Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers
Abstract
:1. Introduction
2. MDSC Nomenclature
3. MDSC Development, Activation, and Recruitment
3.1. MDSC Development and Activation
3.2. Recruitment of MDSCs into the Tumor Microenvironment
3.3. Effect of Cancer Treatment on Tumor-Infiltrating MDSC
4. Functions of MDSCs
4.1. Immunosuppressive Functions of MDSCs
4.2. Nonimmune Functions of MDSCs
5. MDSCs in Patients with Solid Cancers
6. MDSCs in Patients with Uterine Cervical and Endometrial Cancers
6.1. Nonpregnant Condition
6.1.1. Findings from Laboratory Investigations
6.1.2. Findings from Patients
6.2. Pregnant Condition
7. Targeting MDSCs in Uterine Cancer
7.1. Rationale for Targeting MDSCs in Cancer Treatment
7.2. Preclinical Investigation of MDSC-Targeting Therapies in Uterine Cancer
7.3. Strategies to Therapeutically Target Human MDSCs
7.4. Predictive Biomarkers for MDSC-Targeting Therapy
7.5. Clinical Trials Targeting MDSCs in Patients with Solid Cancers
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Gargiulo, P.; Della Pepa, C.; Berardi, S.; Califano, D.; Scala, S.; Buonaguro, L.; Ciliberto, G.; Brauchli, P.; Pignata, S. Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated Endometrial Cancers: New candidates for checkpoint blockade immunotherapy? Cancer Treat. Rev. 2016, 48, 61–68. [Google Scholar] [CrossRef]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561–584. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, S.; Yokoi, E.; Komura, N.; Kimura, T. Myeloid-derived suppressor cells and their role in gynecological malignancies. Tumour Biol. 2018, 40, 1010428318776485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roder, J.C.; Duwe, A.K.; Bell, D.A. Immunological senescence. I. The role of suppressor cells. Immunology 1978, 35, 837–847. [Google Scholar]
- Talmadge, J.E.; Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 2013, 13, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.N.H.; Emmons, T.R.; Wong, J.T.; Alqassim, E.; Singel, K.L.; Mark, J.; Smith, B.E.; Tario, J.D.; Eng, K.H.; Moysich, K.B.; et al. Quantification of Early-Stage Myeloid-Derived Suppressor Cells in Cancer Requires Excluding Basophils. Cancer Immunol. Res. 2020, 8, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Safarzadeh, E.; Asadzadeh, Z.; Safaei, S.; Hatefi, A.; Derakhshani, A.; Giovannelli, F.; Brunetti, O.; Silvestris, N.; Baradaran, B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front. Immunol. 2020, 11, 572323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, F.; Tang, Y.; Ren, Q.; Xiao, B.; Wan, Y.; Jiang, S. miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells. Oncogene 2020, 39, 6354–6369. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, T.; Li, Y.; Zhang, Y.; Yang, R. Lnc-chop Promotes Immunosuppressive Function of Myeloid-Derived Suppressor Cells in Tumor and Inflammatory Environments. J. Immunol. 2018, 200, 2603–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waight, J.D.; Netherby, C.; Hensen, M.L.; Miller, A.; Hu, Q.; Liu, S.; Bogner, P.N.; Farren, M.R.; Lee, K.P.; Liu, K.; et al. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J. Clin. Invest. 2013, 123, 4464–4478. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013, 73, 2782–2794. [Google Scholar] [CrossRef] [Green Version]
- Filatenkov, A.; Baker, J.; Mueller, A.M.; Kenkel, J.; Ahn, G.O.; Dutt, S.; Zhang, N.; Kohrt, H.; Jensen, K.; Dejbakhsh-Jones, S.; et al. Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clin. Cancer Res. 2015, 21, 3727–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaraj, S.; Schrum, A.G.; Cho, H.I.; Celis, E.; Gabrilovich, D.I. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J. Immunol. 2010, 184, 3106–3116. [Google Scholar] [CrossRef]
- Lu, T.; Ramakrishnan, R.; Altiok, S.; Youn, J.I.; Cheng, P.; Celis, E.; Pisarev, V.; Sherman, S.; Sporn, M.B.; Gabrilovich, D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Investig. 2011, 121, 4015–4029. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, P.C.; Ochoa, A.C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunol. Rev. 2008, 222, 180–191. [Google Scholar] [CrossRef]
- Dolcetti, L.; Peranzoni, E.; Ugel, S.; Marigo, I.; Fernandez-Gomez, A.; Mesa, C.; Geilich, M.; Winkels, G.; Traggiai, E.; Casati, A.; et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 2010, 40, 22–35. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Yi, N.; Zhang, T.W.; Zhang, L.L.; Wu, X.; Liu, M.; Fu, Y.J.; He, S.J.; Jiang, Y.J.; Ding, H.B.; et al. Myeloid-Derived Suppressor Cells associated with disease progression in primary HIV Infection: PD-L1 blockade attenuates inhibition. J. Acquir. Immune Defic. Syndr. 2017, 76, 200–208. [Google Scholar] [CrossRef]
- Mabuchi, S.; Matsumoto, Y.; Kawano, M.; Minami, K.; Seo, Y.; Sasano, T.; Takahashi, R.; Kuroda, H.; Hisamatsu, T.; Kakigano, A.; et al. Uterine cervical cancer displaying tumor-related leukocytosis: A distinct clinical entity with radioresistant feature. J. Natl. Cancer Inst. 2014, 106, dju147. [Google Scholar] [CrossRef] [Green Version]
- Sasano, T.; Mabuchi, S.; Kozasa, K.; Kuroda, H.; Kawano, M.; Takahashi, R.; Komura, N.; Yokoi, E.; Matsumoto, Y.; Hashimoto, K.; et al. The highly metastatic nature of uterine cervical/endometrial cancer displaying tumor-related leukocytosis: Clinical and preclinical investigations. Clin. Cancer Res. 2018, 24, 4018–4029. [Google Scholar] [CrossRef] [Green Version]
- Mabuchi, S.; Komura, N.; Sasano, T.; Shimura, K.; Yokoi, E.; Kozasa, K.; Kuroda, H.; Takahashi, R.; Kawano, M.; Matsumoto, Y.; et al. Pretreatment tumor-related leukocytosis misleads positron emission tomography-computed tomography during lymph node staging in gynecological malignancies. Nat. Commun. 2020, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Komura, N.; Mabuchi, S.; Shimura, K.; Yokoi, E.; Kozasa, K.; Kuroda, H.; Takahashi, R.; Sasano, T.; Kawano, M.; Matsumoto, Y.; et al. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer. Cancer Immunol. Immunother. 2020, 69, 2477–2499. [Google Scholar] [CrossRef]
- Solito, S.; Marigo, I.; Pinton, L.; Damuzzo, V.; Mandruzzato, S.; Bronte, V. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann. N. Y. Acad. Sci. 2014, 1319, 47–65. [Google Scholar] [CrossRef]
- Peranzoni, E.; Ingangi, V.; Masetto, E.; Pinton, L.; Marigo, I. Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Front. Immunol. 2020, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.G.; Megiel, C.; Russell, S.M.; Bingham, B.; Arger, N.; Woo, T.; Epstein, A.L. Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J. Transl. Med. 2011, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Mabuchi, S.; Matsumoto, Y.; Sasano, T.; Takahashi, R.; Kuroda, H.; Kozasa, K.; Hashimoto, K.; Isobe, A.; Sawada, K.; et al. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer. Sci. Rep. 2015, 5, 18217. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, E.; Mabuchi, S.; Komura, N.; Shimura, K.; Kuroda, H.; Kozasa, K.; Takahashi, R.; Sasano, T.; Kawano, M.; Matsumoto, Y.; et al. The role of myeloid-derived suppressor cells in endometrial cancer displaying systemic inflammatory response: Clinical and preclinical investigations. Oncoimmunology 2019, 8, e1662708. [Google Scholar] [CrossRef]
- Kuroda, H.; Mabuchi, S.; Yokoi, E.; Komura, N.; Kozasa, K.; Matsumoto, Y.; Kawano, M.; Takahashi, R.; Sasano, T.; Shimura, K.; et al. Prostaglandin E2 produced by myeloid-derived suppressive cells induces cancer stem cells in uterine cervical cancer. Oncotarget 2018, 9, 36317–36330. [Google Scholar] [CrossRef] [Green Version]
- Shimura, K.; Mabuchi, S.; Komura, N.; Yokoi, E.; Kozasa, K.; Sasano, T.; Kawano, M.; Matsumoto, Y.; Watabe, T.; Kodama, M.; et al. Prognostic significance of bone marrow FDG uptake in patients with gynecological cancer. Sci. Rep. 2021, 11, 2257. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Kwon, B.E.; Hong, E.H.; Shim, A.; Song, J.H.; Kim, H.M.; Chang, S.Y.; Kim, Y.J.; Kweon, M.N.; Youn, J.I.; et al. Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett. 2016, 381, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Kozasa, K.; Mabuchi, S.; Matsumoto, Y.; Kuroda, H.; Yokoi, E.; Komura, N.; Kawano, M.; Takahashi, R.; Sasano, T.; Shimura, K.; et al. Estrogen stimulates female cancer progression by inducing myeloid-derived suppressive cells: Investigations on pregnant and non-pregnant experimental models. Oncotarget 2019, 10, 1887–1902. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.R.F.; Cipelli, M.; Manzine, C.; Rabelo-Santos, S.H.; Zeferino, L.C.; Rodríguez Rodríguez, G.; de Assis, J.B.; Hebster, S.; Bernadinelli, I.; Laginha, F.; et al. Swainsonine, an alpha-mannosidase inhibitor, may worsen cervical cancer progression through the increase in myeloid derived suppressor cells population. PLoS ONE 2019, 14, e0213184. [Google Scholar] [CrossRef]
- Liang, Y.; Lü, B.; Zhao, P.; Lü, W. Increased circulating GrMyeloid-derived suppressor cells correlated with tumor burden and survival in locally advanced cervical cancer patient. J. Cancer 2019, 10, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderstraeten, A.; Luyten, C.; Verbist, G.; Tuyaerts, S.; Amant, F. Mapping the immunosuppressive environment in uterine tumors: Implications for immunotherapy. Cancer Immunol. Immunother. 2014, 63, 545–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Meir, H.; Nout, R.A.; Welters, M.J.; Loof, N.M.; de Kam, M.L.; van Ham, J.J.; Samuels, S.; Kenter, G.G.; Cohen, A.F.; Melief, C.J.; et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 2016, 6, e1267095. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res. 2015, 3, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Sim, N.S.; Chang, J.S.; Kim, Y.B. Tumor immune microenvironment in cancer patients with leukocytosis. Cancer Immunol. Immunother. 2020, 69, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Ostrand-Rosenberg, S.; Horn, L.A.; Ciavattone, N.G. Radiotherapy both promotes and inhibits myeloid-derived suppressor cell function: Novel strategies for preventing the tumor-protective effects of radiotherapy. Front. Oncol. 2019, 9, 215. [Google Scholar] [CrossRef]
- Suzuki, E.; Kapoor, V.; Jassar, A.S.; Kaiser, L.R.; Albelda, S.M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 2005, 11, 6713–6721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.; Mignot, G.; Chalmin, F.; Ladoire, S.; Bruchard, M.; Chevriaux, A.; Martin, F.; Apetoh, L.; Rébé, C.; Ghiringhelli, F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010, 70, 3052–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevko, A.; Michels, T.; Vrohlings, M.; Umansky, L.; Beckhove, P.; Kato, M.; Shurin, G.V.; Shurin, M.R.; Umansky, V. Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J. Immunol. 2013, 190, 2464–2471. [Google Scholar] [CrossRef]
- Tseng, C.W.; Hung, C.F.; Alvarez, R.D.; Trimble, C.; Huh, W.K.; Kim, D.; Chuang, C.M.; Lin, C.T.; Tsai, Y.C.; He, L.; et al. Pretreatment with cisplatin enhances E7-specific CD8+ T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin. Cancer Res. 2008, 14, 3185–3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodumudi, K.N.; Woan, K.; Gilvary, D.L.; Sahakian, E.; Wei, S.; Djeu, J.Y. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 2010, 16, 4583–4594. [Google Scholar] [CrossRef] [Green Version]
- Iwai, T.; Harada, Y.; Saeki, H.; Oki, E.; Maehara, Y.; Yonemitsu, Y. Capecitabine reverses tumor escape from anti-VEGF through the eliminating CD11bhigh/Gr1high myeloid cells. Oncotarget 2018, 9, 17620–17630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, H.; Mabuchi, S.; Kozasa, K.; Yokoi, E.; Matsumoto, Y.; Komura, N.; Kawano, M.; Hashimoto, K.; Sawada, K.; Kimura, T. PM01183 inhibits myeloid-derived suppressor cells in vitro and in vivo. Immunotherapy 2017, 9, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.S.; Rayman, P.; Ireland, J.; Swaidani, S.; Li, G.; Bunting, K.D.; Rini, B.; Finke, J.H.; Cohen, P.A. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010, 70, 3526–3536. [Google Scholar] [CrossRef] [Green Version]
- Heine, A.; Schilling, J.; Grünwald, B.; Krüger, A.; Gevensleben, H.; Held, S.A.; Garbi, N.; Kurts, C.; Brossart, P.; Knolle, P.; et al. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol. Immunother. 2016, 65, 273–282. [Google Scholar]
- Stiff, A.; Trikha, P.; Wesolowski, R.; Kendra, K.; Hsu, V.; Uppati, S.; McMichael, E.; Duggan, M.; Campbell, A.; Keller, K.; et al. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Res. 2016, 76, 2125–2136. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Wakita, D.; Narita, Y.; Masuko, K.; Terada, S.; Watanabe, K.; Satoh, T.; Kitamura, H.; Nishimura, T. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur. J. Immunol. 2012, 42, 2060–2072. [Google Scholar] [CrossRef] [PubMed]
- Holmgaard, R.B.; Zamarin, D.; Lesokhin, A.; Merghoub, T.; Wolchok, J.D. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine 2016, 6, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeNardo, D.G.; Brennan, D.J.; Rexhepaj, E.; Ruffell, B.; Shiao, S.L.; Madden, S.F.; Gallagher, W.M.; Wadhwani, N.; Keil, S.D.; Junaid, S.A.; et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011, 1, 54–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Sundstedt, A.; Ciesielski, M.; Miles, K.M.; Celander, M.; Adelaiye, R.; Orillion, A.; Ciamporcero, E.; Ramakrishnan, S.; Ellis, L.; et al. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models. Cancer Immunol. Res. 2015, 3, 136–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T.; et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 2018, 78, 1779–1791. [Google Scholar] [CrossRef] [Green Version]
- Alexander, E.T.; Minton, A.R.; Peters, M.C.; van Ryn, J.; Gilmour, S.K. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016, 7, 85291–85305. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.; Sucker, A.; Griewank, K.; Zhao, F.; Weide, B.; Görgens, A.; Giebel, B.; Schadendorf, D.; Paschen, A. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int. J. Cancer 2013, 133, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Melani, C.; Sangaletti, S.; Barazzetta, F.M.; Werb, Z.; Colombo, M.P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007, 67, 11438–11446. [Google Scholar] [CrossRef] [Green Version]
- Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 2006, 203, 2691–2702. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Dunddel, D.; Pan, F.; Zeng, Q.; Gorbounov, M.; Albesiano, E.; Fu, J.; Blosser, R.L.; Tam, A.J.; Bruno, T.; Zhang, H.; et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Investig. 2013, 124, 1580–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawski, M.; Kortylewski, M.; Lee, H.; Herrmann, A.; Kay, H.; Yu, H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Investig. 2008, 118, 3367–3377. [Google Scholar] [CrossRef]
- Bu, L.L.; Li, Y.C.; Yu, G.T.; Liu, J.F.; Deng, W.W.; Zhang, W.F.; Zhang, L.; Sun, Z.J. Targeting phosphorylation of STAT3 delays tumor growth in HPV-negative anal squamous cell carcinoma mouse model. Sci. Rep. 2017, 7, 6629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Du, W.; Yan, F.; Wang, Y.; Li, H.; Cao, S.; Yu, W.; Shen, C.; Liu, J.; Ren, X. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 2013, 190, 3783–3797. [Google Scholar] [CrossRef] [Green Version]
- Poschke, I.; Mougiakakos, D.; Hansson, J.; Masucci, G.V.; Kiessling, R. Immature immunosuppressive CD14+HLA–DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010, 70, 4335–4345. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhao, Y.; Wang, H.; Li, Y.; Shao, L.; Wang, R.; Lu, J.; Yang, Z.; Wang, J.; Zhao, Y. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci. Rep. 2016, 6, 20250. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.J.; Moore, E.C.; Clavijo, P.E.; Friedman, J.; Cash, H.; Chen, Z.; Silvin, C.; Van Waes, C.; Allen, C. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kδ/γ. Cancer Res. 2017, 77, 2607–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shen, L.; Liu, Q.; Hou, L.; Huang, L. Inhibiting PI3 kinase-γ in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J. Control. Release 2019, 309, 173–180. [Google Scholar] [CrossRef]
- Wesolowski, R.; Markowitz, J.; Carson, W.E., 3rd. Myeloid derived suppressor cells—A new therapeutic target in the treatment of cancer. J. Immunother. Cancer 2013, 1, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, A.; Fukumoto, T.; Zhang, R.; Gabrilovich, D. Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunol. Immunother. 2020, 69, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Eguchi, H.; Nakahata, K.; Lo, P.C.; Yamanaka, K.; Kawamura, T.; Matsuura, R.; Sakai, R.; Asada, M.; Okuyama, H.; et al. Monocytic MDSCs regulate macrophage-mediated xenogenic cytotoxicity. Transpl. Immunol. 2015, 33, 140–145. [Google Scholar] [CrossRef]
- Li, B.H.; Garstka, M.A.; Li, Z.F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol. 2020, 117, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Flores-Toro, J.A.; Luo, D.; Gopinath, A.; Sarkisian, M.R.; Campbell, J.J.; Charo, I.F.; Singh, R.; Schall, T.J.; Datta, M.; Jain, R.K.; et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc. Natl. Acad. Sci. USA 2020, 117, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Bockorny, B.; Semenisty, V.; Macarulla, T.; Borazanci, E.; Wolpin, B.M.; Stemmer, S.M.; Golan, T.; Geva, R.; Borad, M.J.; Pedersen, K.S.; et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nat. Med. 2020, 26, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Nefedova, Y.; Fishman, M.; Sherman, S.; Wang, X.; Beg, A.A.; Gabrilovich, D.I. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007, 67, 11021–11028. [Google Scholar] [CrossRef] [Green Version]
- Lathers, D.M.; Clark, J.I.; Achille, N.J.; Young, M.R. Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol. Immunother. 2004, 53, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Kumar, V.; Liu, H.; Youn, J.I.; Fishman, M.; Sherman, S.; Gabrilovich, D. Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res. 2014, 74, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Salvesen, H.B.; Werner, H.M.; Krakstad, C. PI3K pathway in gynecologic malignancies. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, e218–e221. [Google Scholar] [CrossRef]
Author/Year/Type of Cancer | Findings from In Vitro/In Vivo Studies of Uterine Cervical and Endometrial Cancer |
---|---|
Mabuchi, S., et al. 2014 [21] Cervical cancer | MDSC inhibited the activity of CD8+ T cells and stimulated angiogenesis. MDSCs were responsible for the rapidly progressive and radioresistant nature of cervical cancer. The administration of anti-Gr-1-neutralizing antibody or the depletion of MDSCs by splenectomy inhibited tumor growth and enhanced radiosensitivity in cervical cancer. |
Sasano, T., et al. 2018 [22] Cervical cancer | MDSC inhibited the activity of CD8+ T cells. MDSCs were involved in premetastatic niche formation, which promotes visceral organ metastasis. MDSCs created premetastatic niche by expressing high levels of Cxcl2, S100a8/9, Bv8, and MMP-9, which promotes visceral organ metastasis. MDSCs attracted cervical cancer cells to visceral organ via CXCL2/CXCR2 axis. The depletion of MDSCs by anti-Gr-1 antibody attenuated premetastatic niche formation and effectively inhibited the visceral organ metastasis. |
Lechner, M.G., et al. 2011 [27] Cervical cancer | Cervical cancer cells induced MDSC (CD33+ HLA–DRlowLineage-) from healthy donor PBMC in a co-culture experiment. Increased expression of transcription factors HIF1α, STAT3, and C/EBPβ were observed in MDSCs. |
Kawano, M., et al. 2015 [28] Cervical cancer | MDSC inhibited the activity of CD8+ T cells. G-CSF activated MDSC function via G-CSF receptor–STAT3 signaling pathway. Increased MDSC was involved in the development of chemoresistance. The depletion of MDSC via splenectomy or by anti-Gr-1 antibody sensitized cervical cancer to cisplatin. |
Yokoi, E., et al. 2020 [29] Endometrial cancer | MDSC inhibited the activity of CD8+ T cells. MDSC enhanced stemness of cancer cells by producing PGE2. G-CSF collaborated with IL-6 in stimulating the activities of MDSCs. MDSC depletion using an anti-Gr-1-neutralizing antibody or inhibition of MDSC activity by celecoxib inhibited tumor growth and enhanced chemosensitivity in endometrial cancer. |
Kuroda, H., et al. 2018 [30] Cervical cancer | MDSC inhibited the activity of CD8+ T cells. MDSC induced by tumor-derived G-CSF enhanced the stemness of cervical cancer cells by producing PGE2. MDSC depletion using an anti-Gr-1-neutralizing antibody or inhibition of MDSC activity by celecoxib inhibited the induction of cancer stem-like cells and enhanced the efficacy of cisplatin in cervical cancer. |
Shimura, K., et al. 2021 [31] Cervical cancer | MDSC inhibited the activity of CD8+ T cells. MDSC depletion using an anti-Gr-1-neutralizing antibody prolonged the survival of cervical cancer-bearing mice exhibiting increased MDSC. |
Lee, B.R., et al. 2016 [32] Cervical cancer | Increased IL-6 was associated with enhanced tumor growth and increased MDSC generation. Anti-IL-6 receptor monoclonal antibody inhibited tumor growth and MDSC generation. STAT3 inhibitor reduced tumor growth, inhibited MDSC expansion, and relieved T cell suppression. |
Kozasa, K., et al. 2019 [33] Cervical cancer | Estradiol (E2) stimulated the mobilization of MDSC from bone marrow and augmented their suppressive activities, leading to the progression of cervical cancers. Co-administration of an anti-Gr-1-neutralizing antibody with E2 prevented the E2-mediated induction of MDSC and attenuated E2-mediated tumor growth in cervical cancer xenografts. Significantly increased MDSC and enhanced tumor growth were observed during pregnancy in mice with cervical cancer. |
Silveira, C.R.F., et al. 2019 [34] Cervical cancer | Swainsonine, an alpha-mannosidase inhibitor, promoted cervical cancer progression by inducing MDSC, which inhibited T cell activation. |
Liang, Y., et al. 2019 [35] Cervical cancer | Patient-derived MDSC inhibited the activity of CD8+ T cells. |
Author/Year | Type of Cancer | Samples Examined Marker of MDSC | Findings from Patient-Derived Samples |
---|---|---|---|
Mabuchi, S., et al. 2014 [21] | Healthy donner Cervical cancer | PBMC (FCM) HLA–DR−CD11b+CD33+ cells | Increased circulating MDSC was associated with leukocytosis. Tumor G-CSF expression was significantly associated with increased circulating MDSC and compromised survival of cervical cancer patient treated with radiotherapy. |
Sasano, T., et al. 2018 [22] | Cervical cancer | PBMC (FCM) HLA–DR−CD11b+CD33+ cells | MDSC in the peripheral blood of cervical cancer patients was positively associated with the number of leukocytes and tumor G-CSF expression. |
Mabuchi, S., et al. 2020 [23] | Cervical cancer | Lymph nodes (IHC) CD33+ cells | MDSC-mediated premetastatic niche formation in the lymph node of cervical or endometrial cancer patients misled 18F-FDG-PET/CT for detecting nodal metastasis. |
Kawano, M., et al. 2015 [28] | Healthy donner Cervical cancer | PBMC (FCM) HLA–DR−CD11b+CD33+ cells | Tumor G-CSF expression was significantly associated with increased circulating MDSC and compromised survival in patients treated with chemotherapy. |
Yokoi, E., et al. 2020 [29] | Endometrial cancer | Tumor (IHC) CD33+ cells | The number of tumor-infiltrating MDSC was associated with leukocytosis and increased serum PGE2 concentration. The number of tumor-infiltrating MDSC was associated with decreased CD8+ T cells in tumor and increased tumor G-CSF or IL-6 expressions. Increased tumor-infiltrating MDSCs was associated increased stemness of endometrial cancer. |
Kuroda, H., et al. 2018 [30] | Cervical cancer | Tumor (IHC) CD33+ cells | Number of tumor-infiltrating MDSC was positively correlated with the number of cancer stem like cells and serum PGE2 concentration. |
Shimura, K., et al. 2021 [31] | Cervical cancer | Tumor (IHC) CD33+ cells | Increased MDSCs were associated with increased bone marrow FDG uptake in cervical cancer patients. Increased bone marrow FDG uptake was indicative of poor prognosis. |
Kozasa, K., et al. 2019 [33] | Cervical cancer | Tumor (IHC) CD33+ cells | Significantly increased MDSC numbers were observed during pregnancy in cervical cancer patients, which can be attributed to the increased estradiol during pregnancy. |
Liang, Y., et al. 2019 [35] | Cervical cancer | PBMC (FCM) G–MDSCs: HLA–DR−Lin− CD11b+CD33+CD14−CD15+ cells M–MDSCs: HLA–DR−Lin− CD11b+CD33+CD14+ cells | Increased circulating G/M–MDSCs were observed in cervical cancer patients. Increased circulating MDSC was associated with advanced stage and decreased tumor-infiltrating CD8+ T cells. Frequency of circulating G–MDSCs but not M–MDSCs correlated with unfavorable clinicopathologic parameters, including lymph node metastasis, deep stromal invasion, and tumor recurrence. |
Vanderstraeten, A., et al. 2014 [36] | Healthy donner Endometrial cancer | Tumor (FCM) G–MDSCs: HLA–DR−Lin- CD11b+CD33+CD14−CD15+ cells M–MDSCs: HLA–DR−Lin-CD11b+CD33+CD14+ CD15+ cells | Increased tumor-infiltrating MDSCs and arginase-1 expression were observed in endometrial cancer. Patients-derived G–MDSC and M–MDSC expressed similar levels of arginase-1. G–MDSC was the dominant subset in endometrial cancer. |
van Meir, H., et al. 2016 [37] | Cervical cancer | PBMC (FCM) M–MDSCs: CD3−CD19−CD1a−HLA–DR−CD14+CD15− cells | Radiotherapy was associated with increased circulating M–MDSCs. |
Heeren, A.M., et al. 2018 [38] | Cervical cancer | Lymph nodes (FCM) G–MDSCs: HLA–DR− Lin- CD11b+CD33+CD15+ cells M–MDSCs: HLA–DR− Lin- CD11b+CD33+CD14+ cells | Increased M–MDSC was observed in the metastatic lymph nodes than in nonmetastatic lymph nodes. Increased G–MDSC was observed in the metastatic lymph nodes than in nonmetastatic lymph nodes; however, the difference was not statistically significant. |
Kim, K.H., et al. 2020 [39] | Cervical cancer | Tumor (RNA sequencing) MDSC signature | MDSC signature in cervical cancer patients in the TCGA database was associated with leukocytosis. |
Strategy | Mechanism of Action | Examples | Ongoing Clinical Trials * |
---|---|---|---|
(1) Depletion of MDSC | Chemotherapeutic agents | Gemcitabine [41], 5-FU [42], paclitaxel [43], cisplatin [44], docetaxel [45], capecitabine [46], and lurbinectedin [47] | NCT02669173 (Examine the effect of capecitabine on MDSC) NCT01803152 (Examine the effect of gemcitabine on MDSC) |
Tyrosine kinase inhibitors | Sunitinib [48], sorafenib [49], and ibrutinib [50] | NCT03525925 (Examine the effect of ibrutinib on MDSC) | |
IL-6 inhibitors | Anti-IL-6R mAb [51] | NA | |
CSF1R antagonists | GW2580 [52] and PLX3397 [53] | NA | |
S100A9 inhibitors | Tasquinimod [54] | NA | |
Diabetes drugs | Metformin [55] | NA | |
Thrombin inhibitor | Dabigatran [56] | NA | |
(2) MDSC deactivation | B-Raf inhibitor | Vemurafenib [57] | NA |
Bisphosphonates | Zoledronic acid [58] | NA | |
PDE-5 inhibitors | Sildenafil, tadalafil, and vardenafil [59] | NA | |
STAT3 inhibitors | Stattic [60], CPA7 [61], S3I-201 [62], JSI-124 [63], and AG490 [64] | NA | |
mTOR inhibitors | Rapamycin [65] | NA | |
PI3K inhibitors | IPI-145 [66] and IPI-549 [67] | NCT02637531 (Examine the effect of IPI-549 on MDSC) | |
COX2 inhibitors | Celecoxib [29,30] | NA | |
NSAID | Nitroaspirin [68] | NA | |
HDAC inhibitor | Entinostat [69] | NA | |
IDO inhibitor | Indoximod [70] | NA | |
(3) Prevention of MDSC recruitment | Chemokine receptor antagonists | AZD5069 (CXCR2) [71], Reparixin (CXCR2) [71], SX-682 (CXCR1/2) [71], AMD3100 (CXCR4) [71], CCX872 (CCR2) [72], BL8040 (CXCR4) [73], and Maraviroc (CCR5) [71] | NCT03161431 (Examine the effect of SX-682 on MDSC) |
(4) Promoting the differentiation of MDSC | Vitamin A | ATRA [74] | NA |
Vitamin D | 1,25(OH)2D3 [75] | NA | |
Casein kinase inhibitor | Tetrabromocinnamic acid [76] | NA | |
Chemotherapeutic agents | Paclitaxel [43] and docetaxel [45] | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabuchi, S.; Sasano, T. Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells 2021, 10, 1073. https://doi.org/10.3390/cells10051073
Mabuchi S, Sasano T. Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells. 2021; 10(5):1073. https://doi.org/10.3390/cells10051073
Chicago/Turabian StyleMabuchi, Seiji, and Tomoyuki Sasano. 2021. "Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers" Cells 10, no. 5: 1073. https://doi.org/10.3390/cells10051073
APA StyleMabuchi, S., & Sasano, T. (2021). Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells, 10(5), 1073. https://doi.org/10.3390/cells10051073