Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Cell Preparation and Imaging
2.3. Pre-Processing Technique
2.4. Framework for Deep-Learning-Based Classification
2.5. Implementation Details
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cross, S.E.; Jin, Y.S.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780–783. [Google Scholar] [CrossRef]
- Guo, X.; Bonin, K.; Scarpinato, K.; Guthold, M. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells. New J. Phys. 2014, 16, 105002. [Google Scholar] [CrossRef] [Green Version]
- Rother, J.; Nöding, H.; Mey, I.; Janshoff, A. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol. 2014, 4, 140046. [Google Scholar] [CrossRef] [PubMed]
- Mittelman, L.; Levin, S.; Verschueren, H.; Debaetselier, P.; Korenstein, R. Direct correlation between cell membrane fluctuations, cell filterability and the metastatic potential of lymphoid cell lines. Biochem. Biophys. Res. Commun. 1994, 203, 899–906. [Google Scholar] [CrossRef]
- Alcaraz, J.; Buscemi, L.; Grabulosa, M.; Trepat, X.; Fabry, B.; Farré, R.; Navajas, D. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 2003, 84, 2071–2079. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Mezencev, R.; Kim, B.; Wang, L.; McDonald, J.; Sulchek, T. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 2012, 7, e46609. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2003, 2, 715–725. [Google Scholar] [CrossRef]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 2007, 55, 3989–4014. [Google Scholar] [CrossRef] [Green Version]
- Girshovitz, P.; Shaked, N.T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed. Opt. Express 2012, 3, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
- Balberg, M.; Levi, M.; Kalinowski, K.; Barnea, I.; Mirsky, S.K.; Shaked, N.T. Localized measurements of physical parameters within human sperm cells obtained with wide-field interferometry. J. Biophotonics 2017, 10, 1305–1314. [Google Scholar] [CrossRef]
- Kamlund, S.; Janicke, B.; Alm, K.; Judson-Torres, R.L.; Oredsson, S. Quantifying the rate, degree, and heterogeneity of morphological change during an epithelial to mesenchymal transition using digital holographic cytometry. Appl. Sci. 2020, 10, 4726. [Google Scholar] [CrossRef]
- Roitshtain, D.; Wolbromsky, L.; Bal, E.; Greenspan, H.; Satterwhite, L.L.; Shaked, N.T. Quantitative phase microscopy spatial signatures of cancer cells. Cytom. Part A 2017, 91, 482–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Best, C.A.; Badizadegan, K.; Dasari, R.R.; Feld, M.S.; Kuriabova, T.; Henle, M.L.; Levine, A.J.; Popescu, G. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA 2010, 107, 6731–6736. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Polanco, E.R.; Patananan, A.N.; Zangle, T.A.; Teitell, M.A. Cell viscoelasticity is linked to fluctuations in cell biomass distributions. Sci. Rep. 2020, 10, 7403. [Google Scholar] [CrossRef] [PubMed]
- Bishitz, Y.; Gabai, H.; Girshovitz, P.; Shaked, N.T. Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry. J. Biophotonics 2014, 7, 624–630. [Google Scholar] [CrossRef]
- Eldridge, W.J.; Steelman, Z.A.; Loomis, B.; Wax, A. Optical phase measurements of disorder strength link microstructure to cell stiffness. Biophys. J. 2017, 112, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, W.J.; Ceballos, S.; Shah, T.; Park, H.S.; Steelman, Z.A.; Zauscher, S.; Wax, A. Shear modulus measurement by quantitative phase imaging and correlation with atomic force microscopy. Biophys. J. 2019, 117, 696–705. [Google Scholar] [CrossRef]
- Lam, V.; Nguyen, T.; Bu, V.; Chung, B.M.; Chang, L.C.; Nehmetallah, G.; Raub, C. Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging. J. Biomed. Opt. 2020, 25, 026002. [Google Scholar] [CrossRef]
- Rubin, M.; Stein, O.; Turko, N.A.; Nygate, Y.; Roitshtain, D.; Karako, L.; Barnea, I.; Giryes, R.; Shaked, N.T. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set. Med. Image Anal. 2019, 57, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Rotman-Nativ, N.; Shaked, N.T. Live cancer cell classification based on quantitative phase spatial fluctuations and deep learning with a small training set. Front. Phys. 2021, (in press). [Google Scholar]
- O’Connor, T.; Anand, A.; Andemariam, B.; Javidi, B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomed. Opt. Express 2020, 11, 4491–4508. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; He, Y.R.; Deng, Y.H.; Oh, C.; Sobh, N.; Valera, E.; Bashir, R.; Ismail, N.; Kong, H.; Nguyen, T.H.; et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light Sci. Appl. 2021, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [Google Scholar]
- Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv 2014, arXiv:1406.2199. [Google Scholar]
- Russo, M.A.; Filonenko, A.; Jo, K.H. Sports classification in sequential frames using CNN and RNN. In Proceedings of the IEEE International Conference on Information and Communication Technology Robotics (ICT-ROBOT), Busan, Korea, 6–8 September 2018; pp. 1–3. [Google Scholar]
- Bhaduri, B.; Pham, H.; Mir, M.; Popescu, G. Diffraction phase microscopy with white light. Opt. Lett. 2012, 37, 1094–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozes, G.; Ben Baruch, S.; Rotman-Nativ, N.; Roitshtain, D.; Shaked, N.T.; Greenspan, H. Deep learning analysis on raw image data–case study on holographic cell analysis. In Medical Imaging 2021: Computer-Aided Diagnosis; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11597, p. 1159723. [Google Scholar]
- Dardikman-Yoffe, G.; Roitshtain, D.; Mirsky, S.K.; Turko, N.A.; Habaza, M.; Shaked, N.T. PhUn-Net: Ready-to-use neural network for unwrapping quantitative phase images of biological cells. Biomed. Opt. Express 2020, 11, 1107–1121. [Google Scholar] [CrossRef]
- Popescu, G.; Park, Y.; Dasari, R.R.; Badizadegan, K.; Feld, M.S. Coherence properties of red blood cell membrane motions. Phys. Rev. E 2007, 76, 031902. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Serte, S.; Serener, A.; Al-Turjman, F. Deep learning in medical imaging: A brief review. Trans. Emerg. Tel. Tech. 2020, e4080. [Google Scholar] [CrossRef]
- Ramachandram, D.; Taylor, G.W. Deep multimodal learning: A survey on recent advances and trends. IEEE Signal Process. Mag. 2017, 34, 96–108. [Google Scholar] [CrossRef]
- Roitshtain, D.; Turko, N.A.; Javidi, B.; Shaked, N.T. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. Opt. Lett. 2016, 41, 2354–2357. [Google Scholar] [CrossRef]
- Nativ, A.; Shaked, N.T. Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination. Opt. Lett. 2017, 42, 1492–1495. [Google Scholar] [CrossRef] [Green Version]
- Nissim, N.; Dudaie, M.; Barnea, I.; Shaked, N.T. Real-time stain-free classification of cancer cells and blood cells using inteferometric phase microscopy and machine learning. Cytom. A 2021, 99, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Dudaie, M.; Nissim, N.; Barnea, I.; Gerling, T.; Duschl, C.; Kirschbaum, M.; Shaked, N.T. Label-free discrimination and selection of cancer cells from blood during flow using holography-induced dielectrophoresis. J. Biophotonics 2020, 13, e202000151. [Google Scholar] [CrossRef] [PubMed]
Model | Input | Accuracy % | Sensitivity % | Specificity % | Precision % | AUC % |
---|---|---|---|---|---|---|
Single | Morphology | |||||
Fluctuations | ||||||
2 Channels | ||||||
Double | Morphology + Fluc. | |||||
Morphology + 2 Ch. | ||||||
Triple | Morphology + Fluc. + 2 Channels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Baruch, S.; Rotman-Nativ, N.; Baram, A.; Greenspan, H.; Shaked, N.T. Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations. Cells 2021, 10, 3353. https://doi.org/10.3390/cells10123353
Ben Baruch S, Rotman-Nativ N, Baram A, Greenspan H, Shaked NT. Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations. Cells. 2021; 10(12):3353. https://doi.org/10.3390/cells10123353
Chicago/Turabian StyleBen Baruch, Shani, Noa Rotman-Nativ, Alon Baram, Hayit Greenspan, and Natan T. Shaked. 2021. "Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations" Cells 10, no. 12: 3353. https://doi.org/10.3390/cells10123353
APA StyleBen Baruch, S., Rotman-Nativ, N., Baram, A., Greenspan, H., & Shaked, N. T. (2021). Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations. Cells, 10(12), 3353. https://doi.org/10.3390/cells10123353