Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Clinical Investigation
2.2. Whole-Exome Sequencing and Bioinformatic Analysis
2.3. Structural Modeling for USP26 and Its Mutants
2.4. Semen Characteristics Analysis
2.5. Electron Microscopy Evaluation
2.6. Real-Time Quantitative PCR(RT-qPCR)
2.7. Immunoblot Analysis
2.8. Immunofluorescence Analysis
3. Results
3.1. Identification of Hemizygous USP26 Variants in Men with Asthenoteratozoospermia
3.2. Hemizygous Variants in USP26 Lead to Obviously Reduced Expressions of USP26 mRNA and Proteins
3.3. Asthenoteratozoospermia Phenotypes in Men Harboring Hemizygous USP26 Variants
3.4. Good Prognosis of ICSI in Men Harboring Hemizygous USP26 Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neto, F.T.; Bach, P.V.; Najari, B.B.; Li, P.S.; Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 2016, 59, 10–26. [Google Scholar] [CrossRef]
- Dieterich, K.; Rifo, R.S.; Faure, A.K.; Hennebicq, S.; Amar, B.; Zahi, M.; Perrin, J.; Martinez, D.; Sele, B.; Jouk, P.S.; et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat. Genet. 2007, 39, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Dam, A.H.; Koscinski, I.; Kremer, J.A.; Moutou, C.; Jaeger, A.S.; Oudakker, A.R.; Tournaye, H.; Charlet, N.; Lagier-Tourenne, C.; van Bokhoven, H.; et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am. J. Hum. Genet. 2007, 81, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Koscinski, I.; Elinati, E.; Fossard, C.; Redin, C.; Muller, J.; Velez de la Calle, J.; Schmitt, F.; Ben Khelifa, M.; Ray, P.F.; Kilani, Z.; et al. DPY19L2 deletion as a major cause of globozoospermia. Am. J. Hum. Genet. 2011, 88, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Khelifa, M.; Coutton, C.; Zouari, R.; Karaouzene, T.; Rendu, J.; Bidart, M.; Yassine, S.; Pierre, V.; Delaroche, J.; Hennebicq, S.; et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 2014, 94, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Miyata, H.; Gao, Y.; Sha, Y.; Tang, S.; Xu, Z.; Whitfield, M.; Patrat, C.; Wu, H.; Dulioust, E.; et al. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. Am. J. Hum. Genet. 2020, 107, 330–341. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, C.; Yang, X.; Lv, M.; Ni, X.; Li, Q.; Cheng, H.; Liu, W.; Tian, S.; Wu, H.; et al. Bi-allelic Loss-of-function Variants in CFAP58 Cause Flagellar Axoneme and Mitochondrial Sheath Defects and Asthenoteratozoospermia in Humans and Mice. Am. J. Hum. Genet. 2020, 107, 514–526. [Google Scholar] [CrossRef]
- Martinez, G.; Beurois, J.; Dacheux, D.; Cazin, C.; Bidart, M.; Kherraf, Z.E.; Robinson, D.R.; Satre, V.; Le Gac, G.; Ka, C.; et al. Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. J. Med. Genet. 2020, 57, 708–716. [Google Scholar] [CrossRef]
- Toure, A.; Martinez, G.; Kherraf, Z.E.; Cazin, C.; Beurois, J.; Arnoult, C.; Ray, P.F.; Coutton, C. The genetic architecture of morphological abnormalities of the sperm tail. Hum. Genet. 2020, 140, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tu, C.; Wang, L.; Wu, H.; Houston, B.J.; Mastrorosa, F.K.; Zhang, W.; Shen, Y.; Wang, J.; Tian, S.; et al. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am. J. Hum. Genet. 2021, 108, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.T.; Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. [Google Scholar] [CrossRef]
- Nijman, S.M.; Luna-Vargas, M.P.; Velds, A.; Brummelkamp, T.R.; Dirac, A.M.; Sixma, T.K.; Bernards, R. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005, 123, 773–786. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhou, Z.; Shah, A.A.; Zou, H.; Tao, J.; Chen, Q.; Wan, Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 2016, 6, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richburg, J.H.; Myers, J.L.; Bratton, S.B. The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Semin. Cell Dev. Biol. 2014, 30, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, B.; Lee, J.; Hong, S.H.; Kim, K.S.; Ramakrishna, S. The role of deubiquitinating enzymes in spermatogenesis. Cell Mol. Life Sci. 2015, 72, 4711–4720. [Google Scholar] [CrossRef]
- Stouffs, K.; Lissens, W.; Tournaye, H.; Van Steirteghem, A.; Liebaers, I. Possible role of USP26 in patients with severely impaired spermatogenesis. Eur. J. Hum. Genet. 2005, 13, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Stouffs, K.; Lissens, W.; Tournaye, H.; Van Steirteghem, A.; Liebaers, I. Alterations of the USP26 gene in Caucasian men. Int. J. Androl. 2006, 29, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, S.D.; Li, S.B.; Zhou, D.X.; Tian, H.; Huo, Y.W.; Ge, L.; Zhang, Q.Y. Novel mutations in ubiquitin-specific protease 26 gene might cause spermatogenesis impairment and male infertility. Asian J. Androl. 2007, 9, 809–814. [Google Scholar] [CrossRef]
- Luddi, A.; Crifasi, L.; Quagliarello, A.; Governini, L.; De Leo, V.; Piomboni, P. Single nucleotide polymorphisms of USP26 in azoospermic men. Syst. Biol. Reprod. Med. 2016, 62, 372–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, M.R.; Zariwala, M.; Leigh, M. Primary Ciliary Dyskinesia. Clin. Chest Med. 2016, 37, 449–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Fan, Z.; Wong, S.W.; Sun, K.; Zhang, L.; Liu, H.; Feng, H.; Liu, Y.; Han, D. Lrp6 Dynamic Expression in Tooth Development and Mutations in Oligodontia. J. Dent. Res. 2021, 100, 415–422. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Wambergue, C.; Zouari, R.; Fourati Ben Mustapha, S.; Martinez, G.; Devillard, F.; Hennebicq, S.; Satre, V.; Brouillet, S.; Halouani, L.; Marrakchi, O.; et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum. Reprod. 2016, 31, 1164–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baarends, W.M.; Roest, H.P.; Grootegoed, J.A. The ubiquitin system in gametogenesis. Mol. Cell Endocrinol. 1999, 151, 5–16. [Google Scholar] [CrossRef]
- Baarends, W.M.; van der Laan, R.; Grootegoed, J.A. Specific aspects of the ubiquitin system in spermatogenesis. J. Endocrinol. Invest. 2000, 23, 597–604. [Google Scholar] [CrossRef]
- Bebington, C.; Doherty, F.J.; Fleming, S.D. The possible biological and reproductive functions of ubiquitin. Hum. Reprod. Update 2001, 7, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.L.; Liu, W.; Sun, Y.J.; Kwon, J.; Setsuie, R.; Osaka, H.; Noda, M.; Aoki, S.; Yoshikawa, Y.; Wada, K. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol. Reprod. Dev. 2006, 73, 40–49. [Google Scholar] [CrossRef]
- Wright, A.; Reiley, W.W.; Chang, M.; Jin, W.; Lee, A.J.; Zhang, M.; Sun, S.C. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 2007, 13, 705–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.J.; McCarrey, J.R.; Yang, F.; Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 2001, 27, 422–426. [Google Scholar] [CrossRef]
- Lin, Y.W.; Hsu, T.H.; Yen, P.H. Localization of ubiquitin specific protease 26 at blood-testis barrier and near Sertoli cell-germ cell interface in mouse testes. Int. J. Androl. 2011, 34, e368–e377. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.J.; Page, D.C.; McCarrey, J.R. Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Hum. Mol. Genet. 2005, 14, 2911–2918. [Google Scholar] [CrossRef] [Green Version]
- Asadpor, U.; Totonchi, M.; Sabbaghian, M.; Hoseinifar, H.; Akhound, M.R.; Zari Moradi, S.; Haratian, K.; Sadighi Gilani, M.A.; Gourabi, H.; Mohseni Meybodi, A. Ubiquitin-specific protease (USP26) gene alterations associated with male infertility and recurrent pregnancy loss (RPL) in Iranian infertile patients. J. Assist Reprod. Genet. 2013, 30, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.W.; Kuan, L.C.; Lin, C.H.; Pan, H.A.; Hsu, C.C.; Tsai, Y.C.; Kuo, P.L.; Teng, Y.N. Association of USP26 haplotypes in men in Taiwan, China with severe spermatogenic defect. Asian. J. Androl. 2008, 10, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Y.; Li, H.; Hu, J.; Liu, X.; Jiang, T.; Sun, G.; Tang, A.; Sun, X.; Qian, W.; et al. Excess of rare variants in genes that are key epigenetic regulators of spermatogenesis in the patients with non-obstructive azoospermia. Sci. Rep. 2015, 5, 8785. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Li, Y.; Guo, H.; Li, C.; Chen, J.; Luo, M.; Jiang, Z.; Li, H.; Gui, Y. A Novel Missense Mutation in USP26 Gene Is Associated With Nonobstructive Azoospermia. Reprod. Sci. 2016, 23, 1434–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paduch, D.A.; Mielnik, A.; Schlegel, P.N. Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod. Biomed. Online 2005, 10, 747–754. [Google Scholar] [CrossRef]
- Xia, J.D.; Chen, J.; Han, Y.F.; Chen, H.; Yu, W.; Chen, Y.; Dai, Y.T. Association of 370-371insACA, 494T>C, and 1423C>T haplotype in ubiquitin-specific protease 26 gene and male infertility: A meta-analysis. Asian J. Androl. 2014, 16, 720–724. [Google Scholar]
- Dirac, A.M.; Bernards, R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol. Cancer Res. 2010, 8, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Kit Leng Lui, S.; Iyengar, P.V.; Jaynes, P.; Isa, Z.; Pang, B.; Tan, T.Z.; Eichhorn, P.J.A. USP26 regulates TGF-beta signaling by deubiquitinating and stabilizing SMAD7. EMBO. Rep. 2017, 18, 797–808. [Google Scholar] [CrossRef]
- Lahav-Baratz, S.; Kravtsova-Ivantsiv, Y.; Golan, S.; Ciechanover, A. The testis-specific USP26 is a deubiquitinating enzyme of the ubiquitin ligase Mdm2. Biochem. Biophys. Res. Commun. 2017, 482, 106–111. [Google Scholar] [CrossRef]
- Ning, B.; Zhao, W.; Qian, C.; Liu, P.; Li, Q.; Li, W.; Wang, R.F. USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat. Commun. 2017, 8, 349. [Google Scholar] [CrossRef] [Green Version]
- Typas, D.; Luijsterburg, M.S.; Wiegant, W.W.; Diakatou, M.; Helfricht, A.; Thijssen, P.E.; van den Broek, B.; Mullenders, L.H.; van Attikum, H. The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80. Nucleic Acids Res. 2015, 43, 6919–6933. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K.; Ito, C.; Wakabayashi, M.; Kanzaki, S.; Ito, T.; Takada, S.; Toshimori, K.; Sekita, Y.; Kimura, T. Usp26 mutation in mice leads to defective spermatogenesis depending on genetic background. Sci. Rep. 2019, 9, 13757. [Google Scholar] [CrossRef]
- Tuttelmann, F.; Rajpert-De Meyts, E.; Nieschlag, E.; Simoni, M. Gene polymorphisms and male infertility—A meta-analysis and literature review. Reprod. Biomed. Online 2007, 15, 643–658. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, T.; Mi, Y.J.; Yue, L.D.; Wang, J.M.; Liu, D.W.; Yan, J.; Tian, Q.B. Evidence from enzymatic and meta-analyses does not support a direct association between USP26 gene variants and male infertility. Andrology 2015, 3, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; He, X.; Liu, W.; Yang, S.; Wang, L.; Li, W.; Wu, H.; Tang, S.; Ni, X.; Wang, J.; et al. Bi-allelic Mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. Am. J. Hum. Genet. 2019, 105, 1168–1181. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.W.; Xu, X.; Mei, L.B.; Li, P.; Su, Z.Y.; He, X.Q.; Li, L. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 2017, 633, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, M.; Thomas, L.; Bequignon, E.; Schmitt, A.; Stouvenel, L.; Montantin, G.; Tissier, S.; Duquesnoy, P.; Copin, B.; Chantot, S.; et al. Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. Am. J. Hum. Genet. 2019, 105, 198–212. [Google Scholar] [CrossRef] [Green Version]
USP26 Variant | M1 | M2 |
---|---|---|
cDNA alteration a | c.2473C>G | c.2396A>G |
Variant allele | hemizygous | hemizygous |
Protein alteration | p.Arg825Gly | p.Asn799Ser |
Variant type | missense | missense |
Allele Frequency in Human Population | ||
1000 Genomes Project | 0 | 0 |
East Asians in gnomAD | 0.0001444 | 0.00007219 |
All individuals in gnomAD | 0.00001093 | 0.000005463 |
Function Prediction | ||
SIFT | damaging | damaging |
PolyPhen-2 | damaging | damaging |
M-CAP | damaging | damaging |
CADD b | 18.76 | 11.84 |
Subject | H002 II-1 | H042 II-1 | Reference Limits |
---|---|---|---|
Semen Parameter | |||
Semen volume (mL) | 2.4 | 1.6 | 1.5 a |
Sperm concentration (106/mL) | 31.2 | 31.5 | 15.0 a |
Motility (%) | 31.0 | 51.9 | 40.0 a |
Progressive motility (%) | 26.0 | 26.8 | 32.0 a |
Sperm Morphology | |||
Thin head (%) | 23.0 | 52.8 | 14.0 b |
Absent flagella (%) | 1.8 | 2.5 | 5.0 b |
Short flagella (%) | 7.5 | 2.3 | 1.0 b |
Coiled flagella (%) | 18.0 | 29.0 | 17.0 b |
Angulation (%) | 1.0 | 2.0 | 13.0 b |
Irregular caliber (%) | 1.3 | 1.0 | 2.0 b |
Subject | H002 II-1 | H042 II-1 |
---|---|---|
Male age (year) | 30 | 34 |
Female age (year) | 31 | 32 |
Number of ICSI cycles | 1 | 1 |
Number of oocytes injected | 4 | 10 |
Number (and rate) of fertilized oocytes | 4 (100%) | 7 (70%) |
Number (and rate) of cleavage embryos | 4 (100%) | 7 (100%) |
Number (and rate) of 8 cells | 3 (75%) | 3 (42.9%) |
Number of transfer cycles | 1 | 1 |
Number of embryos transferred per cycle | 2 | 2 |
Implantation rate | 100% | 50% |
Clinical pregnancy rate | 100% | 100% |
Miscarriage rate | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Shen, Y.; Shen, Q.; Zhang, W.; Wang, J.; Tang, S.; Wu, H.; Tian, S.; Cong, J.; He, X.; et al. Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility. Cells 2021, 10, 1594. https://doi.org/10.3390/cells10071594
Liu C, Shen Y, Shen Q, Zhang W, Wang J, Tang S, Wu H, Tian S, Cong J, He X, et al. Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility. Cells. 2021; 10(7):1594. https://doi.org/10.3390/cells10071594
Chicago/Turabian StyleLiu, Chunyu, Ying Shen, Qunshan Shen, Wen Zhang, Jiaxiong Wang, Shuyan Tang, Huan Wu, Shixiong Tian, Jiangshan Cong, Xiaojin He, and et al. 2021. "Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility" Cells 10, no. 7: 1594. https://doi.org/10.3390/cells10071594
APA StyleLiu, C., Shen, Y., Shen, Q., Zhang, W., Wang, J., Tang, S., Wu, H., Tian, S., Cong, J., He, X., Jin, L., Zhang, F., Jiang, X., & Cao, Y. (2021). Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility. Cells, 10(7), 1594. https://doi.org/10.3390/cells10071594