Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Fungal Strains and Culture Conditions
2.3. Pathogen Inoculation
2.4. Measurement of TeA Content
2.5. Pathogenicity and Cell Death Assays
2.6. Chlorophyll a Fluorescence Imaging
2.7. Scanning Electron Microscopy (SEM)
2.8. Light Microscopy
2.9. ROS Burst Detection
2.10. Statistical Analysis
3. Results and Discussion
3.1. TeA Deficiency Decreased the Pathogenicity of A. alternata in A. adenophora Leaves
3.2. TeA Played a Crucial Role in A. alternata Infection Process of A. adenophora Leaves
3.3. TeA-Triggered ROS Production Is an Early Event in A. adenophora Infection by A. alternata
3.4. Endogenous AAL-Toxin and Bentazone Facilitated A. adenophora Infection by A. alternata Mutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliver, R.P.; Ipcho, S.V.S. Arabidopsis pathology breathes new life into the necrotrophs vs biotrophs classification of fungal pathogens. Mol. Plant Pathol. 2004, 5, 347–352. [Google Scholar] [CrossRef]
- Howlett, B.J. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr. Opin. Plant Biol. 2006, 9, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Möbius, N.; Hertweck, C. Fungal phytotoxins as mediators of virulence. Curr. Opin. Plant Biol. 2009, 12, 390–398. [Google Scholar] [CrossRef]
- Faris, J.D.; Friesen, T.L. Plant genes hijacked by necrotrophic fungal pathogens. Curr. Opin. Plant Biol. 2020, 56, 74–80. [Google Scholar] [CrossRef]
- Oliver, R.P.; Solomon, P.S. New developments in pathogenicity and virulence of necrotrophs. Curr. Opin. Plant Biol. 2010, 13, 415–419. [Google Scholar] [CrossRef]
- Mengiste, T. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 2012, 50, 267–294. [Google Scholar] [CrossRef]
- Lawrence, C.B.; Mitchell, T.K.; Craven, K.D.; Cho, Y.R.; Cramer, R.A., Jr.; Kim, K.H. At death’s door: Alternaria pathogenicity mechanisms. Plant Phathol. J. 2008, 24, 101–111. [Google Scholar] [CrossRef]
- Chung, K.R. Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica 2012, 635431. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, N.; Visconti, A. Alternaria metabolites-chemical and biological data. In Alternaria Biology, Plant Diseases and Metabolites; Chelkowski, J., Visconti, A., Eds.; Elsevier Science: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1992; pp. 449–541. [Google Scholar]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Meena, M.; Samal, S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef]
- Nishimura, S.; Kohmoto, K. Host-specific toxins and chemical structures from Alternaria species. Annu. Rev. Phytopathol. 1983, 21, 87–116. [Google Scholar] [CrossRef]
- Tsuge, T.; Harimoto, Y.; Akimitsu, K.; Ohtani, K.; Kodama, M.; Akagi, Y.; Egusa, M.; Yamamoto, M.; Otani, H. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 2013, 37, 44–66. [Google Scholar] [CrossRef]
- Qiang, S. On the Potential of Alternaria alternata as a Mycoherbicide for Crofton Weed. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 1998. [Google Scholar]
- Qiang, S.; Wan, Z.; Dong, Y.; Li, Y. Phytotoxicity of metabolites of Alternaria alternata to croften weed. In Sustainable Weed Management towards the 21 Century in China; Sun, D.C., Ed.; Guangxi Nationality Press: Nanning, China, 1999; pp. 158–165. [Google Scholar]
- An, C. On Potential of Metabolite of Alternaria alternata as Bio-Source Herbicide. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2003. [Google Scholar]
- Rosett, T.; Sankhala, R.H.; Stickings, C.E.; Taylor, M.E.; Thomas, R. Studies in the biochemistry of micro-organisms. Metabolites of Alternaria tenuis auct: Culture filtrate products. Biochem. J. 1957, 67, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.G.; Qiang, S. Recent advances in tenuazonic acid as a potential herbicide. Pestic. Biochem. Physiol. 2017, 143, 252–257. [Google Scholar] [CrossRef]
- Chen, S.G.; Xu, X.M.; Dai, X.B.; Yang, C.L.; Qiang, S. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 2007, 1767, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.G.; Kang, Y.; Zhang, M.; Wang, X.X.; Strasser, R.J.; Zhou, B.; Qiang, S. Differential sensitivity to the potential bioherbicide tenuazonic acid probed by the JIP-test based on fast chlorophyll fluorescence kinetics. Environ. Exp. Bot. 2015, 112, 1–15. [Google Scholar] [CrossRef]
- Qiang, S.; Dong, Y.F.; An, C.F.; Zhou, B.; Zhu, Y.Z.; Chen, S.G.; Dai, X.B.; Dai, B.J.; Cai, J.G. Biological Control of Weed Using Tenuazonic Acid and Iso-Tenuazonic Acid as Well as Their Salts. China Patent ZL200510038263.2, 22 October 2008. [Google Scholar]
- Chen, S.G.; Yin, C.Y.; Qiang, S.; Zhou, F.Y.; Dai, X.B. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng. Biochim. Biophys. Acta 2010, 1797, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.G.; Kim, C.; Lee, J.M.; Lee, H.A.; Fei, Z.J.; Wang, L.S.; Apel, K. Blocking the QB-binding site of photosystem II by tenuazonic acid, a non-host-specific toxin of Alternaria alternata, activates singlet oxygen-mediated and EXECUTER-dependent signaling in Arabidopsis. Plant Cell Environ. 2015, 38, 1069–1080. [Google Scholar] [CrossRef]
- Kang, Y.; Feng, H.W.; Zhang, J.X.; Chen, S.G.; Valverde, B.E.; Qiang, S. TeA is a key virulence factor for Alternaria alternata (Fr.) Keissler infection of its host. Plant Physiol. Biochem. 2017, 115, 73–82. [Google Scholar] [CrossRef]
- Oviedo, M.S.; Ramirez, M.L.; Barros, G.G.; Chulze, S.N. Effect of environmental factors on tenuazonic acid production by Alternaria alternata on soybean-based media. J. Appl. Microbiol. 2009, 107, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Wang, S.; Chen, J.G.; Jones, A.M.; Fedoroff, N.V. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 2005, 17, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Becker, Y.; Green, K.; Scott, B. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol. 2016, 211, 240–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, E.; Slusarenko, A. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 1990, 2, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Shiotani, H.; Yamamoto, M.; Tsuge, T. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol. Plant Microbe 1999, 12, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.D.; Johnson, L.; Itoh, Y.; Kodama, M.; Otani, H.; Kahmoto, K. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol. Plant Microbe 2000, 13, 742–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Tanaka, T.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol. Microbiol. 2004, 52, 399–411. [Google Scholar] [CrossRef]
- Spassieva, S.D.; Markham, J.E.; Hille, J. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J. 2002, 32, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Kahmann, R.; Basse, C. Fungal gene expression during pathogenesis related development and host plant colonization. Curr. Opin. Microbiol. 2001, 4, 374–380. [Google Scholar] [CrossRef]
- Gudesblat, G.E.; Torres, P.S.; Vojnov, A.A. Stomata and pathogens: Warfare at the gates. Plant Signal. Behav. 2009, 4, 1114–1116. [Google Scholar] [CrossRef]
- Pochon, S.; Terrasson, E.; Guillemette, T.; Iacomi-Vasilescu, B.; Georgeault, S.; Juchaux, M.; Berruyer, R.; Debeaujon, I.; Simoneau, P.; Campion, C. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods 2012, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- van Kan, J.A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006, 11, 247–253. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Förster, B.; Osmond, C.B.; Pogson, B.J. Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations in Chlamydomonas. Biochim. Biophys. Acta 2005, 1709, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Mellersh, D.G.; Foulds, I.V.; Higgins, V.J.; Heath, M.C. H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 2002, 29, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Bonfig, K.B.; Schreiber, U.; Gabler, A.; Roitsch, T.; Berger, S. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 2006, 225, 1–12. [Google Scholar] [CrossRef] [PubMed]
- von Tiedemann, A.V. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 1997, 50, 151–166. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Bostock, R.M.; Gilchrist, D.G. Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 1996, 8, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Mase, K.; Mizuno, T.; Ishihama, N.; Fujii, T.; Mori, H.; Kodama, M.; Yoshioka, H. Ethylene signaling pathway and MAPK cascades are required for AAL Toxin-induced programmed cell death. Mol. Plant Microbe. 2012, 25, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimbal, C.I.; Yerkes, C.N.; Weston, L.A.; Weller, S.C. Herbicidal activity and site of action of the natural product sorgoleone. Pestic. Biochem. Phys. 1996, 54, 73–83. [Google Scholar] [CrossRef]
- Chen, S.G.; Yin, C.Y.; Strasser, R.J.; Govindjee; Yang, C.L.; Qiang, S. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 2012, 52, 38–51. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Zhang, M.; Gao, L.; Yang, Q.; Kalaji, H.M.; Qiang, S.; Strasser, R.J.; Chen, S. Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora. Cells 2021, 10, 1010. https://doi.org/10.3390/cells10051010
Shi J, Zhang M, Gao L, Yang Q, Kalaji HM, Qiang S, Strasser RJ, Chen S. Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora. Cells. 2021; 10(5):1010. https://doi.org/10.3390/cells10051010
Chicago/Turabian StyleShi, Jiale, Min Zhang, Liwen Gao, Qian Yang, Hazem M. Kalaji, Sheng Qiang, Reto Jörg Strasser, and Shiguo Chen. 2021. "Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora" Cells 10, no. 5: 1010. https://doi.org/10.3390/cells10051010
APA StyleShi, J., Zhang, M., Gao, L., Yang, Q., Kalaji, H. M., Qiang, S., Strasser, R. J., & Chen, S. (2021). Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora. Cells, 10(5), 1010. https://doi.org/10.3390/cells10051010