Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Conventional Echocardiography for Assessment of LV Function
2.3. RNA Extraction and Quality Assessments
2.4. Analysis of miRNAs and mRNAs by Microarray
2.5. Microarray Data Analysis
2.6. Reverse Transcription and Quantitative Real-Time PCR (RT-qPCR) of miRNA
2.7. Overrepresentation and Pathway Analysis
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Correlation Analysis of miRNA and mRNA between EA Patients and Controls
3.3. Differential Abundance Analysis between EA Patients and Controls
3.4. Differential Abundance Analysis between EA Patients and Controls
3.5. Validation of Candidate miRNAs and mRNA Targets by RT-qPCR
3.6. Integrative Analysis Identified miRNA-mRNA Interaction Network for EA
3.7. Classification and Overrepresentation Enrichment Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, B.; Garne, E.; Loane, M.; Addor, M.C.; Arriola, L.; Cavero-Carbonell, C.; Gatt, M.; Lelong, N.; Lynch, C.; Nelen, V.; et al. The changing epidemiology of Ebstein’s anomaly and its relationship with maternal mental health conditions: A European registry-based study. Cardiol. Young 2017, 27, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Possner, M.; Gensini, F.J.; Mauchley, D.C.; Krieger, E.V.; Steinberg, Z.L. Ebstein’s Anomaly of the Tricuspid Valve: An Overview of Pathology and Management. Curr. Cardiol. Rep. 2020, 22, 157. [Google Scholar] [CrossRef]
- Flores Arizmendi, A.; Fernandez Pineda, L.; Quero Jimenez, C.; Maitre Azcarate, M.J.; Herraiz Sarachaga, I.; Urroz, E.; Perez de Leon, J.; Luis Moya, J.; Quero Jimenez, M. The clinical profile of Ebstein’s malformation as seen from the fetus to the adult in 52 patients. Cardiol. Young 2004, 14, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Langlois, P.H.; Mitchell, L.E. Epidemiology of Ebstein anomaly: Prevalence and patterns in Texas, 1999–2005. Am. J. Med. Genet. A 2011, 155A, 1007–1014. [Google Scholar] [CrossRef]
- Correa-Villasenor, A.; Ferencz, C.; Neill, C.A.; Wilson, P.D.; Boughman, J.A. Ebstein’s malformation of the tricuspid valve: Genetic and environmental factors. The Baltimore-Washington Infant Study Group. Teratology 1994, 50, 137–147. [Google Scholar] [CrossRef]
- Attenhofer Jost, C.H.; Connolly, H.M.; Dearani, J.A.; Edwards, W.D.; Danielson, G.K. Ebstein’s anomaly. Circulation 2007, 115, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercer, C.L.; Andreoletti, G.; Carroll, A.; Salmon, A.P.; Temple, I.K.; Ennis, S. Familial Ebstein Anomaly: Whole Exome Sequencing Identifies Novel Phenotype Associated With FLNA. Circ. Cardiovasc. Genet. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda-Fernandez, M.C.; Ramirez-Oyaga, S.; Restrepo, C.M.; Huertas-Quinones, V.M.; Barrera-Castaneda, M.; Quero, R.; Hernandez-Toro, C.J.; Tamar Silva, C.; Laissue, P.; Cabrera, R. Identification of a New Candidate Locus for Ebstein Anomaly in 1p36.2. Mol. Syndromol. 2018, 9, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Worth, C.L.; Lindberg, E.L.; Kanda, M.; Polanski, K.; Heinig, M.; Lee, M.; et al. Cells of the adult human heart. Nature 2020, 588, 466–472. [Google Scholar] [CrossRef]
- Peters, L.J.F.; Biessen, E.A.L.; Hohl, M.; Weber, C.; van der Vorst, E.P.C.; Santovito, D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front. Physiol. 2020, 11, 793. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne) 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grasser, F.A.; Lenhof, H.P.; et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [Green Version]
- Abu-Halima, M.; Kahraman, M.; Henn, D.; Radle-Hurst, T.; Keller, A.; Abdul-Khaliq, H.; Meese, E. Deregulated microRNA and mRNA expression profiles in the peripheral blood of patients with Marfan syndrome. J. Transl. Med. 2018, 16, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Halima, M.; Ludwig, N.; Radle-Hurst, T.; Keller, A.; Motsch, L.; Marsollek, I.; El Rahman, M.A.; Abdul-Khaliq, H.; Meese, E. Characterization of micro-RNA Profile in the Blood of Patients with Marfan’s Syndrome. Thorac. Cardiovasc. Surg. 2018, 66, 116–124. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Meese, E.; Keller, A.; Abdul-Khaliq, H.; Radle-Hurst, T. Analysis of circulating microRNAs in patients with repaired Tetralogy of Fallot with and without heart failure. J. Transl. Med. 2017, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Abu-Halima, M.; Meese, E.; Saleh, M.A.; Keller, A.; Abdul-Khaliq, H.; Raedle-Hurst, T. Micro-RNA 150-5p predicts overt heart failure in patients with univentricular hearts. PLoS ONE 2019, 14, e0223606. [Google Scholar] [CrossRef] [PubMed]
- Abu-Halima, M.; Meese, E.; Saleh, M.A.; Keller, A.; Abdul-Khaliq, H.; Raedle-Hurst, T. MicroRNA-29b/c-3p Indicate Advanced Liver Fibrosis/Cirrhosis in Univentricular Heart Patients With and Without Fontan Palliation. Front. Cardiovasc. Med. 2020, 7, 619083. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Oberhoffer, F.S.; El Rahman, M.A.; Jung, A.M.; Zemlin, M.; Rohrer, T.R.; Kahraman, M.; Keller, A.; Meese, E.; Abdul-Khaliq, H. Insights from circulating microRNAs in cardiovascular entities in turner syndrome patients. PLoS ONE 2020, 15, e0231402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Halima, M.; Poryo, M.; Ludwig, N.; Mark, J.; Marsollek, I.; Giebels, C.; Petersen, J.; Schafers, H.J.; Grundmann, U.; Pickardt, T.; et al. Differential expression of microRNAs following cardiopulmonary bypass in children with congenital heart diseases. J. Transl. Med. 2017, 15, 117. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Weidinger, J.; Poryo, M.; Henn, D.; Keller, A.; Meese, E.; Abdul-Khaliq, H. Micro-RNA signatures in monozygotic twins discordant for congenital heart defects. PLoS ONE 2019, 14, e0226164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpentier, A.; Chauvaud, S.; Mace, L.; Relland, J.; Mihaileanu, S.; Marino, J.P.; Abry, B.; Guibourt, P. A new reconstructive operation for Ebstein’s anomaly of the tricuspid valve. J. Thorac. Cardiovasc. Surg. 1988, 96, 92–101. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tei, C.; Dujardin, K.S.; Hodge, D.O.; Kyle, R.A.; Tajik, A.J.; Seward, J.B. Doppler index combining systolic and diastolic myocardial performance: Clinical value in cardiac amyloidosis. J. Am. Coll. Cardiol. 1996, 28, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Kern, F.; Fehlmann, T.; Solomon, J.; Schwed, L.; Grammes, N.; Backes, C.; Van Keuren-Jensen, K.; Craig, D.W.; Meese, E.; Keller, A. miEAA 2.0: Integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res. 2020, 48, W521–W528. [Google Scholar] [CrossRef] [PubMed]
- Henn, D.; Abu-Halima, M.; Kahraman, M.; Falkner, F.; Fischer, K.S.; Barrera, J.A.; Chen, K.; Gurtner, G.C.; Keller, A.; Kneser, U.; et al. A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study. Sci. Rep. 2020, 10, 21809. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [Green Version]
- Hamberg, M.; Backes, C.; Fehlmann, T.; Hart, M.; Meder, B.; Meese, E.; Keller, A. MiRTargetLink--miRNAs, Genes and Interaction Networks. Int. J. Mol. Sci. 2016, 17, 564. [Google Scholar] [CrossRef] [PubMed]
- Hosch, O.; Ngyuen, T.T.; Lauerer, P.; Schuster, A.; Kutty, S.; Staab, W.; Unterberg-Buchwald, C.; Sohns, J.M.; Paul, T.; Lotz, J.; et al. BNP and haematological parameters are markers of severity of Ebstein’s anomaly: Correlation with CMR and cardiopulmonary exercise testing. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Sicko, R.J.; Browne, M.L.; Rigler, S.L.; Druschel, C.M.; Liu, G.; Fan, R.; Romitti, P.A.; Caggana, M.; Kay, D.M.; Brody, L.C.; et al. Genetic Variants in Isolated Ebstein Anomaly Implicated in Myocardial Development Pathways. PLoS ONE 2016, 11, e0165174. [Google Scholar] [CrossRef] [Green Version]
- Dearani, J.A.; Mora, B.N.; Nelson, T.J.; Haile, D.T.; O’Leary, P.W. Ebstein anomaly review: What’s now, what’s next? Expert Rev. Cardiovasc. Ther. 2015, 13, 1101–1109. [Google Scholar] [CrossRef]
- Schorlemmer, A.; Matter, M.L.; Shohet, R.V. Cardioprotective signaling by endothelin. Trends Cardiovasc. Med. 2008, 18, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Gotz, J. Pyk2 is a Novel Tau Tyrosine Kinase that is Regulated by the Tyrosine Kinase Fyn. J. Alzheimers Dis. 2018, 64, 205–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnato, A.; Loizidou, M.; Pflug, B.R.; Curwen, J.; Growcott, J. Role of the endothelin axis and its antagonists in the treatment of cancer. Br. J. Pharmacol. 2011, 163, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Flobak, A.; Chawla, K.; Baudot, A.; Bruland, T.; Thommesen, L.; Kuiper, M.; Laegreid, A. The gastrin and cholecystokinin receptors mediated signaling network: A scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Syst. Biol. 2015, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Goetze, J.P.; Rehfeld, J.F.; Alehagen, U. Cholecystokinin in plasma predicts cardiovascular mortality in elderly females. Int. J. Cardiol. 2016, 209, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, H.; Gao, J.; Liu, Y.; Li, J.; Wang, J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell Cardiol. 2019, 136, 27–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabiri, B.E.; Lee, H.; Parker, K.K. A potential role for integrin signaling in mechanoelectrical feedback. Prog. Biophys. Mol. Biol. 2012, 110, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, J.; Melo, S.; Carneiro, P.; Moreira, A.M.; Fernandes, M.S.; Ribeiro, A.S.; Guilford, P.; Paredes, J.; Seruca, R. Clinical spectrum and pleiotropic nature of CDH1 germline mutations. J. Med. Genet. 2019, 56, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Batlle, E.; Sancho, E.; Franci, C.; Dominguez, D.; Monfar, M.; Baulida, J.; Garcia De Herreros, A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000, 2, 84–89. [Google Scholar] [CrossRef]
- Clark, J.L.; Taylor, C.G.; Zahradka, P. Exploring the Cardio-metabolic Relevance of T-cadherin: A Pleiotropic Adiponectin Receptor. Endocr. Metab. Immune Disord. Drug Targets 2017, 17, 200–206. [Google Scholar] [CrossRef]
- Meagher, P.; Adam, M.; Civitarese, R.; Bugyei-Twum, A.; Connelly, K.A. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management. Can. J. Cardiol. 2018, 34, 632–643. [Google Scholar] [CrossRef]
- Narayanan, A.; Srinaath, N.; Rohini, M.; Selvamurugan, N. Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci. 2019, 232, 116676. [Google Scholar] [CrossRef] [PubMed]
- Sayed, D.; Hong, C.; Chen, I.Y.; Lypowy, J.; Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 2007, 100, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.J.; Gupta, S.K.; O’Connell, E.; Thum, S.; Glezeva, N.; Fendrich, J.; Gallagher, J.; Ledwidge, M.; Grote-Levi, L.; McDonald, K.; et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail. 2015, 17, 405–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 2016, 96, 1297–1325. [Google Scholar] [CrossRef] [Green Version]
- Vegter, E.L.; van der Meer, P.; de Windt, L.J.; Pinto, Y.M.; Voors, A.A. MicroRNAs in heart failure: From biomarker to target for therapy. Eur. J. Heart Fail. 2016, 18, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Yang, S.; Meng, F.; Zhao, Z.; Tian, Z.; Yang, P. MicroRNA 199a-5p induces apoptosis by targeting JunB. Sci. Rep. 2018, 8, 6699. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.C.; Pereira, A.H.M.; Sadek, H.A. Mechanisms of Neonatal Heart Regeneration. Curr. Cardiol. Rep. 2020, 22, 33. [Google Scholar] [CrossRef]
- Braile, M.; Marcella, S.; Cristinziano, L.; Galdiero, M.R.; Modestino, L.; Ferrara, A.L.; Varricchi, G.; Marone, G.; Loffredo, S. VEGF-A in Cardiomyocytes and Heart Diseases. Int. J. Mol. Sci. 2020, 21, 5294. [Google Scholar] [CrossRef]
- Herrera-Rivero, M.; Zhang, R.; Heilmann-Heimbach, S.; Mueller, A.; Bagci, S.; Dresbach, T.; Schroder, L.; Holdenrieder, S.; Reutter, H.M.; Kipfmueller, F. Circulating microRNAs are associated with Pulmonary Hypertension and Development of Chronic Lung Disease in Congenital Diaphragmatic Hernia. Sci. Rep. 2018, 8, 10735. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.S.; Afshari, J.T.; Esmaeili, S.A.; Saburi, E.; Joneidi, Z.; Momtazi-Borojeni, A.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019, 285, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Tian, D.; Hu, J.; Xing, H.; Sun, M.; Wang, J.; Jian, Q.; Yang, H. MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN. Pediatr. Cardiol. 2016, 37, 629–636. [Google Scholar] [CrossRef]
- Yan, S.; Jiao, K. Functions of miRNAs during Mammalian Heart Development. Int. J. Mol. Sci. 2016, 17, 789. [Google Scholar] [CrossRef] [PubMed]
- Muntean, I.; Toganel, R.; Benedek, T. Genetics of Congenital Heart Disease: Past and Present. Biochem. Genet. 2017, 55, 105–123. [Google Scholar] [CrossRef]
- Leach, N.T.; Sun, Y.; Michaud, S.; Zheng, Y.; Ligon, K.L.; Ligon, A.H.; Sander, T.; Korf, B.R.; Lu, W.; Harris, D.J.; et al. Disruption of diacylglycerol kinase delta (DGKD) associated with seizures in humans and mice. Am. J. Hum. Genet. 2007, 80, 792–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, H.; Sakane, F. Recent progress on type II diacylglycerol kinases: The physiological functions of diacylglycerol kinase delta, eta and kappa and their involvement in disease. J. Biochem. 2012, 152, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stahler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Palmieri, V.; Backes, C.; Ludwig, N.; Fehlmann, T.; Kern, F.; Meese, E.; Keller, A. IMOTA: An interactive multi-omics tissue atlas for the analysis of human miRNA-target interactions. Nucleic Acids Res. 2018, 46, D770–D775. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Cui, Q. The relationship of human tissue microRNAs with those from body fluids. Sci. Rep. 2020, 10, 5644. [Google Scholar] [CrossRef] [Green Version]
MicroRNA | Median Ebstein’s Anomaly | Median Controls | Fold Change | Regulation | Adjusted p-Value |
---|---|---|---|---|---|
hsa-miR-186-5p | 4.47 | 6.92 | 0.17 | Lower | 3.63 × 10−9 |
hsa-miR-199a-5p | 3.87 | 6.09 | 0.19 | Lower | 1.02 × 10−7 |
hsa-miR-142-3p | 6.29 | 8.09 | 0.23 | Lower | 2.53 × 10−5 |
hsa-miR-148b-3p | 2.85 | 4.59 | 0.24 | Lower | 1.02 × 10−7 |
hsa-miR-215-5p | 6.38 | 8.19 | 0.24 | Lower | 0.00011 |
hsa-miR-340-3p | 3.64 | 5.36 | 0.25 | Lower | 4.68 × 10−6 |
hsa-miR-128-3p | 5.03 | 6.73 | 0.25 | Lower | 1.73 × 10−5 |
hsa-miR-15b-3p | 1.66 | 3.56 | 0.25 | Lower | 1.58 × 10−7 |
hsa-miR-145-5p | 2.77 | 4.75 | 0.27 | Lower | 1.76 × 10−8 |
hsa-miR-505-3p | 2.55 | 4.16 | 0.27 | Lower | 1.19 × 10−8 |
hsa-miR-23b-3p | 4.86 | 6.28 | 0.29 | Lower | 2.13 × 10−5 |
hsa-miR-942-5p | 2.42 | 4.05 | 0.30 | Lower | 2.12 × 10−7 |
hsa-miR-365a-3p | 3.31 | 4.93 | 0.30 | Lower | 1.19 × 10−8 |
hsa-miR-7-1-3p | 1.80 | 3.56 | 0.31 | Lower | 1.19 × 10−8 |
hsa-miR-30b-5p | 9.94 | 11.47 | 0.31 | Lower | 8.90 × 10−6 |
hsa-miR-23a-3p | 7.73 | 9.17 | 0.31 | Lower | 3.88 × 10−6 |
hsa-miR-125b-5p | 3.65 | 6.01 | 0.31 | Lower | 0.00201 |
hsa-miR-182-5p | 2.69 | 4.48 | 0.32 | Lower | 1.62 × 10−5 |
hsa-miR-29c-5p | 4.50 | 6.11 | 0.33 | Lower | 0.00023 |
hsa-miR-361-3p | 5.36 | 6.78 | 0.34 | Lower | 2.74 × 10−5 |
hsa-miR-4732-3p | 3.65 | 4.91 | 0.34 | Lower | 3.58 × 10−6 |
hsa-miR-454-5p | 1.72 | 3.33 | 0.35 | Lower | 1.36 × 10−7 |
hsa-miR-30a-5p | 3.03 | 4.83 | 0.35 | Lower | 0.00036 |
hsa-miR-378a-5p | 3.86 | 5.04 | 0.36 | Lower | 3.30 × 10−5 |
hsa-miR-30e-3p | 2.68 | 4.20 | 0.37 | Lower | 0.00019 |
hsa-miR-26a-5p | 6.84 | 7.96 | 0.37 | Lower | 0.00244 |
hsa-miR-99b-5p | 2.24 | 3.68 | 0.37 | Lower | 3.58 × 10−6 |
hsa-miR-5189-3p | 1.90 | 3.10 | 0.38 | Lower | 0.00076 |
hsa-miR-326 | 2.90 | 4.48 | 0.40 | Lower | 2.37 × 10−5 |
hsa-miR-664a-3p | 3.87 | 5.11 | 0.40 | Lower | 3.63 × 10−9 |
hsa-miR-93-3p | 4.40 | 5.38 | 0.41 | Lower | 7.69 × 10−5 |
hsa-miR-30c-5p | 9.58 | 10.67 | 0.41 | Lower | 3.09 × 10−7 |
hsa-miR-5690 | 1.74 | 2.93 | 0.42 | Lower | 3.58 × 10−6 |
hsa-miR-361-5p | 4.88 | 5.79 | 0.42 | Lower | 0.00034 |
hsa-miR-3653-3p | 4.15 | 4.96 | 0.43 | Lower | 0.00208 |
hsa-miR-140-3p | 9.86 | 11.05 | 0.44 | Lower | 2.17 × 10−7 |
hsa-miR-339-5p | 2.28 | 3.32 | 0.44 | Lower | 0.00014 |
hsa-miR-133b | 1.62 | 2.62 | 0.44 | Lower | 0.00036 |
hsa-miR-148a-3p | 3.29 | 4.22 | 0.44 | Lower | 0.00244 |
hsa-miR-146a-5p | 2.71 | 3.79 | 0.44 | Lower | 2.49 × 10−6 |
hsa-miR-744-5p | 2.12 | 3.28 | 0.45 | Lower | 1.65 × 10−6 |
hsa-miR-99a-5p | 2.09 | 3.11 | 0.45 | Lower | 0.00025 |
hsa-miR-194-5p | 6.94 | 7.54 | 0.47 | Lower | 0.00801 |
hsa-miR-1285-3p | 1.81 | 2.92 | 0.47 | Lower | 3.61 × 10−8 |
hsa-miR-502-5p | 2.37 | 3.50 | 0.48 | Lower | 0.00010 |
hsa-miR-550a-3p | 6.68 | 7.80 | 0.48 | Lower | 0.00042 |
hsa-miR-191-5p | 2.63 | 3.78 | 0.48 | Lower | 0.00011 |
hsa-miR-16-2-3p | 3.65 | 4.59 | 0.50 | Lower | 0.00188 |
hsa-miR-125a-5p | 4.16 | 5.22 | 0.50 | Lower | 0.00062 |
hsa-miR-5739 | 6.01 | 4.48 | 3.71 | Higher | 4.68 × 10−6 |
hsa-miR-638 | 4.77 | 3.31 | 3.04 | Higher | 3.05 × 10−7 |
hsa-miR-4459 | 6.84 | 5.55 | 2.92 | Higher | 5.09 × 10−6 |
hsa-miR-6089 | 8.00 | 6.68 | 2.90 | Higher | 4.63 × 10−8 |
hsa-miR-6165 | 4.76 | 3.51 | 2.86 | Higher | 2.76 × 10−6 |
hsa-miR-6749-5p | 5.18 | 4.01 | 2.77 | Higher | 2.70 × 10−5 |
hsa-miR-6085 | 4.95 | 3.47 | 2.73 | Higher | 0.00025 |
hsa-miR-3162-5p | 5.49 | 4.22 | 2.65 | Higher | 1.24 × 10−6 |
hsa-miR-7977 | 11.10 | 9.75 | 2.55 | Higher | 0.01260 |
hsa-miR-4728-5p | 4.65 | 3.41 | 2.44 | Higher | 0.00075 |
hsa-miR-3656 | 4.77 | 3.43 | 2.42 | Higher | 0.00020 |
hsa-miR-4800-5p | 3.91 | 2.14 | 2.39 | Higher | 0.00219 |
hsa-miR-6087 | 6.56 | 5.40 | 2.38 | Higher | 1.24 × 10−6 |
hsa-miR-7107-5p | 3.59 | 1.99 | 2.34 | Higher | 0.00076 |
hsa-miR-6125 | 5.56 | 4.30 | 2.28 | Higher | 3.05 × 10−7 |
hsa-miR-7114-5p | 4.17 | 3.10 | 2.25 | Higher | 0.00109 |
hsa-miR-4286 | 7.54 | 6.49 | 2.20 | Higher | 0.01379 |
hsa-miR-6869-5p | 5.48 | 4.28 | 2.19 | Higher | 2.98 × 10−6 |
hsa-miR-4505 | 5.90 | 4.71 | 2.16 | Higher | 1.82 × 10−5 |
hsa-miR-210-3p | 7.23 | 6.11 | 2.16 | Higher | 0.00056 |
hsa-miR-1202 | 4.63 | 3.60 | 2.14 | Higher | 2.76 × 10−6 |
hsa-let-7b-5p | 11.47 | 10.25 | 2.12 | Higher | 4.72 × 10−6 |
hsa-miR-6740-5p | 5.84 | 5.02 | 2.09 | Higher | 4.04 × 10−6 |
hsa-miR-2861 | 4.41 | 3.26 | 2.06 | Higher | 2.76 × 10−6 |
hsa-miR-7704 | 4.65 | 3.41 | 2.05 | Higher | 6.90 × 10−6 |
hsa-miR-1268b | 4.20 | 3.31 | 2.05 | Higher | 0.00019 |
hsa-miR-4507 | 5.37 | 4.41 | 2.02 | Higher | 0.00224 |
Human Symbol | Gene ID | Median Ebstein’s Anomaly | Median Controls | Fold Change | Regulation | Adjusted p-Value |
---|---|---|---|---|---|---|
KANK4 (KN motif and ankyrin repeat domains 4) | 163782 | 7.59 | 6.45 | 2.71 | Higher | 0.0400 |
ADGRE4P (adhesion G protein-coupled receptor E4, pseudogene) | 326342 | 5.10 | 3.58 | 2.53 | Higher | 0.0383 |
KCNG1 (potassium voltage-gated channel modifier subfamily G member 1) | 3755 | 6.41 | 5.22 | 2.48 | Higher | 0.0383 |
IGF2R (insulin-like growth factor 2 receptor) | 3482 | 10.29 | 9.49 | 2.06 | Higher | 0.0404 |
BAZ2A (bromodomain adjacent to zinc finger domain 2A) | 11176 | 8.68 | 7.70 | 1.95 | Higher | 0.0082 |
BACE2 (beta-secretase 2) | 25825 | 8.92 | 8.11 | 1.91 | Higher | 0.0400 |
PGD (phosphogluconate dehydrogenase) | 5226 | 11.50 | 10.55 | 1.83 | Higher | 0.0404 |
KDM1A (lysine demethylase 1A) | 23028 | 5.86 | 5.12 | 1.82 | Higher | 0.0065 |
RIOK1 (RIO kinase 1) | 83732 | 7.42 | 6.75 | 1.81 | Higher | 0.0161 |
PRPF38B (pre-mRNA processing factor 38B) | 55119 | 7.36 | 6.60 | 1.73 | Higher | 0.0383 |
ITGAM (integrin subunit alpha M) | 3684 | 10.80 | 9.92 | 1.72 | Higher | 0.0383 |
CCNY (cyclin Y) | 219771 | 9.65 | 8.84 | 1.68 | Higher | 0.0383 |
ZFP91 (ZFP91 zinc finger protein, atypical E3 ubiquitin ligase) | 80829 | 8.40 | 7.64 | 1.68 | Higher | 0.0169 |
ARID1A (AT-rich interaction domain 1A) | 8289 | 8.19 | 7.52 | 1.66 | Higher | 0.0457 |
LASP1 (LIM and SH3 protein 1) | 3927 | 11.34 | 10.78 | 1.59 | Higher | 0.0065 |
VPS35 (VPS35 retromer complex component) | 55737 | 9.87 | 9.24 | 1.59 | Higher | 0.0082 |
PAK1 (p21 (RAC1) activated kinase 1) | 5058 | 11.68 | 11.15 | 1.55 | Higher | 0.0383 |
RBM23 (RNA binding motif protein 23) | 55147 | 8.40 | 7.81 | 1.54 | Higher | 0.0400 |
CUX1 (cut like homeobox 1) | 1523 | 8.89 | 8.29 | 1.53 | Higher | 0.0457 |
WDR1 (WD repeat domain 1) | 9948 | 9.08 | 8.58 | 1.52 | Higher | 0.0090 |
CACUL1 (CDK2 associated cullin domain 1) | 143384 | 8.47 | 7.87 | 1.52 | Higher | 0.0224 |
CHD4 (chromodomain helicase DNA binding protein 4) | 1108 | 9.15 | 8.68 | 1.51 | Higher | 0.0400 |
PSME3 (proteasome activator subunit 3) | 10197 | 9.16 | 8.57 | 1.51 | Higher | 0.0383 |
VPS26B (VPS26, retromer complex component B) | 112936 | 9.30 | 8.78 | 1.51 | Higher | 0.0191 |
IL17RA (interleukin 17 receptor A) | 23765 | 11.95 | 11.50 | 1.50 | Higher | 0.0383 |
SCRN3 (secernin 3) | 79634 | 5.19 | 6.43 | 0.44 | Lower | 0.0400 |
SLC9A4 (solute carrier family 9 member A4) | 389015 | 8.48 | 9.15 | 0.59 | Lower | 0.0383 |
PRKAA2 (protein kinase AMP-activated catalytic subunit alpha 2) | 5563 | 4.04 | 4.67 | 0.59 | Lower | 0.0404 |
LCN8 (lipocalin 8) | 138307 | 4.35 | 4.98 | 0.60 | Lower | 0.0404 |
Micro-RNA | Median Familial (n = 4) Ebstein’s Anomaly | Median Non-Familial (n = 12) Ebstein’s Anomaly | Fold Change | Regulation | Adjusted p-Value |
---|---|---|---|---|---|
hsa-miR-1202 | 4.17 | 4.90 | 0.59 | Lower | 0.0186 |
hsa-miR-3162-5p | 5.04 | 5.63 | 0.60 | Lower | 0.0186 |
hsa-miR-326 | 4.01 | 2.73 | 2.15 | Higher | 0.0186 |
hsa-miR-550a-3p | 7.52 | 6.31 | 2.26 | Higher | 0.0186 |
hsa-miR-629-3p | 3.96 | 2.75 | 2.08 | Higher | 0.0186 |
hsa-miR-6085 | 3.90 | 5.23 | 0.39 | Lower | 0.0217 |
hsa-miR-6165 | 4.42 | 5.21 | 0.53 | Lower | 0.0217 |
hsa-miR-378a-5p | 4.54 | 3.51 | 2.29 | Higher | 0.0390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Halima, M.; Wagner, V.; Becker, L.S.; Ayesh, B.M.; Abd El-Rahman, M.; Fischer, U.; Meese, E.; Abdul-Khaliq, H. Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly. Cells 2021, 10, 1066. https://doi.org/10.3390/cells10051066
Abu-Halima M, Wagner V, Becker LS, Ayesh BM, Abd El-Rahman M, Fischer U, Meese E, Abdul-Khaliq H. Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly. Cells. 2021; 10(5):1066. https://doi.org/10.3390/cells10051066
Chicago/Turabian StyleAbu-Halima, Masood, Viktoria Wagner, Lea Simone Becker, Basim M. Ayesh, Mohammed Abd El-Rahman, Ulrike Fischer, Eckart Meese, and Hashim Abdul-Khaliq. 2021. "Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly" Cells 10, no. 5: 1066. https://doi.org/10.3390/cells10051066
APA StyleAbu-Halima, M., Wagner, V., Becker, L. S., Ayesh, B. M., Abd El-Rahman, M., Fischer, U., Meese, E., & Abdul-Khaliq, H. (2021). Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly. Cells, 10(5), 1066. https://doi.org/10.3390/cells10051066