Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Nephrotoxic Serum-Nephritis (NTN)
2.3. Unilateral Ureteral Obstruction (UUO)
2.4. Folic Acid-Induced Nephropathy (FAN)
2.5. Study Population
2.6. Definitions
2.7. Masson’s Trichrome Stain
2.8. Renal Histopathology
2.9. Remission Induction Therapy
2.10. Analyses of Publicly Available Array Datasets
2.11. Statistical Methods
3. Results
3.1. Injury to Distinct Renal Compartments Results in Different Patterns of Kidney Fibrosis
3.2. Distribution of Focal IF/TA and Diffuse Fibrosis in Human Pathologies
3.3. Focal IF/TA and Diffuse Fibrosis Are Indicative of Injury to Distinct Renal Compartments in ANCA GN
3.4. Analysis of Focal IF/TA versus Diffuse Fibrosis Reveals Distinct Matrix Compositions
3.5. Tubulointerstitial Transcriptome in Association with Tubular Atrophy Reveals Distinct Collagen Signatures in Kidney Fibrosis
3.6. Focal IF/TA Is Associated with Worse Long-Term Outcome in ANCA GN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis—A common pathway to organ injury and failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Bulow, R.D.; Boor, P. Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold. J. Histochem. Cytochem. 2019, 67, 643–661. [Google Scholar] [CrossRef] [Green Version]
- Farris, A.B.; Colvin, R.B. Renal interstitial fibrosis: Mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 2012, 21, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Kriz, W.; LeHir, M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 2005, 67, 404–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginley, B.; Jen, K.Y.; Han, S.S.; Rodrigues, L.; Jain, S.; Fogo, A.B.; Zuckerman, J.; Walavalkar, V.; Miecznikowski, J.C.; Wen, Y.; et al. Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis. J. Am. Soc. Nephrol 2021, 32, 837–850. [Google Scholar] [CrossRef]
- Racusen, L.C.; Solez, K.; Colvin, R. Fibrosis and atrophy in the renal allograft: Interim report and new directions. Am. J. Transplant. 2002, 2, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Solez, K.; Colvin, R.B.; Racusen, L.C.; Sis, B.; Halloran, P.F.; Birk, P.E.; Campbell, P.M.; Cascalho, M.; Collins, A.B.; Demetris, A.J.; et al. Banff ’05 Meeting Report: Differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (’CAN’). Am. J. Transplant. 2007, 7, 518–526. [Google Scholar] [CrossRef]
- Risdon, R.A.; Sloper, J.C.; De Wardener, H.E. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968, 2, 363–366. [Google Scholar] [CrossRef]
- Bohle, A.; Glomb, D.; Grund, K.E.; Mackensen, S. Correlation between relative interstitial volume of the renal cortex and serum creatinine concentration in minimal changes with nephrotic syndrome and in focal sclerosing glomerulonephritis. Virchows Archiv A 1977, 376, 221–232. [Google Scholar] [CrossRef]
- D’Amico, G.; Ferrario, F.; Rastaldi, M.P. Tubulointerstitial damage in glomerular diseases: Its role in the progression of renal damage. Am. J. Kidney Dis. 1995, 26, 124–132. [Google Scholar] [CrossRef]
- Cameron, J.S. Tubular and interstitial factors in the progression of glomerulonephritis. Pediatr. Nephrol. 1992, 6, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Kaissling, B.; Lehir, M.; Kriz, W. Renal epithelial injury and fibrosis. Biochim. Biophys. Acta 2013, 1832, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisberg, M.; Neilson, E.G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 2010, 21, 1819–1834. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Tampe, B.; Tampe, D.; Muller, C.A.; Sugimoto, H.; LeBleu, V.; Xu, X.; Muller, G.A.; Zeisberg, E.M.; Kalluri, R.; Zeisberg, M. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol. 2014, 25, 905–912. [Google Scholar] [CrossRef]
- Sugimoto, H.; LeBleu, V.S.; Bosukonda, D.; Keck, P.; Taduri, G.; Bechtel, W.; Okada, H.; Carlson, W., Jr.; Bey, P.; Rusckowski, M.; et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 2012, 18, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampe, B.; Tampe, D.; Zeisberg, E.M.; Muller, G.A.; Bechtel-Walz, W.; Koziolek, M.; Kalluri, R.; Zeisberg, M. Induction of Tet3-dependent Epigenetic Remodeling by Low-dose Hydralazine Attenuates Progression of Chronic Kidney Disease. EBioMedicine 2015, 2, 19–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Mukhtyar, C.; Lee, R.; Brown, D.; Carruthers, D.; Dasgupta, B.; Dubey, S.; Flossmann, O.; Hall, C.; Hollywood, J.; Jayne, D.; et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann. Rheum. Dis. 2009, 68, 1827–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasinska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef] [PubMed]
- Berden, A.E.; Ferrario, F.; Hagen, E.C.; Jayne, D.R.; Jennette, J.C.; Joh, K.; Neumann, I.; Noel, L.H.; Pusey, C.D.; Waldherr, R.; et al. Histopathologic classification of ANCA-associated glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 1628–1636. [Google Scholar] [CrossRef] [Green Version]
- Brix, S.R.; Noriega, M.; Tennstedt, P.; Vettorazzi, E.; Busch, M.; Nitschke, M.; Jabs, W.J.; Ozcan, F.; Wendt, R.; Hausberg, M.; et al. Development and validation of a renal risk score in ANCA-associated glomerulonephritis. Kidney Int. 2018, 94, 1177–1188. [Google Scholar] [CrossRef]
- Forbess, L.J.; Griffin, K.W.; Spiera, R.F. Practice patterns of ANCA-associated vasculitis: Exploring differences among subspecialties at a single academic medical centre. Clin. Exp. Rheumatol. 2014, 32, S48–S50. [Google Scholar] [PubMed]
- Heinemeyer, T.; Wingender, E.; Reuter, I.; Hermjakob, H.; Kel, A.E.; Kel, O.V.; Ignatieva, E.V.; Ananko, E.A.; Podkolodnaya, O.A.; Kolpakov, F.A.; et al. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998, 26, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Ju, W.; Nair, V.; Smith, S.; Zhu, L.; Shedden, K.; Song, P.X.K.; Mariani, L.H.; Eichinger, F.H.; Berthier, C.C.; Randolph, A.; et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 2015, 7, 316ra193. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Shibata, T.; Sugisaki, T. Aggravation of rat nephrotoxic serum nephritis by anti-myeloperoxidase antibodies. Kidney Int. 1995, 47, 454–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, R.L.; Forbes, M.S.; Thornhill, B.A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009, 75, 1145–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.C.; Zuo, Y.; Fogo, A.B. Models of chronic kidney disease. Drug Discov. Today Dis. Models 2010, 7, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, H.A.; Bajema, I.M.; van Houwelingen, H.C.; Ferrario, F.; Noel, L.H.; Waldherr, R.; Jayne, D.R.; Rasmussen, N.; Bruijn, J.A.; Hagen, E.C.; et al. Renal histology in ANCA-associated vasculitis: Differences between diagnostic and serologic subgroups. Kidney Int. 2002, 61, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Hakroush, S.; Tampe, D.; Korsten, P.; Strobel, P.; Zeisberg, M.; Tampe, B. Histopathological Findings Predict Renal Recovery in Severe ANCA-Associated Vasculitis Requiring Intensive Care Treatment. Front. Med. 2020, 7, 622028. [Google Scholar] [CrossRef]
- Hakroush, S.; Kluge, I.A.; Strobel, P.; Korsten, P.; Tampe, D.; Tampe, B. Systematic Histological Scoring Reveals More Prominent Interstitial Inflammation in Myeloperoxidase-ANCA Compared to Proteinase 3-ANCA Glomerulonephritis. J. Clin. Med. 2021, 10, 1231. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Korsten, P.; Strobel, P.; Tampe, B. Bowman’s capsule rupture links glomerular damage to tubulointerstitial inflammation in ANCA-associated glomerulonephritis. Clin. Exp. Rheumatol. 2021, 39, 27–31. [Google Scholar] [PubMed]
- Tampe, D.; Korsten, P.; Strobel, P.; Hakroush, S.; Tampe, B. Proteinuria Indicates Decreased Normal Glomeruli in ANCA-Associated Glomerulonephritis Independent of Systemic Disease Activity. J. Clin. Med. 2021, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Hakroush, S.; Tampe, D.; Korsten, P.; Ströbel, P.; Tampe, B. Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis. Int. J. Mol. Sci. 2021, 22, 6588. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Korsten, P.; Ströbel, P.; Tampe, B. Systematic Scoring of Tubular Injury Patterns Reveals Interplay between Distinct Tubular and Glomerular Lesions in ANCA-Associated Glomerulonephritis. J. Clin. Med. 2021, 10, 2682. [Google Scholar] [CrossRef]
- Tampe, D.; Ströbel, P.; Korsten, P.; Hakroush, S.; Tampe, B. Consideration of Therapeutic Plasma Exchange in Association with Inflammatory Lesions in ANCA-Associated Glomerulonephritis: A Real-World Retrospective Study From a Single Center. Front. Immunol. 2021, 12, 645483. [Google Scholar] [CrossRef]
- Djudjaj, S.; Papasotiriou, M.; Bulow, R.D.; Wagnerova, A.; Lindenmeyer, M.T.; Cohen, C.D.; Strnad, P.; Goumenos, D.S.; Floege, J.; Boor, P. Keratins are novel markers of renal epithelial cell injury. Kidney Int. 2016, 89, 792–808. [Google Scholar] [CrossRef] [Green Version]
- Bajema, I.M.; Hagen, E.C.; Hermans, J.; Noel, L.H.; Waldherr, R.; Ferrario, F.; Van Der Woude, F.J.; Bruijn, J.A. Kidney biopsy as a predictor for renal outcome in ANCA-associated necrotizing glomerulonephritis. Kidney Int. 1999, 56, 1751–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, H.A.; Bajema, I.M.; Van Houwelingen, H.C.; Ferrario, F.; Noel, L.H.; Waldherr, R.; Jayne, D.R.; Rasmussen, N.; Bruijn, J.A.; Hagen, E.C.; et al. Determinants of outcome in ANCA-associated glomerulonephritis: A prospective clinico-histopathological analysis of 96 patients. Kidney Int. 2002, 62, 1732–1742. [Google Scholar] [CrossRef] [Green Version]
- van Wijngaarden, R.A.D.L.; Hauer, H.A.; Wolterbeek, R.; Jayne, D.R.; Gaskin, G.; Rasmussen, N.; Noel, L.H.; Ferrario, F.; Waldherr, R.; Hagen, E.C.; et al. Clinical and histologic determinants of renal outcome in ANCA-associated vasculitis: A prospective analysis of 100 patients with severe renal involvement. J. Am. Soc. Nephrol. 2006, 17, 2264–2274. [Google Scholar] [CrossRef]
- Bajema, I.M.; Hagen, E.C.; Hansen, B.E.; Hermans, J.; Noel, L.H.; Waldherr, R.; Ferrario, F.; van der Woude, F.J.; Bruijn, J.A. The renal histopathology in systemic vasculitis: An international survey study of inter- and intra-observer agreement. Nephrol. Dial. Transplant. 1996, 11, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Vergunst, C.E.; van Gurp, E.; Hagen, E.C.; van Houwelingen, H.C.; Hauer, H.A.; Noel, L.H.; Waldherr, R.; Ferrario, F.; van der Woude, F.J.; Bruijn, J.A.; et al. An index for renal outcome in ANCA-associated glomerulonephritis. Am. J. Kidney Dis. 2003, 41, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Rozario, T.; DeSimone, D.W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 2010, 341, 126–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piek, A.; de Boer, R.A.; Sillje, H.H. The fibrosis-cell death axis in heart failure. Heart Fail. Rev. 2016, 21, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Barison, A.; Grigoratos, C.; Todiere, G.; Aquaro, G.D. Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: Insights from cardiovascular magnetic resonance. Heart Fail. Rev. 2015, 20, 731–749. [Google Scholar] [CrossRef]
- Herum, K.M.; Lunde, I.G.; McCulloch, A.D.; Christensen, G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J. Clin. Med. 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.W.; Vassiliou, V.; Jenkins, W.S.; Prasad, S.K.; Newby, D.E.; Dweck, M.R. Markers of left ventricular decompensation in aortic stenosis. Expert Rev. Cardiovasc. Ther. 2014, 12, 901–912. [Google Scholar] [CrossRef] [PubMed]
Model | % Total Fibrosis | % Focal IF/TA | % Diffuse Fibrosis |
---|---|---|---|
NTN (n = 5) | 10 (8.5–15) | 10 (8.5–13.5) | 0 (0–1.5) |
UUO (n = 5) | 15 (8.5–20) | 0 (0–2) | 15 (11.5–20) |
FAN (n = 5) | 25 (20–25) | 15 (15–20) | 5 (5–7.5) |
p value | 0.0123 | <0.0001 | <0.0001 |
Renal Disease | % Total Fibrosis | % Focal IF/TA | % Diffuse Fibrosis |
---|---|---|---|
ANCA GN (n = 8) | 25 (12.5–45) | 15 (5–37.5) | 5 (5–10) |
AIN (n = 7) | 30 (20–40) | 20 (7–25) | 5 (0–20) |
Membranous GN (n = 4) | 20 (10–45) | 17.5 (10–40) | 2.5 (0–5) |
Lupus nephritis (n = 10) | 17.5 (8.75–52.5) | 7.5 (5–31.3) | 5 (2.75–11.3) |
Hypertension (n = 7) | 25 (10–60) | 15 (5–40) | 5 (5–20) |
IgAN (n = 10) | 25 (5–45) | 17.5 (0.75–36.3) | 5 (2.25–12.5) |
FSGS (n = 12) | 20 (11.3–30) | 14 (5–25) | 5 (2–10) |
DKD (n = 9) | 50 (17.5–70) | 40 (12.5–60) | 10 (5–10) |
p value | 0.2355 | 0.3009 | 0.0185 |
Parameter | Value |
---|---|
Female sex—no. (%) | 22 (44.9) |
Age (IQR)—years | 66 (55–74.5) |
MPO subtype—no. (%) | 25 (51) |
BVAS (IQR)—points | 18 (15–21) |
Pulmonary hemorrhage—no. (%) | 7 (14.3) |
Skin involvement—no. (%) | 7 (14.3) |
CRP (IQR)—mg/L | 63.6 (23.4–109) |
Serum creatinine (IQR)—μmol/L | 272 (123–437) |
GFR (IQR)—mL/min/1.73 m2 | 17.6 (9.7–47.9) |
uCreatinine (IQR)—mg/dL | 72.7 (41.1–98.1) |
uPCR (IQR)—mg/g creatinine | 977 (573–1939) |
uACR (IQR)—mg/g creatinine | 458 (202–938) |
Total glomeruli (IQR)—no. | 17 (11–28) |
Normal glomeruli (IQR)—% | 45.5 (25.2–73) |
Glomerular necrosis (IQR)—% | 15.2 (0–44.7) |
Glomerular crescents (IQR)—% | 33.3 (10–55.1) |
Glomerular sclerosis (IQR)—% | 5.1 (0–26.5) |
Focal class—no. (%) | 23 (46.9) |
Crescentic class—no. (%) | 16 (32.7) |
Sclerotic class—no. (%) | 3 (6.1) |
Mixed class—no. (%) | 7 (14.3) |
Low risk—no. (%) | 18 (36.7) |
Medium risk—no. (%) | 23 (46.9) |
High risk—no. (%) | 8 (16.3) |
Total kidney fibrosis (IQR)—% | 25 (12.5–45) |
IF/TA (IQR)—% | 15 (5–37.5) |
Diffuse fibrosis (IQR)—% | 5 (5–10) |
Total inflammation (IQR)—% | 10 (5–20) |
Interstitial inflammation (IQR)—% | 3 (1–5) |
i-IF/TA (IQR)—Banff score | 2 (1–3) |
Parameter | ESKD | No ESKD | p-Value |
---|---|---|---|
Intravenous steroid pulse—no. (%) | 6 (100) | 28 (65.1) | |
Oral GCs—no. (%) | 6 (100) | 43 (100) | |
PEX—no. (%) | 4 (66.7) | 15 (34.9) | |
Sessions of PEX (IQR)—no. | 5 (5–7) | 5 (4.25–5) | |
RTX—no. (%) | 3 (50) | 13 (30.2) | |
CYC—no. (%) | 3 (50) | 21 (48.8) | |
RTX/CYC—no. (%) | 0 (0) | 7 (16.3) | |
Follow-up (IQR)—days | 214 (24.75–1216) | 392 (94–745) | 0.5816 |
Total fibrosis (IQR)—% | 55 (43.75–65) | 20 (10–40) | 0.0006 |
Focal IF/TA (IQR)—% | 50 (23.75–65) | 10 (5–30) | 0.0016 |
Diffuse fibrosis (IQR)—% | 2.5 (0–21.25) | 5 (5–10) | 0.5092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tampe, D.; Schridde, L.; Korsten, P.; Ströbel, P.; Zeisberg, M.; Hakroush, S.; Tampe, B. Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments. Cells 2021, 10, 2014. https://doi.org/10.3390/cells10082014
Tampe D, Schridde L, Korsten P, Ströbel P, Zeisberg M, Hakroush S, Tampe B. Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments. Cells. 2021; 10(8):2014. https://doi.org/10.3390/cells10082014
Chicago/Turabian StyleTampe, Désirée, Laura Schridde, Peter Korsten, Philipp Ströbel, Michael Zeisberg, Samy Hakroush, and Björn Tampe. 2021. "Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments" Cells 10, no. 8: 2014. https://doi.org/10.3390/cells10082014
APA StyleTampe, D., Schridde, L., Korsten, P., Ströbel, P., Zeisberg, M., Hakroush, S., & Tampe, B. (2021). Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments. Cells, 10(8), 2014. https://doi.org/10.3390/cells10082014