A. (2021). Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. Cells, 10(12), 3268. https://doi.org/10.3390/cells10123268