Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses
Abstract
:1. Introduction
2. Regulation of Synaptic Plasticity in Excitatory Synapses and Neuronal Excitability by MMPs
2.1. Background Considerations on the Involvement of MMPs in Synaptic Plasticity
2.2. The Role of MMP9 in LTP
2.2.1. The Mechanism of MMP9 Synthesis and Release in the Perisynaptic Environment
2.2.2. The Mechanisms of MMP9 Activation
2.2.3. Putative Targets of MMP9 Proteolytic Activity in the Perisynaptic Area
2.2.4. The Crucial Role of Endogenous MMP9 Inhibition
2.2.5. MMP9 in Learning
2.3. The Role of MMP3 in LTP
2.4. Other MMPs in Synaptic Plasticity
3. Extracellular Proteolysis in the Plasticity of Inhibitory Synapses
3.1. Synaptic Plasticity of Inhibitory Synapses
3.2. MMP3 in the Plasticity of Inhibitory Synapses
3.3. MMPs in Inhibitory Synapses and Their Putative Substrates
4. Concluding Remarks and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.H.; Sim, S.E. Interregional synaptic maps among engram cells underlie memory formation. Science 2018, 360, 430–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josselyn, S.A.; Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science 2020, 367, eaaw4325. [Google Scholar] [CrossRef] [PubMed]
- Abdou, K.; Shehata, M.; Choko, K.; Nishizono, H.; Matsuo, M.; Muramatsu, S.I.; Inokuchi, K. Synapse-specific representation of the identity of overlapping memory engrams. Science 2018, 360, 1227–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dityatev, A.; Rusakov, D.A. Molecular signals of plasticity at the tetrapartite synapse. Curr. Opin. Neurobiol. 2011, 21, 353–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.C.; Scofield, M.D.; Kalivas, P.W. The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res. 2015, 1628, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.W.; Oohashi, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 2019, 20, 451–465. [Google Scholar] [CrossRef]
- Ferrer-Ferrer, M.; Dityatev, A. Shaping synapses by the neural extracellular matrix. Front. Neuroanat. 2018, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Sonderegger, P.; Matsumoto-Miyai, K. Activity-controlled proteolytic cleavage at the synapse. Trends Neurosci. 2014, 37, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Vafadari, B.; Salamian, A.; Kaczmarek, L. Mmp-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 2016, 139 (Suppl. S2), 91–114. [Google Scholar] [CrossRef] [Green Version]
- Brzdak, P.; Nowak, D.; Wiera, G.; Mozrzymas, J.W. Multifaceted roles of metzincins in cns physiology and pathology: From synaptic plasticity and cognition to neurodegenerative disorders. Front. Cell. Neurosci. 2017, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Huntley, G.W. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat. Rev. Neurosci. 2012, 13, 743–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccard, H.; Van den Steen, P.E.; Opdenakker, G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol. 2007, 81, 870–892. [Google Scholar] [CrossRef] [PubMed]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (timps): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Etique, N.; Verzeaux, L.; Dedieu, S.; Emonard, H. Lrp-1: A checkpoint for the extracellular matrix proteolysis. Biomed. Res. Int. 2013, 2013, 152163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomis-Rüth, F.X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 2003, 24, 157–202. [Google Scholar] [CrossRef]
- Vandooren, J.; Van den Steen, P.E.; Opdenakker, G. Biochemistry and molecular biology of gelatinase b or matrix metalloproteinase-9 (mmp-9): The next decade. Crit Rev. Biochem. Mol. Biol. 2013, 48, 222–272. [Google Scholar] [CrossRef] [PubMed]
- Tsien, R.Y. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. Acad. Sci. USA 2013, 110, 12456–12461. [Google Scholar] [CrossRef] [Green Version]
- Wiera, G.; Nowak, D.; van Hove, I.; Dziegiel, P.; Moons, L.; Mozrzymas, J.W. Mechanisms of nmda receptor- and voltage-gated l-type calcium channel-dependent hippocampal ltp critically rely on proteolysis that is mediated by distinct metalloproteinases. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 1240–1256. [Google Scholar] [CrossRef]
- Wiera, G.; Lebida, K.; Lech, A.M.; Brzdąk, P.; Van Hove, I.; De Groef, L.; Moons, L.; Petrini, E.M.; Barberis, A.; Mozrzymas, J.W. Long-term plasticity of inhibitory synapses in the hippocampus and spatial learning depends on matrix metalloproteinase 3. Cell. Mol. Life Sci. CMLS 2021, 78, 2279–2298. [Google Scholar] [CrossRef]
- Zhang, J.W.; Deb, S.; Gottschall, P.E. Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur. J. Neurosci. 1998, 10, 3358–3368. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.S.; Errington, M.L.; Dolphin, A.C.; Bliss, T.V. Increased efflux of a haemoglobin-like protein and an 80 kda protease into push-pull perfusates following the induction of long-term potentiation in the dentate gyrus. Brain Res. 1990, 521, 247–253. [Google Scholar] [CrossRef]
- Vandooren, J.; Geurts, N.; Martens, E.; Van den Steen, P.E.; Opdenakker, G. Zymography methods for visualizing hydrolytic enzymes. Nat. Methods 2013, 10, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.S.; Breen, K.; Errington, M.L.; Bliss, T.V. Increase in extracellular ncam and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci. Lett. 1994, 169, 77–80. [Google Scholar] [CrossRef]
- Qian, Z.; Gilbert, M.E.; Colicos, M.A.; Kandel, E.R.; Kuhl, D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993, 361, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Nedivi, E.; Hevroni, D.; Naot, D.; Israeli, D.; Citri, Y. Numerous candidate plasticity-related genes revealed by differential cdna cloning. Nature 1993, 363, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Chiao, Y.A.; Ramirez, T.A.; Zamilpa, R.; Okoronkwo, S.M.; Dai, Q.; Zhang, J.; Jin, Y.F.; Lindsey, M.L. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc. Res. 2012, 96, 444–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.K.; Pender, S.L.; Pickard, K.M.; Chance, V.; Holloway, J.A.; Huett, A.; Goncalves, N.S.; Mudgett, J.S.; Dougan, G.; Frankel, G.; et al. Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient mice. J. Immunol. 2004, 173, 5171–5179. [Google Scholar] [CrossRef]
- Vanden Berghe, T.; Hulpiau, P.; Martens, L.; Vandenbroucke, R.E.; Van Wonterghem, E.; Perry, S.W.; Bruggeman, I.; Divert, T.; Choi, S.M.; Vuylsteke, M.; et al. Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity 2015, 43, 200–209. [Google Scholar] [CrossRef] [Green Version]
- De Bruyn, M.; Breynaert, C.; Arijs, I.; De Hertogh, G.; Geboes, K.; Thijs, G.; Matteoli, G.; Hu, J.; Van Damme, J.; Arnold, B.; et al. Inhibition of gelatinase b/mmp-9 does not attenuate colitis in murine models of inflammatory bowel disease. Nat. Commun. 2017, 8, 15384. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J. Criteria for identifying the molecular basis of the engram (camkii, pkmzeta). Mol. Brain 2017, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, L. Mmp-9 in control of synaptic plasticity: A subjective account. Opera Med. Physiol. 2016, 2, 103–111. [Google Scholar]
- Nagy, V.; Bozdagi, O.; Matynia, A.; Balcerzyk, M.; Okulski, P.; Dzwonek, J.; Costa, R.M.; Silva, A.J.; Kaczmarek, L.; Huntley, G.W. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 1923–1934. [Google Scholar] [CrossRef] [PubMed]
- Wiera, G.; Wozniak, G.; Bajor, M.; Kaczmarek, L.; Mozrzymas, J.W. Maintenance of long-term potentiation in hippocampal mossy fiber-ca3 pathway requires fine-tuned mmp-9 proteolytic activity. Hippocampus 2013, 23, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Wiera, G.; Mozrzymas, J.W. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front. Cell. Neurosci. 2015, 9, 427. [Google Scholar] [CrossRef]
- Gorkiewicz, T.; Balcerzyk, M.; Kaczmarek, L.; Knapska, E. Matrix metalloproteinase 9 (mmp-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front. Cell. Neurosci. 2015, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.B.; Bozdagi, O.; Nikitczuk, J.S.; Zhai, Z.W.; Zhou, Q.; Huntley, G.W. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl. Acad. Sci. USA 2008, 105, 19520–19525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozdagi, O.; Nagy, V.; Kwei, K.T.; Huntley, G.W. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 2007, 98, 334–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtowicz, T.; Mozrzymas, J.W. Late phase of long-term potentiation in the mossy fiber-ca3 hippocampal pathway is critically dependent on metalloproteinases activity. Hippocampus 2010, 20, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Meighan, S.E.; Meighan, P.C.; Choudhury, P.; Davis, C.J.; Olson, M.L.; Zornes, P.A.; Wright, J.W.; Harding, J.W. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem. 2006, 96, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- Dziembowska, M.; Milek, J.; Janusz, A.; Rejmak, E.; Romanowska, E.; Gorkiewicz, T.; Tiron, A.; Bramham, C.R.; Kaczmarek, L. Activity-dependent local translation of matrix metalloproteinase-9. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 14538–14547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janusz, A.; Milek, J.; Perycz, M.; Pacini, L.; Bagni, C.; Kaczmarek, L.; Dziembowska, M. The fragile x mental retardation protein regulates matrix metalloproteinase 9 mrna at synapses. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 18234–18241. [Google Scholar] [CrossRef] [Green Version]
- Jasinska, M.; Milek, J.; Cymerman, I.A.; Leski, S.; Kaczmarek, L.; Dziembowska, M. Mir-132 regulates dendritic spine structure by direct targeting of matrix metalloproteinase 9 mrna. Mol. Neurobiol. 2016, 53, 4701–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbai, O.; Ferhat, L.; Bernard, A.; Gueye, Y.; Ould-Yahoui, A.; Thiolloy, S.; Charrat, E.; Charton, G.; Tremblay, E.; Risso, J.J.; et al. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Mol. Cell. Neurosci. 2008, 39, 549–568. [Google Scholar] [CrossRef] [PubMed]
- Harward, S.C.; Hedrick, N.G.; Hall, C.E.; Parra-Bueno, P.; Milner, T.A.; Pan, E.; Laviv, T.; Hempstead, B.L.; Yasuda, R.; McNamara, J.O. Autocrine bdnf-trkb signalling within a single dendritic spine. Nature 2016, 538, 99–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Park, H.; Poo, M.M. Spike-timing-dependent bdnf secretion and synaptic plasticity. Philos. Trans. R. Soc. Lond. Ser. Bbiological. Sci. 2014, 369, 20130132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Salgado, J.M.; Ostroff, L.; Helton, T.D.; Robinson, C.G.; Harris, K.M.; Ehlers, M.D. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2006, 52, 817–830. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Nagase, H. Localizing matrix metalloproteinase activities in the pericellular environment. Febs J. 2011, 278, 2–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzwonek, J.; Wilczynski, G.M. Cd44: Molecular interactions, signaling and functions in the nervous system. Front. Cell. Neurosci. 2015, 9, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stawarski, M.; Stefaniuk, M.; Wlodarczyk, J. Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Front. Neuroanat. 2014, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Szepesi, Z.; Hosy, E.; Ruszczycki, B.; Bijata, M.; Pyskaty, M.; Bikbaev, A.; Heine, M.; Choquet, D.; Kaczmarek, L.; Wlodarczyk, J. Synaptically released matrix metalloproteinase activity in control of structural plasticity and the cell surface distribution of glua1-ampa receptors. PLoS ONE 2014, 9, e98274. [Google Scholar] [CrossRef] [Green Version]
- Ogata, Y.; Enghild, J.J.; Nagase, H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J. Biol. Chem. 1992, 267, 3581–3584. [Google Scholar] [CrossRef]
- Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to nmda-induced retinal ganglion cell death. Invest. Ophthalmol. Vis. Sci. 2005, 46, 4747–4753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, S.; Medina, C.; Ledwidge, M.; Radomski, M.W.; Gilmer, J.F. Nitric oxide-matrix metaloproteinase-9 interactions: Biological and pharmacological significance--no and mmp-9 interactions. Biochim. Biophys. Acta 2014, 1843, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Kaul, M.; Yan, B.; Kridel, S.J.; Cui, J.; Strongin, A.; Smith, J.W.; Liddington, R.C.; Lipton, S.A. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 2002, 297, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Peppin, G.J.; Weiss, S.J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl. Acad. Sci. USA 1986, 83, 4322–4326. [Google Scholar] [CrossRef] [Green Version]
- Padamsey, Z.; McGuinness, L.; Bardo, S.J.; Reinhart, M.; Tong, R.; Hedegaard, A.; Hart, M.L.; Emptage, N.J. Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 2017, 93, 132–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijata, M.; Labus, J.; Guseva, D.; Stawarski, M.; Butzlaff, M.; Dzwonek, J.; Schneeberg, J.; Bohm, K.; Michaluk, P.; Rusakov, D.A.; et al. Synaptic remodeling depends on signaling between serotonin receptors and the extracellular matrix. Cell Rep. 2017, 19, 1767–1782. [Google Scholar] [CrossRef] [Green Version]
- Figiel, I.; Kruk, P.K.; Zareba-Koziol, M.; Rybak, P.; Bijata, M.; Wlodarczyk, J.; Dzwonek, J. Mmp-9 signaling pathways that engage rho gtpases in brain plasticity. Cells 2021, 10, 166. [Google Scholar] [CrossRef]
- Bajor, M.; Kaczmarek, L. Proteolytic remodeling of the synaptic cell adhesion molecules (cams) by metzincins in synaptic plasticity. Neurochem. Res. 2013, 38, 1113–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinoe, T.; Goda, Y. Tuning synapses by proteolytic remodeling of the adhesive surface. Curr. Opin. Neurobiol. 2015, 35, 148–155. [Google Scholar] [CrossRef]
- Spolidoro, M.; Putignano, E.; Munafo, C.; Maffei, L.; Pizzorusso, T. Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Cereb. Cortex 2012, 22, 725–734. [Google Scholar] [CrossRef]
- Peixoto, R.T.; Kunz, P.A.; Kwon, H.; Mabb, A.M.; Sabatini, B.L.; Philpot, B.D.; Ehlers, M.D. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 2012, 76, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, J.J.; Kuzniewska, B.; Milek, J.; Urbanska, K.; Dziembowska, M. Neuroligin 1, 2, and 3 regulation at the synapse: Fmrp-dependent translation and activity-induced proteolytic cleavage. Mol. Neurobiol. 2019, 56, 2741–2759. [Google Scholar] [CrossRef] [Green Version]
- Ribot, J.; Breton, R.; Calvo, C.-F.; Moulard, J.; Ezan, P.; Zapata, J.; Samama, K.; Moreau, M.; Bemelmans, A.-P.; Sabatet, V.; et al. Astrocytes close the mouse critical period for visual plasticity. Science 2021, 373, 77–81. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Nakade, J.; Tachibana, M.; Ibi, D.; Someya, E.; Koike, H.; Kamei, H.; Nabeshima, T.; Itohara, S.; Takuma, K.; et al. Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-bdnf to mature bdnf in the hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 12963–12971. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, D.; Michaelsen-Preusse, K.; Güner, Ü.; van Dorland, R.; Wierenga, C.J.; Lohmann, C. A bdnf-mediated push-pull plasticity mechanism for synaptic clustering. Cell Rep. 2018, 24, 2063–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Duan, J.; Wang, X.; Zhong, X.; Hu, Z.; Huang, F.; Wang, H.; Zhang, J.; Li, F.; Zhang, J.; et al. Early enriched environment induces an increased conversion of probdnf to bdnf in the adult rat’s hippocampus. Behav. Brain Res. 2014, 265, 76–83. [Google Scholar] [CrossRef]
- Kuzniewska, B.; Rejmak, E.; Malik, A.R.; Jaworski, J.; Kaczmarek, L.; Kalita, K. Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-fos pathway. Mol. Cell Biol. 2013, 33, 2149–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.H.; Afroz, S.; Reinhard, S.M.; Palacios, A.R.; Tapia, K.; Binder, D.K.; Razak, K.A.; Ethell, I.M. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing fmr1 knock-out mice. Cereb. Cortex 2018, 28, 3951–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murase, S.; Lantz, C.L.; Quinlan, E.M. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of mmp-9. eLife 2017, 6, e27345. [Google Scholar] [CrossRef]
- Murase, S.; Winkowski, D.; Liu, J.; Kanold, P.O.; Quinlan, E.M. Homeostatic regulation of perisynaptic matrix metalloproteinase 9 (mmp9) activity in the amblyopic visual cortex. eLife 2019, 8, e52503. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.A.; Russo, A.S.; Jackson, C.D.; Lamantia, C.E.; Majewska, A.K. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: Analysis of matrix metalloproteinase 9 deficient mice. Front. Cell. Neurosci. 2015, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Keller, C.; Neuhofer, D.; Bobadilla, A.C.; Spencer, S.; Chioma, V.C.; Monforton, C.; Kalivas, P.W. Extracellular matrix signaling through beta3 integrin mediates cocaine cue-induced transient synaptic plasticity and relapse. Biol. Psychiatry 2019, 86, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Michaluk, P.; Mikasova, L.; Groc, L.; Frischknecht, R.; Choquet, D.; Kaczmarek, L. Matrix metalloproteinase-9 controls nmda receptor surface diffusion through integrin beta1 signaling. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 6007–6012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaluk, P.; Wawrzyniak, M.; Alot, P.; Szczot, M.; Wyrembek, P.; Mercik, K.; Medvedev, N.; Wilczek, E.; De Roo, M.; Zuschratter, W.; et al. Influence of matrix metalloproteinase mmp-9 on dendritic spine morphology. J. Cell Sci. 2011, 124, 3369–3380. [Google Scholar] [CrossRef] [Green Version]
- Ricard-Blum, S.; Vallet, S.D. Proteases decode the extracellular matrix cryptome. Biochimie 2016, 122, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Tian, L.; Smirnov, S.; Vihinen, H.; Llano, O.; Vick, K.; Davis, R.L.; Rivera, C.; Gahmberg, C.G. Interactions between icam-5 and beta1 integrins regulate neuronal synapse formation. J. Cell Sci. 2013, 126, 77–89. [Google Scholar]
- Kelly, E.A.; Tremblay, M.E.; Gahmberg, C.G.; Tian, L.; Majewska, A.K. Interactions between intercellular adhesion molecule-5 positive elements and their surroundings in the rodent visual cortex. Commun. Integr. Biol. 2013, 6, e27315. [Google Scholar] [CrossRef]
- Kelly, E.A.; Tremblay, M.E.; Gahmberg, C.G.; Tian, L.; Majewska, A.K. Subcellular localization of intercellular adhesion molecule-5 (telencephalin) in the visual cortex is not developmentally regulated in the absence of matrix metalloproteinase-9. J. Comp. Neurol. 2014, 522, 676–688. [Google Scholar] [CrossRef] [Green Version]
- Lonskaya, I.; Partridge, J.; Lalchandani, R.R.; Chung, A.; Lee, T.; Vicini, S.; Hoe, H.S.; Lim, S.T.; Conant, K. Soluble icam-5, a product of activity dependent proteolysis, increases mepsc frequency and dendritic expression of glua1. PLoS ONE 2013, 8, e69136. [Google Scholar] [CrossRef] [PubMed]
- Kramar, E.A.; Lin, B.; Rex, C.S.; Gall, C.M.; Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 2006, 103, 5579–5584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babayan, A.H.; Kramar, E.A.; Barrett, R.M.; Jafari, M.; Haettig, J.; Chen, L.Y.; Rex, C.S.; Lauterborn, J.C.; Wood, M.A.; Gall, C.M.; et al. Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 12854–12861. [Google Scholar] [CrossRef] [Green Version]
- Meighan, P.C.; Meighan, S.E.; Davis, C.J.; Wright, J.W.; Harding, J.W. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/ca1 synapses. J. Neurochem. 2007, 102, 2085–2096. [Google Scholar] [CrossRef] [PubMed]
- Lebida, K.; Mozrzymas, J.W. Spike timing-dependent plasticity in the mouse barrel cortex is strongly modulated by sensory learning and depends on activity of matrix metalloproteinase 9. Mol. Neurobiol. 2017, 54, 6723–6736. [Google Scholar] [CrossRef] [Green Version]
- Magnowska, M.; Gorkiewicz, T.; Suska, A.; Wawrzyniak, M.; Rutkowska-Wlodarczyk, I.; Kaczmarek, L.; Wlodarczyk, J. Transient ecm protease activity promotes synaptic plasticity. Sci. Rep. 2016, 6, 27757. [Google Scholar] [CrossRef]
- Cauwe, B.; Van den Steen, P.E.; Opdenakker, G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 113–185. [Google Scholar] [CrossRef] [Green Version]
- Cauwe, B.; Opdenakker, G. Intracellular substrate cleavage: A novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 351–423. [Google Scholar] [CrossRef] [PubMed]
- Prudova, A.; auf dem Keller, U.; Butler, G.S.; Overall, C.M. Multiplex n-terminome analysis of mmp-2 and mmp-9 substrate degradomes by itraq-tails quantitative proteomics. Mol. Cell Proteom. 2010, 9, 894–911. [Google Scholar] [CrossRef] [Green Version]
- Beattie, E.C.; Stellwagen, D.; Morishita, W.; Bresnahan, J.C.; Ha, B.K.; Von Zastrow, M.; Beattie, M.S.; Malenka, R.C. Control of synaptic strength by glial tnfalpha. Science 2002, 295, 2282–2285. [Google Scholar] [CrossRef] [PubMed]
- Heir, R.; Stellwagen, D. Tnf-mediated homeostatic synaptic plasticity: From in vitro to in vivo models. Front. Cell. Neurosci. 2020, 14, 565841. [Google Scholar] [CrossRef]
- Valenzuela, J.C.; Heise, C.; Franken, G.; Singh, J.; Schweitzer, B.; Seidenbecher, C.I.; Frischknecht, R. Hyaluronan-based extracellular matrix under conditions of homeostatic plasticity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014, 369, 20130606. [Google Scholar] [CrossRef] [PubMed]
- Backstrom, J.R.; Lim, G.P.; Cullen, M.J.; Tökés, Z.a. Matrix metalloproteinase-9 (mmp-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40). J. Neurosci.: Off. J. Soc. Neurosci. 1996, 16, 7910–7919. [Google Scholar] [CrossRef] [Green Version]
- Abramov, E.; Dolev, I.; Fogel, H.; Ciccotosto, G.D.; Ruff, E.; Slutsky, I. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 2009, 12, 1567–1576. [Google Scholar] [CrossRef]
- Castellano, J.M.; Mosher, K.I.; Abbey, R.J.; McBride, A.A.; James, M.L.; Berdnik, D.; Shen, J.C.; Zou, B.; Xie, X.S.; Tingle, M.; et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017, 544, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Yasuda, O.; Takemura, Y.; Ishikawa, Y.; Ohishi, M.; Iwanami, J.; Mogi, M.; Doe, N.; Horiuchi, M.; Maeda, N.; et al. Timp-3 deficiency impairs cognitive function in mice. Lab. Investig. A J. Tech. Methods Pathol. 2009, 89, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, D.M.; Boone, J.; Caterina, J.; Soloway, P.; Falls, W.A. Prepulse inhibition and fear-potentiated startle are altered in tissue inhibitor of metalloproteinase-2 (timp-2) knockout mice. Brain Res. 2005, 1051, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Okulski, P.; Jay, T.M.; Jaworski, J.; Duniec, K.; Dzwonek, J.; Konopacki, F.A.; Wilczynski, G.M.; Sanchez-Capelo, A.; Mallet, J.; Kaczmarek, L. Timp-1 abolishes mmp-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol. Psychiatry 2007, 62, 359–362. [Google Scholar] [CrossRef]
- Wiera, G.; Wojtowicz, T.; Lebida, K.; Piotrowska, A.; Drulis-Fajdasz, D.; Gomulkiewicz, A.; Gendosz, D.; Podhorska-Okolow, M.; Capogna, M.; Wilczynski, G.; et al. Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber-ca3 pathway. Mol. Cell. Neurosci. 2012, 50, 147–159. [Google Scholar] [CrossRef]
- Ganguly, K.; Rejmak, E.; Mikosz, M.; Nikolaev, E.; Knapska, E.; Kaczmarek, L. Matrix metalloproteinase (mmp) 9 transcription in mouse brain induced by fear learning. J. Biol. Chem. 2013, 288, 20978–20991. [Google Scholar] [CrossRef] [Green Version]
- Van der Kooij, M.A.; Fantin, M.; Rejmak, E.; Grosse, J.; Zanoletti, O.; Fournier, C.; Ganguly, K.; Kalita, K.; Kaczmarek, L.; Sandi, C. Role for mmp-9 in stress-induced downregulation of nectin-3 in hippocampal ca1 and associated behavioural alterations. Nat. Commun. 2014, 5, 4995. [Google Scholar] [CrossRef] [Green Version]
- Foscarin, S.; Ponchione, D.; Pajaj, E.; Leto, K.; Gawlak, M.; Wilczynski, G.M.; Rossi, F.; Carulli, D. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS ONE 2011, 6, e16666. [Google Scholar] [CrossRef] [PubMed]
- Knapska, E.; Lioudyno, V.; Kiryk, A.; Mikosz, M.; Gorkiewicz, T.; Michaluk, P.; Gawlak, M.; Chaturvedi, M.; Mochol, G.; Balcerzyk, M.; et al. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 14591–14600. [Google Scholar] [CrossRef] [Green Version]
- Chioma, V.C.; Kruyer, A.; Bobadilla, A.C.; Angelis, A.; Ellison, Z.; Hodebourg, R.; Scofield, M.D.; Kalivas, P.W. Heroin seeking and extinction from seeking activate matrix metalloproteinases at synapses on distinct subpopulations of accumbens cells. Biol. Psychiatry 2021, 89, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Vandooren, J.; Born, B.; Solomonov, I.; Zajac, E.; Saldova, R.; Senske, M.; Ugarte-Berzal, E.; Martens, E.; Van den Steen, P.E.; Van Damme, J.; et al. Circular trimers of gelatinase b/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem. J. 2015, 465, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serifova, X.; Ugarte-Berzal, E. Homotrimeric mmp-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through lrp-1. Cell. Mol. Life Sci. 2020, 77, 3013–3026. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, H.; Ibi, D.; Takuma, K.; Toth, E.; Sato, J.; Itohara, S.; Nabeshima, T.; Yamada, K. Alterations of emotional and cognitive behaviors in matrix metallo- proteinase-2 and -9-deficient mice. Open Behav. Sci. J. 2010, 4, 19–25. [Google Scholar] [CrossRef]
- Kaliszewska, A.; Bijata, M.; Kaczmarek, L.; Kossut, M. Experience-dependent plasticity of the barrel cortex in mice observed with 2-dg brain mapping and c-fos: Effects of mmp-9 ko. Cereb. Cortex 2012, 22, 2160–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasek, A.W.; Chen, H.; Chen, W.-Y. Releasing addiction memories trapped in perineuronal nets. Trends Genet. 2018, 34, 197–208. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Yamada, K.; Mouri, A.; Niwa, M.; Mizuno, T.; Noda, Y.; Nitta, A.; Itohara, S.; Banno, Y.; Nabeshima, T. Role of matrix metalloproteinase and tissue inhibitor of mmp in methamphetamine-induced behavioral sensitization and reward: Implications for dopamine receptor down-regulation and dopamine release. J. Neurochem. 2007, 102, 1548–1560. [Google Scholar] [CrossRef]
- Brown, T.E.; Forquer, M.R.; Cocking, D.L.; Jansen, H.T.; Harding, J.W.; Sorg, B.A. Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn. Mem. 2007, 14, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.C.; Kupchik, Y.M. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. Nat. Neurosci. 2014, 17, 1655–1657. [Google Scholar] [CrossRef] [Green Version]
- Stefaniuk, M.; Beroun, A.; Lebitko, T.; Markina, O.; Leski, S.; Meyza, K.; Grzywacz, A.; Samochowiec, J.; Samochowiec, A.; Radwanska, K.; et al. Matrix metalloproteinase-9 and synaptic plasticity in the central amygdala in control of alcohol-seeking behavior. Biol. Psychiatry 2017, 81, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Mardinly, A.R.; Spiegel, I.; Patrizi, A.; Centofante, E.; Bazinet, J.E.; Tzeng, C.P.; Mandel-Brehm, C.; Harmin, D.A.; Adesnik, H.; Fagiolini, M.; et al. Sensory experience regulates cortical inhibition by inducing igf1 in vip neurons. Nature 2016, 531, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamian, A.; Legutko, D.; Nowicka, K.; Badyra, B.; Kazmierska-Grebowska, P.; Caban, B.; Kowalczyk, T.; Kaczmarek, L.; Beroun, A. Inhibition of matrix metalloproteinase 9 activity promotes synaptogenesis in the hippocampus. Cereb. Cortex 2021, 31, 3804–3819. [Google Scholar] [CrossRef]
- Conant, K.; Wang, Y.; Szklarczyk, A.; Dudak, A.; Mattson, M.P.; Lim, S.T. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 2010, 166, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzdak, P.; Wlodarczyk, J.; Mozrzymas, J.W.; Wojtowicz, T. Matrix metalloprotease 3 activity supports hippocampal epsp-to-spike plasticity following patterned neuronal activity via the regulation of nmdar function and calcium flux. Mol. Neurobiol. 2017, 54, 804–816. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, T.; Mozrzymas, J.W. Matrix metalloprotease activity shapes the magnitude of EPSPs and spike plasticity within the hippocampal CA3 network. Hippocampus 2014, 24, 135–153. [Google Scholar] [CrossRef]
- Brzdak, P.; Wojcicka, O.; Zareba-Koziol, M.; Minge, D.; Henneberger, C.; Wlodarczyk, J.; Mozrzymas, J.W.; Wojtowicz, T. Synaptic potentiation at basal and apical dendrites of hippocampal pyramidal neurons involves activation of a distinct set of extracellular and intracellular molecular cues. Cereb. Cortex 2019, 29, 283–304. [Google Scholar] [CrossRef] [PubMed]
- Kochlamazashvili, G.; Henneberger, C.; Bukalo, O.; Dvoretskova, E.; Senkov, O.; Lievens, P.M.; Westenbroek, R.; Engel, A.K.; Catterall, W.A.; Rusakov, D.A.; et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic l-type Ca2+ channels. Neuron 2010, 67, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Morellini, F.; Malyshev, A.; Volgushev, M.; Chistiakova, M.; Papashvili, G.; Fellini, L.; Kleene, R.; Schachner, M.; Dityatev, A. Impaired fear extinction due to a deficit in Ca2+ influx through l-type voltage-gated Ca2+ channels in mice deficient for tenascin-c. Front. Integr. Neurosci. 2017, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegemann, C.; Didangelos, A.; Barallobre-Barreiro, J.; Langley, S.R.; Mandal, K.; Jahangiri, M.; Mayr, M. Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ. Cardiovasc. Genet. 2013, 6, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Falcon-Moya, R.; Perez-Rodriguez, M.; Prius-Mengual, J.; Andrade-Talavera, Y.; Arroyo-Garcia, L.E.; Perez-Artes, R.; Mateos-Aparicio, P.; Guerra-Gomes, S.; Oliveira, J.F.; Flores, G.; et al. Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat. Commun. 2020, 11, 4388. [Google Scholar] [CrossRef] [PubMed]
- Pigott, B.M.; Garthwaite, J. Nitric oxide is required for l-type Ca2+ channel-dependent long-term potentiation in the hippocampus. Front. Synaptic Neurosci. 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hove, I.; Lemmens, K.; Van de Velde, S.; Verslegers, M.; Moons, L. Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J. Neurochem. 2012, 123, 203–216. [Google Scholar] [CrossRef]
- Matsuura, T.; Li, X.H.; Tao, C.; Zhuo, M. Effects of matrix metalloproteinase inhibitors on n-methyl-d-aspartate receptor and contribute to long-term potentiation in the anterior cingulate cortex of adult mice. Mol. Pain 2019, 15, 1744806919842958. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Nys, J.; Moons, L.; Hu, T.T.; Arckens, L. Altered neuronal architecture and plasticity in the visual cortex of adult mmp-3-deficient mice. Brain Struct. Funct. 2015, 220, 2675–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hove, I.; Verslegers, M.; Buyens, T.; Delorme, N.; Lemmens, K.; Stroobants, S.; Gantois, I.; D’Hooge, R.; Moons, L. An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. Mol. Neurobiol. 2012, 45, 17–29. [Google Scholar] [CrossRef]
- Nowak, D.; Groef, L.; Moons, L.; Mozrzymas, J.W. Mmp-3 deficiency does not influence the length and number of ca1 dendrites of hippocampus of adult mice. Acta Neurobiol. Exp. 2018, 78, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.L.; Meighan, P.C.; Brown, T.E.; Asay, A.L.; Benoist, C.C.; Harding, J.W.; Wright, J.W. Hippocampal mmp-3 elevation is associated with passive avoidance conditioning. Regul. Pept. 2008, 146, 19–25. [Google Scholar] [CrossRef]
- Wright, J.W.; Meighan, P.C.; Brown, T.E.; Wiediger, R.V.; Sorg, B.A.; Harding, J.W. Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by mmp-3. Behav. Brain Res. 2009, 203, 27–34. [Google Scholar] [CrossRef]
- Pauly, T.; Ratliff, M.; Pietrowski, E.; Neugebauer, R.; Schlicksupp, A.; Kirsch, J.; Kuhse, J. Activity-dependent shedding of the nmda receptor glycine binding site by matrix metalloproteinase 3: A putative mechanism of postsynaptic plasticity. PLoS ONE 2008, 3, e2681. [Google Scholar] [CrossRef] [Green Version]
- Franzke, C.W.; Tasanen, K.; Schacke, H.; Zhou, Z.; Tryggvason, K.; Mauch, C.; Zigrino, P.; Sunnarborg, S.; Lee, D.C.; Fahrenholz, F.; et al. Transmembrane collagen xvii, an epithelial adhesion protein, is shed from the cell surface by adams. Embo J. 2002, 21, 5026–5035. [Google Scholar] [CrossRef] [Green Version]
- Odake, S.; Morita, Y.; Morikawa, T.; Yoshida, N.; Hori, H.; Nagai, Y. Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids. Biochem. Biophys. Res. Commun. 1994, 199, 1442–1446. [Google Scholar] [CrossRef]
- Lee, H.; Lee, E.J.; Song, Y.S.; Kim, E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule ngl-3 through nmda receptors, matrix metalloproteinases and presenilin/gamma-secretase. Philos. Trans. R Soc. Lond. B Biol. Sci. 2014, 369, 20130158. [Google Scholar] [CrossRef] [PubMed]
- Wilczynski, G.M.; Konopacki, F.A.; Wilczek, E.; Lasiecka, Z.; Gorlewicz, A.; Michaluk, P.; Wawrzyniak, M.; Malinowska, M.; Okulski, P.; Kolodziej, L.R.; et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 2008, 180, 1021–1035. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.A.; Van Vliet, E.A.; Rauwerda, H.; Breit, T.; Stad, R.; van Schaik, L.; Vreugdenhil, E.; Redeker, S.; Hendriksen, E.; Aronica, E.; et al. Dynamic changes of proteases and protease inhibitors revealed by microarray analysis in ca3 and entorhinal cortex during epileptogenesis in the rat. Epilepsia 2007, 48 (Suppl. S5), 53–64. [Google Scholar] [CrossRef]
- Dubey, D.; McRae, P.A.; Rankin-Gee, E.K.; Baranov, E.; Wandrey, L.; Rogers, S.; Porter, B.E. Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res. 2017, 132, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Konopka, A.; Grajkowska, W.; Ziemianska, K.; Roszkowski, M.; Daszkiewicz, P.; Rysz, A.; Marchel, A.; Koperski, L.; Wilczynski, G.M.; Dzwonek, J. Matrix metalloproteinase-9 (mmp-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013, 104, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Gkogkas, C.G.; Khoutorsky, A.; Cao, R.; Jafarnejad, S.M.; Prager-Khoutorsky, M.; Giannakas, N.; Kaminari, A.; Fragkouli, A.; Nader, K.; Price, T.J.; et al. Pharmacogenetic inhibition of eif4e-dependent mmp9 mrna translation reverses fragile x syndrome-like phenotypes. Cell Rep. 2014, 9, 1742–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilousova, T.V.; Rusakov, D.A.; Ethell, D.W.; Ethell, I.M. Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through nmda receptor activation. J. Neurochem. 2006, 97, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, A.; Ewaleifoh, O.; Beique, J.C.; Wang, Y.; Knorr, D.; Haughey, N.; Malpica, T.; Mattson, M.P.; Huganir, R.; Conant, K. Mmp-7 cleaves the nr1 nmda receptor subunit and modifies nmda receptor function. Faseb J. 2008, 22, 3757–3767. [Google Scholar] [CrossRef]
- Pelkey, K.A.; Chittajallu, R.; Craig, M.T.; Tricoire, L.; Wester, J.C.; McBain, C.J. Hippocampal gabaergic inhibitory interneurons. Physiol. Rev. 2017, 97, 1619–1747. [Google Scholar] [CrossRef]
- Szodorai, E.; Bampali, K.; Romanov, R.A.; Kasper, S.; Hokfelt, T.; Ernst, M.; Lubec, G.; Harkany, T. Diversity matters: Combinatorial information coding by gabaa receptor subunits during spatial learning and its allosteric modulation. Cell Signal. 2018, 50, 142–159. [Google Scholar] [CrossRef]
- Barberis, A. Postsynaptic plasticity of gabaergic synapses. Neuropharmacology 2020, 169, 107643. [Google Scholar] [CrossRef]
- Chiu, C.Q.; Barberis, A.; Higley, M.J. Preserving the balance: Diverse forms of long-term gabaergic synaptic plasticity. Nat. Rev. Neurosci. 2019, 20, 272–281. [Google Scholar] [CrossRef]
- Capogna, M.; Castillo, P.E.; Maffei, A. The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. Eur. J. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Barron, H.C.; Vogels, T.P.; Behrens, T.E.; Ramaswami, M. Inhibitory engrams in perception and memory. Proc. Natl. Acad. Sci. USA 2017, 114, 6666–6674. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.E.; Chiu, C.Q.; Carroll, R.C. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 2011, 21, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Younts, T.J.; Castillo, P.E. Endogenous cannabinoid signaling at inhibitory interneurons. Curr. Opin. Neurobiol. 2014, 26, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.Q.; Martenson, J.S.; Yamazaki, M.; Natsume, R.; Sakimura, K.; Tomita, S.; Tavalin, S.J.; Higley, M.J. Input-specific nmdar-dependent potentiation of dendritic gabaergic inhibition. Neuron 2018, 97, 368–377.e363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrini, E.M.; Ravasenga, T.; Hausrat, T.J.; Iurilli, G.; Olcese, U.; Racine, V.; Sibarita, J.B.; Jacob, T.C.; Moss, S.J.; Benfenati, F.; et al. Synaptic recruitment of gephyrin regulates surface gabaa receptor dynamics for the expression of inhibitory ltp. Nat. Commun. 2014, 5, 3921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, J.; Arancibia-Carcamo, I.L.; MacAskill, A.F.; Smith, K.R.; Griffin, L.D.; Kittler, J.T. Nmda receptors regulate gabaa receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the gamma2 subunit. Proc. Natl. Acad. Sci. USA 2010, 107, 16679–16684. [Google Scholar] [CrossRef] [Green Version]
- Udakis, M.; Pedrosa, V.; Chamberlain, S.E.L.; Clopath, C.; Mellor, J.R. Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto ca1 pyramidal neurons shapes hippocampal output. Nat. Commun. 2020, 11, 4395. [Google Scholar] [CrossRef] [PubMed]
- Kurotani, T.; Yamada, K.; Yoshimura, Y.; Crair, M.C.; Komatsu, Y. State-dependent bidirectional modification of somatic inhibition in neocortical pyramidal cells. Neuron 2008, 57, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Pigeat, R.; Chausson, P.; Dreyfus, F.M.; Leresche, N.; Lambert, R.C. Sleep slow wave-related homo and heterosynaptic ltd of intrathalamic gabaaergic synapses: Involvement of t-type ca2+ channels and metabotropic glutamate receptors. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimondo, J.V.; Richards, B.A.; Woodin, M.A. Neuronal chloride and excitability—the big impact of small changes. Curr. Opin. Neurobiol. 2017, 43, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Favuzzi, E.; Deogracias, R.; Marques-Smith, A.; Maeso, P.; Jezequel, J.; Exposito-Alonso, D.; Balia, M.; Kroon, T.; Hinojosa, A.J.; Maraver, F.M.; et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 2019, 363, 413–417. [Google Scholar] [CrossRef]
- Loh, K.H.; Stawski, P.S.; Draycott, A.S.; Udeshi, N.D.; Lehrman, E.K.; Wilton, D.K.; Svinkina, T.; Deerinck, T.J.; Ellisman, M.H.; Stevens, B.; et al. Proteomic analysis of unbounded cellular compartments: Synaptic clefts. Cell 2016, 166, 1295–1307.e1221. [Google Scholar] [CrossRef] [Green Version]
- Pollock, E.; Everest, M.; Brown, A.; Poulter, M.O. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol. Dis. 2014, 70, 21–31. [Google Scholar] [CrossRef]
- Carceller, H.; Guirado, R.; Ripolles-Campos, E.; Teruel-Marti, V.; Nacher, J. Perineuronal nets regulate the inhibitory perisomatic input onto parvalbumin interneurons and gamma activity in the prefrontal cortex. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 5008–5018. [Google Scholar] [CrossRef]
- Lensjo, K.K.; Lepperod, M.E.; Dick, G.; Hafting, T.; Fyhn, M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 1269–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Chen, J.; Lippold, K.; Monavarfeshani, A.; Carrillo, G.L.; Jenkins, R.; Fox, M.A. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex. J. Cell Biol. 2016, 212, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Muthuchamy, M.; Reddy, D.S. Atomic force microscopy investigations of fibronectin and alpha5beta1-integrin signaling in neuroplasticity and seizure susceptibility in experimental epilepsy. Epilepsy Res. 2017, 138, 71–80. [Google Scholar] [CrossRef]
- Charrier, C.; Machado, P.; Tweedie-Cullen, R.Y.; Rutishauser, D.; Mansuy, I.M.; Triller, A. A crosstalk between beta1 and beta3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nat. Neurosci. 2010, 13, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Szczot, M.; Kisiel, M.; Czyzewska, M.M.; Mozrzymas, J.W. Alpha1f64 residue at gaba(a) receptor binding site is involved in gating by influencing the receptor flipping transitions. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 3193–3209. [Google Scholar] [CrossRef] [Green Version]
- Fanjul-Fernandez, M.; Folgueras, A.R.; Cabrera, S.; Lopez-Otin, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta 2010, 1803, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Yap, E.-L.; Pettit, N.L.; Davis, C.P.; Nagy, M.A.; Harmin, D.A.; Golden, E.; Dagliyan, O.; Lin, C.; Rudolph, S.; Sharma, N.; et al. Bidirectional perisomatic inhibitory plasticity of a fos neuronal network. Nature 2021, 590, 115–121. [Google Scholar] [CrossRef]
- Leger, C.; Dupre, N.; Aligny, C.; Benard, M.; Lebon, A.; Henry, V.; Hauchecorne, M.; Galas, L.; Frebourg, T.; Leroux, P.; et al. Glutamate controls vessel-associated migration of gaba interneurons from the pial migratory route via nmda receptors and endothelial protease activation. Cell. Mol. Life Sci. Cmls 2020, 77, 1959–1986. [Google Scholar] [CrossRef] [Green Version]
- Roux, L.; Buzsaki, G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology 2015, 88, 10–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaiyed, S.; Bozzelli, P.L.; Caccavano, A.; Wu, J.Y.; Conant, K. Venlafaxine stimulates pnn proteolysis and mmp-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J. Neurochem. 2019, 148, 810–821. [Google Scholar] [CrossRef]
- Alaiyed, S.; McCann, M.; Mahajan, G.; Rajkowska, G.; Stockmeier, C.A.; Kellar, K.J.; Wu, J.Y.; Conant, K. Venlafaxine stimulates an mmp-9-dependent increase in excitatory/inhibitory balance in a stress model of depression. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 4418–4431. [Google Scholar] [CrossRef]
- Michaluk, P.; Kolodziej, L.; Mioduszewska, B.; Wilczynski, G.M.; Dzwonek, J.; Jaworski, J.; Gorecki, D.C.; Ottersen, O.P.; Kaczmarek, L. Beta-dystroglycan as a target for mmp-9, in response to enhanced neuronal activity. J. Biol. Chem. 2007, 282, 16036–16041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, A.; Brown, S.C.; Blake, D.J. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 2012, 35, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Panzanelli, P.; Gunn, B.G.; Schlatter, M.C.; Benke, D.; Tyagarajan, S.K.; Scheiffele, P.; Belelli, D.; Lambert, J.J.; Rudolph, U.; Fritschy, J.M. Distinct mechanisms regulate gabaa receptor and gephyrin clustering at perisomatic and axo-axonic synapses on ca1 pyramidal cells. J. Physiol. 2011, 589, 4959–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fruh, S.; Romanos, J.; Panzanelli, P.; Burgisser, D.; Tyagarajan, S.K.; Campbell, K.P.; Santello, M.; Fritschy, J.M. Neuronal dystroglycan is necessary for formation and maintenance of functional cck-positive basket cell terminals on pyramidal cells. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 10296–10313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pribiag, H.; Peng, H.; Shah, W.A.; Stellwagen, D.; Carbonetto, S. Dystroglycan mediates homeostatic synaptic plasticity at gabaergic synapses. Proc. Natl. Acad. Sci. USA 2014, 111, 6810–6815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaillend, C.; Billard, J.M. Facilitated ca1 hippocampal synaptic plasticity in dystrophin-deficient mice: Role for gabaa receptors? Hippocampus 2002, 12, 713–717. [Google Scholar] [CrossRef]
- Gawlak, M.; Gorkiewicz, T.; Gorlewicz, A.; Konopacki, F.A.; Kaczmarek, L.; Wilczynski, G.M. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 2009, 158, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Murase, S.; Lantz, C.L.; Kim, E.; Gupta, N.; Higgins, R.; Stopfer, M.; Hoffman, D.A.; Quinlan, E.M. Matrix metalloproteinase-9 regulates neuronal circuit development and excitability. Mol. Neurobiol. 2016, 53, 3477–3493. [Google Scholar] [CrossRef] [Green Version]
- Porcher, C.; Medina, I.; Gaiarsa, J.-L. Mechanism of bdnf modulation in gabaergic synaptic transmission in healthy and disease brains. Front. Cell. Neurosci. 2018, 12, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Hayashi, Y.; Nakahara, S.; Kumazaki, H.; Prox, J.; Horiuchi, K.; Zeng, M.; Tanimura, S.; Nishiyama, Y.; Osawa, S.; et al. Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 2012, 76, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.; Ghosh, S.; Ahern, G.P.; Villapol, S.; Maguire-Zeiss, K.A.; Conant, K. Protease induced plasticity: Matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci. Rep. 2016, 6, 35497. [Google Scholar] [CrossRef]
- Hashimotodani, Y.; Ohno-Shosaku, T.; Yamazaki, M.; Sakimura, K.; Kano, M. Neuronal protease-activated receptor 1 drives synaptic retrograde signaling mediated by the endocannabinoid 2-arachidonoylglycerol. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 3104–3109. [Google Scholar] [CrossRef] [Green Version]
- Al-muhtasib, N.; Forcelli, P.A.; Conant, K.E.; Vicini, S. Mmp-1 overexpression selectively alters inhibition in d1 spiny projection neurons in the mouse nucleus accumbens core. Sci. Rep. 2018, 8, 16230. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.J.; Lee, C.J. Distribution and function of the bestrophin-1 (best1) channel in the brain. Exp. Neurobiol. 2017, 26, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Hausrat, T.J.; Muhia, M.; Gerrow, K.; Thomas, P.; Hirdes, W.; Tsukita, S.; Heisler, F.F.; Herich, L.; Dubroqua, S.; Breiden, P.; et al. Radixin regulates synaptic gabaa receptor density and is essential for reversal learning and short-term memory. Nat. Commun. 2015, 6, 6872. [Google Scholar] [CrossRef] [PubMed]
- Dembitskaya, Y.; Wu, Y.W.; Semyanov, A. Tonic gaba(a) conductance favors spike-timing-dependent over theta-burst-induced long-term potentiation in the hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 4266–4276. [Google Scholar] [CrossRef]
- Bryson, A.; Hatch, R.J.; Zandt, B.J.; Rossert, C.; Berkovic, S.F.; Reid, C.A.; Grayden, D.B.; Hill, S.L.; Petrou, S. Gaba-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proc. Natl. Acad. Sci. USA 2020, 117, 3192–3202. [Google Scholar] [CrossRef] [PubMed]
- Lepeta, K.; Kaczmarek, L. Matrix metalloproteinase-9 as a novel player in synaptic plasticity and schizophrenia. Schizophr. Bull. 2015, 41, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukasiuk, K.; Wilczynski, G.M.; Kaczmarek, L. Extracellular proteases in epilepsy. Epilepsy Res. 2011, 96, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Pitkanen, A.; Ndode-Ekane, X.E.; Lukasiuk, K.; Wilczynski, G.M.; Dityatev, A.; Walker, M.C.; Chabrol, E.; Dedeurwaerdere, S.; Vazquez, N.; Powell, E.M. Neural ecm and epilepsy. Prog. Brain Res. 2014, 214, 229–262. [Google Scholar] [PubMed]
- Stefanelli, T.; Bertollini, C.; Luscher, C.; Muller, D.; Mendez, P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 2016, 89, 1074–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiera, G.; Mozrzymas, J.W. Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021, 10, 2055. https://doi.org/10.3390/cells10082055
Wiera G, Mozrzymas JW. Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells. 2021; 10(8):2055. https://doi.org/10.3390/cells10082055
Chicago/Turabian StyleWiera, Grzegorz, and Jerzy W. Mozrzymas. 2021. "Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses" Cells 10, no. 8: 2055. https://doi.org/10.3390/cells10082055
APA StyleWiera, G., & Mozrzymas, J. W. (2021). Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells, 10(8), 2055. https://doi.org/10.3390/cells10082055