Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anesthesia and rAION Induction
2.2. Deep Sequencing of the ONH
2.3. Combinatorial Treatments
2.4. Treatment Regimens
2.5. Retinal Examination and Intraocular ON Edema Quantification via SD-OCT
2.6. Interrogation by Expression Profiling: RNA Isolation, ONH Sequencing and Analysis
2.7. Quantitative Real-Time PCR (qPCR) Analysis
2.8. Enzyme-Linked Immunosorbent Assay (ELISA) of Ocular Tissues
2.9. RGC Stereology
3. Results
3.1. Deep Sequencing Reveals ONH Emphasis on Prostaglandin Synthesis and Function
3.2. rAION-Associated Inflammatory Response: PGJ2 Exerts Action Post-rAION by Nonselective (M1/M2) Inflammatory Suppression
3.3. Comparison of ONH Inflammatory Gene Expression with Inflammation in Naïve and Ischemic Retina
3.4. qPCR Confirmation of ONH Gene Expression: Comparison of Vehicle, PGJ2 and Combinatorial Treatment
3.5. Effects of Single and Combinatorial Treatment on Optic Nerve Edema
3.6. Combining either PG Synthesis or COX Inhibitor with PGJ2 Does Not Improve RGC Survival Following rAION
3.7. The MAGL Inhibitor KML29 Does Not Suppress Retinal or ONH PGE2 Synthesis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerr, N.M.; Chew, S.S.; Danesh-Meyer, H.V. Non-arteritic anterior ischaemic optic neuropathy: A review and update. J. Clin Neurosci. 2009, 16, 994–1000. [Google Scholar] [CrossRef]
- Arnold, A.C. Pathogenesis of nonarteritic anterior ischemic optic neuropathy. J. Neuroophthalmol. 2003, 23, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Tesser, R.A.; Niendorf, E.R.; Levin, L.A. The morphology of an infarct in nonarteritic anterior ischemic optic neuropathy. Ophthalmology 2003, 110, 2031–2035. [Google Scholar] [CrossRef]
- Miller, N.R.; Arnold, A.C. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior is-chaemic optic neuropathy. Eye 2014, 29, 65–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, D.K.; Morrison, B.E.; Blankman, J.L.; Long, J.Z.; Kinsey, S.G.; Marcondes, M.C.; Ward, A.M.; Hahn, Y.K.; Lichtman, A.H.; Conti, B.; et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuro-inflammation. Science 2011, 334, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Blankman, J.L.; Simon, G.M.; Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007, 14, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.R.; Johnson, M.A.; Nolan, T.; Guo, Y.; Bernstein, S.L. A Single Intravitreal Injection of Ranibizumab Provides No Neuroprotection in a Nonhuman Primate Model of Moderate-to-Severe Nonarteritic Anterior Ischemic Optic Neuropathy. Investig. Ophth. Vis. Sci. 2015, 56, 7679–7686. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, S.L.; Guo, Y.; Kelman, S.E.; Flower, R.W.; Johnson, M.A. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Investig. Ophth. Vis. Sci. 2003, 44, 4153–4162. [Google Scholar] [CrossRef] [Green Version]
- Glushakov, A.V.; Fazal, J.A.; Narumiya, S.; Dore, S. Role of the prostaglandin E2 EP1 receptor in traumatic brain injury. PLoS ONE 2014, 9, e113689. [Google Scholar] [CrossRef] [Green Version]
- Yagami, T.; Koma, H.; Yamamoto, Y. Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nerv-ous System. Mol. Neurobiol. 2016, 53, 4754–4771. [Google Scholar] [CrossRef]
- Saleem, S.; Kim, Y.T.; Maruyama, T.; Narumiya, S.; Dore, S. Reduced acute brain injury in PGE2 EP3 receptor-deficient mice after cerebral ischemia. J. Neuroimmunol. 2009, 208, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.-H.P.; Arai, A.L.B.; Mou, Y.M.D.; Kang, B.P.; Yen, C.C.-C.P.; Hallenbeck, J.M.D.; Silva, A.C.P. Neuroprotective Ef-fects of MAGL (Monoacylglycerol Lipase) Inhibitors in Experimental Ischemic Stroke. Stroke 2018, 49, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Piro, J.R.; Benjamin, D.I.; Duerr, J.M.; Pi, Y.; Gonzales, C.; Wood, K.M.; Schwartz, J.W.; Nomura, D.K.; Samad, T.A. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep. 2012, 1, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.; Ahmad, A.S.; Zhuang, H.; Maruyama, T.; Narumiya, S.; Dore, S. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J. Neuroimmunol. 2007, 184, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Kawano, T.; Anrather, J.; Zhou, P.; Park, L.; Wang, G.; Frys, K.A.; Kunz, A.; Cho, S.; Orio, M.; Iadecola, C. Prostaglandin E2 EP1 receptors: Downstream effectors of COX-2 neurotoxicity. Nat. Med. 2006, 12, 225–229. [Google Scholar] [CrossRef]
- Bonfill-Teixidor, E.; Otxoa-de-Amezaga, A.; Font-Nieves, M.; Sans-Fons, M.G.; Planas, A.M. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. J. Neuroinflamm. 2017, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Straus, D.S.; Pascual, G.; Li, M.; Welch, J.S.; Ricote, M.; Hsiang, C.H.; Sengchanthalangsy, L.L.; Ghosh, G.; Glass, C.K. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc. Natl. Acad. Sci. USA 2000, 97, 4844–4849. [Google Scholar] [CrossRef] [Green Version]
- Bucolo, C.; DragoF. Carbon Monoxide and the eye: Implications for glaucoma therapy. Pharmacol. Ther. 2011, 130, 191–201. [Google Scholar] [CrossRef]
- Kadzielawa, K.; Mathew, B.; Stelman, C.R.; Lei, A.Z.; Torres, L.; Roth, S. Gene expression in retinal ischemic post-conditioning. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 935–949. [Google Scholar] [CrossRef]
- Ignatowska-Jankowska, B.M.; Ghosh, S.; Crowe, M.S.; Kinsey, S.G.; Niphakis, M.J.; Abdullah, R.A.; Tao, Q.; O’ Neal, S.T.; Walentiny, D.M.; Wiley, J.L.; et al. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: Antinociceptive activity without cannabimimetic side effects. Brit. J. Pharmacol. 2014, 171, 1392–1407. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.W.; Niphakis, M.J.; Lum, K.M.; Cognetta, A.B.; Wang, C., 3rd; Matthews, M.L.; Niessen, S.; Buczynski, M.W.; Par-sons, L.H.; Cravatt, B.F. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem. Biol. 2012, 19, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Pasquarelli, N.; Porazik, C.; Hanselmann, J.; Weydt, P.; Ferger, B.; Witting, A. Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. Neuropharmacology 2015, 91, 148–156. [Google Scholar] [CrossRef]
- Nicholson, J.D.; Puche, A.C.; Guo, Y.; Weinreich, D.; Slater, B.J.; Bernstein, S.L. PGJ2 Provides Prolonged CNS Stroke Protec-tion by Reducing White Matter Edema. PLoS ONE. 2012, 7, e50021. [Google Scholar] [CrossRef]
- Zhang, Y.; Fortune, B.; Atchaneeyasakul, L.O.; McFarland, T.; Mose, K.; Wallace, P.; Main, J.; Wilson, D.; Appukuttan, B.; Stout, J.T. Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion. Curr. Eye Res. 2008, 33, 365–376. [Google Scholar] [CrossRef]
- Aharoni, R.; Eilam, R.; Domev, H.; Labunskay, G.; Sela, M.; Arnon, R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc. Nat. Acad. Sci. USA 2005, 102, 19045–19050. [Google Scholar] [CrossRef] [Green Version]
- Mukwaya, A.; Lennikov, A.; Xeroudaki, M.; Mirabelli, P.; Lachota, M.; Jensen, L.; Peebo, B.; Lagali, N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018, 21, 395–413. [Google Scholar] [CrossRef] [Green Version]
- Touitou, V.; Johnson, M.A.; Guo, Y.; Miller, N.R.; Bernstein, S.L. Sustained Neuroprotection From a Single Intravitreal Injec-tion of PGJ2 in a Rodent Model of Anterior Ischemic Optic Neuropathy. Investig. Ophth. Vis. Sci. 2013, 54, 7402–7409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Guo, Y.; Miller, N.R.; Bernstein, S.L. Optic nerve infarction and post-ischemic inflammation in the rodent model of anterior ischemic optic neuropathy (rAION). Brain Res. 2009, 1264, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lam, T.T.; Tso, M.O. Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp. Eye Res. 2005, 81, 700–709. [Google Scholar] [CrossRef]
- Zhang, R.L.; Lu, C.Z.; Ren, H.M.; Xiao, B.G. Metabolic changes of arachidonic acid after cerebral ischemia-reperfusion in diabetic rats. Exp. Neurol. 2003, 184, 746–752. [Google Scholar] [CrossRef]
- Icer, M.A.; Gezmen-Karadag, M. The multiple functions and mechanisms of osteopontin. Clin. Biochem. 2018, 59, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Crowe, M.S.; Wilson, C.D.; Leishman, E.; Prather, P.L.; Bradshaw, H.B.; Banks, M.L.; Kinsey, S.G. The monoacylglycerol li-pase inhibitor KML29 with gabapentin synergistically produces analgesia in mice. Brit. J. Pharmacol. 2017, 174, 4523–4539. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.R.; Johnson, M.A.; Nolan, T.; Guo, Y.; Bernstein, A.M.; Bernstein, S.L. Sustained Neuroprotection from a Single In-travitreal Injection of PGJ2 in a Non-Human Primate Model of Nonarteritic Anterior Ischemic Optic Neuropathy. Investig. Ophth. Vis. Sci. 2014, 55, 7047–7056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Accession # | Sequence (5′-3′) | Direction |
---|---|---|---|
Osteopontin | M14656.1 | GAGGAGAAGGCGCATTACAG ATGGCTTTCATTGGAGTTGC | forward reverse |
IL6 | NM_012589.2 | CGAGCCCACCAGGAACGAAAGTC TCAGTCCCAAGAAGGCAACTGGCT | forward reverse |
Cyclophilin | NM_022536.1 | GCTGAAGCACTATGGGCCCGG ACCTTCCCGTACCACATCCATGCCT | forward reverse |
Β-Actin | NM_031144.2 | TGACGGTCAGGTCATCACTATC GGCATAGAGGTCTTTACGGATG | forward reverse |
Gene Symbol | Gene Name | ONH-1 | ONH-2 | ONH-3 | ONH-4 | ONH-5 | Mean Naïve | Veh-rAION | PGJ2-rAION | Veh/Naïve | Veh/PGJ2 | Ret-Sham (CPM) | Ret-Isch (CPM) | Ret-Isch/Ret-Sham |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ptgds | prostaglandin D2 synthase | 15.98822 | 16.79986 | 18.33136 | 16.76294 | 17.63618 | 17.54915 | 17.10371 | 16.80383 | 1.02604 | 1.04435 | 323.16894 | 255.03599 | 0.78917 |
Hpgds | hematopoietic prostaglandin D synthase | 5.56447 | 5.58306 | 6.58374 | 5.64267 | 5.48511 | 6.28145 | 5.77181 | 5.81564 | 1.08830 | 1.08010 | 0.85582 | 0.67756 | 0.79171 |
Ptges | prostaglandin E synthase | 7.02457 | 6.58184 | 7.60527 | 6.82481 | 7.68730 | 7.14567 | 7.14476 | 7.08125 | 1.00013 | 1.00910 | 1.25531 | 18.48897 | 14.72862 |
Ptges2 | prostaglandin E synthase 2 | 9.96166 | 9.70580 | 9.48162 | 9.83855 | 8.73850 | 9.24443 | 9.54522 | 9.58994 | 0.96849 | 0.96397 | 33.61580 | 37.41490 | 1.11302 |
Ptges3 | prostaglandin E synthase 3-cytosolic | 7.67189 | 7.46936 | 8.18863 | 7.39734 | 8.40670 | 7.97795 | 7.82678 | 8.16406 | 1.01931 | 0.97720 | 404.75993 | 371.05767 | 0.91674 |
Ptges3l1 | prostaglandin E synthase 3-like 1 | 8.35512 | 7.86037 | 7.92716 | 7.59559 | 7.68333 | 7.47952 | 7.88431 | 7.20205 | 0.94866 | 1.03853 | 34.94840 | 27.50432 | 0.78700 |
Ptges3l | prostaglandin E synthase 3 like | 7.67189 | 7.46936 | 8.18863 | 7.39734 | 8.40670 | 7.97795 | 7.82678 | 8.16406 | 1.01931 | 0.97720 | NF | NF | NF |
Ptgs1/Cox1 | prostaglandin-endoperoxide synthase 1 | 9.76256 | 9.44712 | 11.15517 | 9.28240 | 9.87118 | 10.00541 | 9.90368 | 9.79640 | 1.01027 | 1.02134 | 0.45581 | 5.75307 | 12.62153 |
Ptgs2/Cox2 | prostaglandin-endoperoxide synthase 2 | 7.22716 | 7.34416 | 7.54500 | 8.28609 | 9.78677 | 9.66859 | 8.03784 | 9.10447 | 1.20288 | 1.06196 | 0.45155 | 1.88256 | 4.16913 |
Ptgfr | prostaglandin F receptor | 12.25038 | 12.60656 | 11.73813 | 12.51715 | 12.54528 | 13.07791 | 12.33150 | 13.09570 | 1.06053 | 0.99864 | 0 | 1.99707 | 0 |
Ptgr2 | prostaglandin reductase 2 | 12.75745 | 12.36159 | 12.25462 | 12.05000 | 11.79029 | 11.52081 | 12.24279 | 11.10647 | 0.94103 | 1.03731 | 5.63482 | 41.96967 | 7.44827 |
Ptgdrl | prostaglandin D2 receptor-like | 6.14142 | 6.50112 | 7.51399 | 6.14764 | 7.29350 | 6.94778 | 6.71953 | 6.65179 | 1.03397 | 1.04450 | NF | NF | NF |
Ptgdr2 | prostaglandin D2 receptor 2 | 5.32453 | 5.97640 | 6.11997 | 6.27199 | 7.58084 | 6.83036 | 6.25474 | 7.13510 | 1.09203 | 0.95729 | NF | NF | NF |
Ptger1 | prostaglandin E receptor 1 | 5.67510 | 6.13244 | 6.52818 | 6.95166 | 6.01387 | 6.94449 | 6.26025 | 6.78540 | 1.10930 | 1.02344 | 0 | 0.29343 | 0 |
Ptger2 | prostaglandin E receptor 2 | 5.93095 | 5.54944 | 7.38904 | 5.90408 | 7.01148 | 6.93787 | 6.35700 | 6.28318 | 1.09137 | 1.10420 | 0 | 0 | 0 |
Ptger3 | prostaglandin E receptor 3 | 5.56447 | 5.12102 | 6.11997 | 4.69013 | 3.66247 | 5.58335 | 5.03161 | 5.72828 | 1.10965 | 0.97470 | NF | NF | NF |
Ptger4 | prostaglandin E receptor 4 | 5.67510 | 5.04621 | 3.66247 | 5.83632 | 5.36677 | 6.78596 | 5.11737 | 6.81983 | 1.32606 | 0.99503 | 0 | 0.207717 | 0 |
Ptgfrn | prostaglandin F2 receptor inhibitor | 5.56447 | 5.12102 | 6.11997 | 4.69013 | 3.66247 | 5.58335 | 5.03161 | 5.72828 | 1.10965 | 0.97470 | 73.28975 | 66.36605 | 0.90553 |
Ptgir | prostaglandin I2 receptor | 5.85502 | 6.32898 | 5.98393 | 6.38106 | 7.36330 | 7.69776 | 6.38246 | 7.76910 | 1.20608 | 0.99082 | 0 | 0.88028 | 0 |
Ptgr1 | prostaglandin reductase 1 | 8.21237 | 8.89242 | 9.85389 | 7.87723 | 9.15406 | 8.89142 | 8.79800 | 8.93364 | 1.01062 | 0.99527 | 32.70928 | 36.26502 | 1.10871 |
Gene Symbol | Gene Name | ONH-N1 | ONH-N2 | ONH-N3 | ONH-N4 | ONH-N5 | Mean Naïve | Veh-rAION | PGJ2-rAION | Veh/Naïve | Vehicle/PGJ2 | Ret-Sham (CPM) | Ret-Isch (CPM) | Ret-Isch/Ret/Sham |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pla2g7 | phospholipase A2 group VII | 15.10933 | 14.79132 | 12.94959 | 14.77261 | 12.82698 | 14.089966 | 13.003512 | 13.335868 | 0.9228917 | 0.975078036 | 0.35146081 | 33.993338 | 0.010339 |
Pla2g16 | phospholipase A2, group XVI | 13.63818 | 12.91624 | 13.40673 | 12.66619 | 12.365 | 12.998467 | 12.1254154 | 12.018962 | 0.9328343 | 1.008857111 | 235.236921 | 297.265176 | 0.791337 |
Pla2g6 | phospholipase A2 group VI | 10.18158 | 10.04404 | 10.07626 | 10.34514 | 9.786774 | 10.086759 | 10.0580887 | 10.407593 | 0.9971576 | 0.966418349 | 11.0373495 | 14.7100521 | 0.750327 |
Pla2g4a | phospholipase A2 group IVA | 8.836592 | 8.972135 | 9.337722 | 9.232697 | 10.36593 | 9.3490153 | 10.1824257 | 9.5777503 | 1.0891442 | 1.063133338 | 9.53095284 | 20.7441067 | 0.459454 |
Pla2g15 | phospholipase A2, group XV | 9.021099 | 9.191856 | 9.603836 | 9.060801 | 9.575812 | 9.2906808 | 9.86609055 | 9.9238729 | 1.0619341 | 0.994177444 | 30.7126327 | 33.3418939 | 0.921142 |
Pla2g12a | phospholipase A2, group XIIA | 9.676339 | 9.435444 | 9.30206 | 9.447172 | 9.004778 | 9.3731584 | 9.41553769 | 9.7066862 | 1.0045213 | 0.970005369 | 5.15867823 | 4.19978952 | 1.228318 |
Pla2g3 | phospholipase A2, group III | 8.88697 | 8.229182 | 6.696327 | 8.932058 | 6.585697 | 7.8660468 | 7.30830417 | 7.5213669 | 0.9290949 | 0.97167234 | NF | NF | NF |
Pla2g2c | phospholipase A2, group IIC | 7.839402 | 7.646561 | 6.955483 | 7.387974 | 6.77704 | 7.321292 | 6.70783566 | 7.2020536 | 0.9162093 | 0.93137819 | 4.15672828 | 2.80687237 | 1.480911 |
Pla2g4b | phospholipase A2 group IVB | 7.73606 | 8.229182 | 8.981785 | 8.117569 | 8.634831 | 8.3398853 | 8.46154825 | 8.4582903 | 1.0145881 | 1.000385178 | 3.29683962 | 9.62216053 | 0.34263 |
Pla2g5 | phospholipase A2, group V | 6.704759 | 8.235359 | 3.662474 | 7.034882 | 6.198245 | 6.3671437 | 6.56962921 | 6.4612068 | 1.0318016 | 1.016780527 | 3.76985453 | 5.81568605 | 0.648222 |
Pla2g2a | phospholipase A2 group IIA | 7.158225 | 6.601056 | 6.469342 | 5.929593 | 6.384064 | 6.5084562 | 7.37481481 | 7.4208545 | 1.1331128 | 0.993795911 | 0.98906215 | 0.54023288 | 1.830807 |
Pla2g2e | phospholipase A2, group IIE | 7.240552 | 7.280109 | 5.870084 | 6.790849 | 6.548524 | 6.7460235 | 6.10158817 | 6.3282454 | 0.9044718 | 0.964183242 | 0 | 0.27011644 | 0 |
Pla2g1b | phospholipase A2 group IB | 5.640167 | 5.121023 | 3.662474 | 5.173576 | 3.662474 | 4.6519426 | 5.48358443 | 4.9921317 | 1.178773 | 1.098445474 | 4.35437038 | 4.03998796 | 1.077818 |
Pla2g4f | phospholipase A2, group IVF | 5.906466 | 5.995318 | 5.571123 | 5.891002 | 5.64408 | 5.8015978 | 5.70985447 | 6.172554 | 0.9841865 | 0.925039216 | NF | NF | NF |
Pla2g2d | phospholipase A2, group IID | 6.501938 | 5.046214 | 7.169554 | 5.729765 | 6.126362 | 6.1147665 | 6.48782433 | 5.8557298 | 1.0610093 | 1.107944629 | 0 | 1.90726317 | 0 |
Pnpla2 | patatin-like phospholipase domain containing 2 | 5.708367 | 5.995318 | 5.607421 | 6.579621 | 5.584945 | 5.8951345 | 6.33600637 | 6.8198346 | 1.0747857 | 0.929055717 | 20.634368 | 21.9832379 | 0.938641 |
Pla2g10 | phospholipase A2, group X | 3.662474 | 3.662474 | 3.662474 | 4.690134 | 3.662474 | 3.8680059 | 3.66247389 | 3.6624739 | 0.9468636 | 1 | 0 | 1.08409959 | 0 |
Pla2r1 | phospholipase A2 receptor 1 | 5.977731 | 6.193288 | 6.550772 | 6.304503 | 6.548524 | 6.3149638 | 6.84479358 | 6.5347544 | 1.0839007 | 1.047444655 | 67.6342502 | 74.59747 | 0.906656 |
Mgll/MAGL | monoglyceride lipase | 10.45186 | 10.21227 | 9.67473 | 10.12171 | 8.472095 | 9.7865318 | 9.61457884 | 10.15996 | 0.9824296 | 0.946320558 | 99.503189 | 74.4858603 | 1.335867 |
Gene expression controls | ||||||||||||||
Ppia | peptidylprolyl isomerase A | 14.88068 | 14.21798 | 15.31686 | 14.29613 | 15.27559 | 14.935534 | 14.8897368 | 14.79745 | 1.0062367 | 0.996933659 | 15.5049789 | 17.7037818 | 0.8758 |
Ppib | peptidylprolyl isomerase B | 13.29631 | 12.87667 | 13.54295 | 12.97108 | 13.79579 | 13.421187 | 13.3416644 | 13.296562 | 1.003392 | 0.994074854 | 56.1145906 | 102.154809 | 0.549309 |
Actb | actin, beta | 17.01179 | 16.81788 | 17.20874 | 16.96558 | 17.38982 | 17.599677 | 17.4216397 | 17.078761 | 1.0200763 | 0.989884031 | 631.922522 | 2276.3337 | 0.277605 |
Gapdh | glyceraldehyde-3-phosphate dehydrogenase | 14.429 | 13.95914 | 14.01805 | 14.01042 | 15.03571 | 15.000118 | 14.9295525 | 14.290462 | 1.0447214 | 0.995295699 | 78.0188393 | 65.4709231 | 1.191656 |
Pparg | peroxisome proliferator-activated receptor gamma | 5.564472 | 4.852943 | 3.662474 | 5.041199 | 6.095778 | 4.9076087 | 5.89109898 | 5.0433732 | 1.1680871 | 1.200401111 | 0 | 1.01533353 | 0 |
Mbp | myelin basic protein | 18.37768 | 18.23455 | 17.80142 | 18.32891 | 17.65172 | 18.175157 | 17.9969671 | 18.078857 | 0.9954704 | 0.99019598 | 7.4746679 | 2.33938774 | 3.195139 |
Rho | rhodopsin | 6.177695 | 7.738614 | 7.482357 | 8.943992 | 7.457686 | 7.8474819 | 6.45206772 | 7.5600688 | 0.8534403 | 0.822183193 | 5309.71918 | 3564.86423 | 1.489459 |
Gene Symbol | Gene Name | ONH-1 | ONH-2 | ONH-3 | ONH-4 | ONH-5 | Mean Naïve | Veh-rAION | PGJ2-rAION | Veh/Naïve | Veh/PGJ2 | Ret-Sham (CPM) | Ret-Isch (CPM) | Ret-Isch/Ret-Sham |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IL6 | interleukin 6 | 3.66247 | 4.85294 | 3.66247 | 4.37461 | 6.01387 | 4.51327 | 7.49741 | 6.36064 | 1.66119 | 1.17872 | 0 | 4.40138 | 4.4013766 |
IL27 | interleukin 27 | 4.77202 | 5.04621 | 3.66247 | 4.92983 | 3.66247 | 4.41460 | 5.72260 | 5.12828 | 1.29629 | 1.11589 | 0 | 0 | |
IL24 | interleukin 24 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 4.69557 | 3.66247 | 1.28208 | 1.28208 | 0 | 0 | |
IL10 | interleukin 10 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 4.48830 | 3.66247 | 1.22548 | 1.22548 | 0 | 0 | |
IL3 | interleukin3 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 4.48830 | 3.66247 | 1.22548 | 1.22548 | 0 | 0 | |
IL1b | interleukin 1 beta | 6.35398 | 5.67498 | 5.79262 | 5.62387 | 7.04861 | 6.09881 | 7.43155 | 6.55232 | 1.21852 | 1.13419 | 0.761532 | 370.6914 | 486.7708 |
IL11 | interleukin 12 | 5.52316 | 5.73014 | 7.38336 | 5.08902 | 10.45924 | 6.83699 | 8.26344 | 7.48443 | 1.20864 | 1.10408 | 1.128868 | 25.52798 | 22.613783 |
Gene Symbol | Gene Name | ONH-1 | ONH-2 | ONH-3 | ONH-4 | ONH-5 | Mean Naïve | Veh-rNAION | PGJ2-rNAION | Veh/Naïve | Veh/PGJ2 | Ret-Sham (CPM) | Ret-Isch (CPM) | Ret-Isch/Ret-Sham |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ccl17 | C-C motif chemokine ligand 17 | 3.66247 | 3.66247 | 3.66247 | 4.78510 | 5.99643 | 4.35379 | 6.34187 | 5.47966 | 1.45663 | 1.15735 | 0 | 0.58685 | 0 |
Ccl9 | chemokine (C-C motif) ligand 9 | 3.66247 | 4.50516 | 3.66247 | 4.69013 | 5.72428 | 4.44890 | 6.24965 | 4.80497 | 1.40476 | 1.30066 | 0.22664 | 0.58685 | 2.589332 |
Ccl17 | C-C motif chemokine ligand 17 | 3.66247 | 3.66247 | 3.66247 | 4.78510 | 5.99643 | 4.35379 | 6.34187 | 5.47966 | 1.45663 | 1.15735 | 0 | 0.58685 | 0.00000 |
Ccl9 | chemokine (C-C motif) ligand 9 | 3.66247 | 4.50516 | 3.66247 | 4.69013 | 5.72428 | 4.44890 | 6.24965 | 4.80497 | 1.40476 | 1.30066 | 0.22664 | 0.58685 | 2.589332 |
Cxcl11 | C-X-C motif chemokine ligand 11 | 4.55453 | 5.24570 | 3.66247 | 6.44499 | 6.62156 | 5.30585 | 7.10257 | 6.85985 | 1.33863 | 1.03538 | 1.17676 | 4.84968 | 4.121221 |
Cxcl3 | chemokine (C-X-C motif) ligand 3 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 6.09578 | 4.14913 | 5.50131 | 5.32898 | 1.32589 | 1.03234 | 0 | 1.76055 | 1.76000 |
Ccl22 | C-C motif chemokine ligand 22 | 4.91547 | 4.50516 | 3.66247 | 3.66247 | 6.03093 | 4.55530 | 5.94922 | 5.06457 | 1.30600 | 1.17468 | 0 | 0.44014 | 0.00000 |
Cxcl10 | C-X-C motif chemokine ligand 10 | 6.91014 | 6.74324 | 7.41151 | 7.34027 | 8.74746 | 7.43052 | 9.62249 | 7.72673 | 1.29499 | 1.24535 | 2.30759 | 6.96402 | 3.017873 |
Ccl3 | C-C motif chemokine ligand 3 | 6.10348 | 5.47653 | 3.66247 | 5.72976 | 7.46226 | 5.68690 | 7.36272 | 6.85985 | 1.29468 | 1.07331 | 0.22664 | 113.3327 | 500.0525 |
Ccl4 | C-C motif chemokine ligand 4 | 5.11673 | 5.18679 | 3.66247 | 5.21148 | 7.04250 | 5.24399 | 6.75924 | 6.41225 | 1.28895 | 1.05411 | 0 | 7.18892 | 7.18000 |
Ccl11 | C-C motif chemokine ligand 11 | 5.97773 | 5.99532 | 5.23550 | 6.27199 | 8.79818 | 6.45574 | 8.03063 | 7.15605 | 1.24395 | 1.12222 | 0.98315 | 0.13551 | 0.137835 |
Ccl21 | C-C motif chemokine ligand 21 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 5.97860 | 4.12570 | 5.06042 | 4.90761 | 1.22656 | 1.03114 | 0.64187 | 0 | 0.00000 |
Ccr8 | C-C motif chemokine receptor 8 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 3.66247 | 4.48830 | 3.66247 | 1.22548 | 1.22548 | NF | NF | NF |
Cxcl17 | C-X-C motif chemokine ligand 17 | 6.19527 | 5.80569 | 3.66247 | 5.83632 | 5.92253 | 5.48446 | 6.66235 | 6.27156 | 1.21477 | 1.06231 | 0.70292 | 0.68646 | 0.97658 |
Cxcl6 | C-X-C motif chemokine ligand 6 | 5.26306 | 4.95893 | 6.17198 | 5.39903 | 6.61271 | 5.68114 | 6.80838 | 5.89380 | 1.19842 | 1.15518 | 0 | 6.45535 | 6.4 |
Ccl7 | C-C motif chemokine ligand 7 | 6.10348 | 5.29929 | 7.40593 | 5.17358 | 8.71593 | 6.53964 | 7.78204 | 6.92987 | 1.18998 | 1.12297 | 0.42791 | 621.8639 | 1453.252 |
Cxcl2 | C-X-C motif chemokine ligand 2 | 5.38041 | 5.34857 | 3.66247 | 4.69013 | 6.71428 | 5.15917 | 6.01198 | 5.83595 | 1.16530 | 1.03016 | 4.40896 | 408.5915 | 92.67299 |
Ccl24 | C-C motif chemokine ligand 24 | 6.72505 | 6.37803 | 6.89992 | 6.51138 | 7.96817 | 6.89651 | 7.86946 | 6.45161 | 1.14108 | 1.21977 | 1.24787 | 164.22 | 131.5999 |
Cxcl1 | C-X-C motif chemokine ligand 1 | 5.32453 | 5.43672 | 6.57287 | 5.34265 | 7.33875 | 6.00310 | 6.70378 | 6.47071 | 1.11672 | 1.03602 | 1.95483 | 817.0636 | 417.9714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrabian, Z.; Guo, Y.; Miller, N.R.; Henderson, A.D.; Roth, S.; Bernstein, S.L. Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy. Cells 2021, 10, 1440. https://doi.org/10.3390/cells10061440
Mehrabian Z, Guo Y, Miller NR, Henderson AD, Roth S, Bernstein SL. Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy. Cells. 2021; 10(6):1440. https://doi.org/10.3390/cells10061440
Chicago/Turabian StyleMehrabian, Zara, Yan Guo, Neil R. Miller, Amanda D. Henderson, Steven Roth, and Steven L. Bernstein. 2021. "Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy" Cells 10, no. 6: 1440. https://doi.org/10.3390/cells10061440
APA StyleMehrabian, Z., Guo, Y., Miller, N. R., Henderson, A. D., Roth, S., & Bernstein, S. L. (2021). Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy. Cells, 10(6), 1440. https://doi.org/10.3390/cells10061440