Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options
Abstract
:1. Introduction
2. Localization of Limbal Epithelial Stem Cells
3. Limbal Epithelial Stem Cell Markers
3.1. p63
3.2. ABCG2
3.3. Growth Factor Receptors
3.4. Integrins
3.5. Keratins
4. Pathophysiology of Limbal Stem Cell Deficiency
5. Therapy of LSCD
5.1. Conservative Therapy
5.2. Basic Surgeries and Novel Techniques
5.3. Limbal Stem Cell Transplantation Techniques
5.3.1. Conjunctival-Limbal Autograft
5.3.2. Keratolimbal Allograft and Living-Related Conjunctival Limbal Allograft
5.3.3. Ex Vivo Cultivated Limbal Epithelial Transplantation
5.3.4. Simple Limbal Epithelial Transplantation
5.3.5. Non-LESCs Transplantation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT | adipose tissue |
allo-CLET | allogeneic CLET |
allo-SLET | allogeneic SLET |
ACER | amnion-assisted conjunctival epithelial redirection |
AMT | amniotic membrane transplantation |
AT-MSCs | AT-derived MSCs |
ABC | ATP binding cassette |
auto-CLET | autologous CLET |
auto-SLET | autologous SLET |
BCRP1 | breast cancer resistance protein 1 |
BrdU | bromodeoxyuridine |
CLAU | conjunctival-limbal autograft |
Cx43 | connexin 43 |
COMET | cultivated oral mucosal epithelial transplantation |
EGFR | epidermal growth factor receptor |
CLET | ex vivo cultivated limbal epithelial transplantation |
HFSCs | hair follicle bulge-derived stem cells |
hIDPSCs | human immature dentalpulp stem cells |
IL | interleukin |
KGF | Keratinocyte growth factor |
KGFR | keratinocyte growth factor receptor |
KLAL | keratolimbal allograft |
LESCs | limbal epithelial stem cells |
LSCD | limbal stem cell deficiency |
lr-CLAL | living-related conjunctival limbal allograft |
MSCs | mesenchymal stem cells |
ΔNp63α | nuclear p63 transcription factor |
PlGF | placenta growth factor |
polyP | polyphosphate |
poly-MPC | polymer 2-methacryloyloxyethyl phosphorylcholine |
PDL | pre-Descemet’s layer |
RHCIII | recombinant human collagen type III |
SSCE | sequential sector conjunctival epitheliectomy |
SP | side population |
SLET | simple limbal epithelial transplantation |
SAoO | Swiss Academy of Ophthalmology |
TAC | transit amplifying cell |
VEGF | vascular endothelial growth factor |
VEGFR1 | VEGF receptor 1 |
References
- Haeckel, E. Natürliche Schöpfungsgeschichte: Gemeinverständliche Wissenschaftliche Vorträge Über die Entwickelungslehre im Allgemeinen und Diejenige von Darwin, Goethe und Lamarck und Besonderen; Biodiversity Heritage Libary: Berlin, Germany, 1868. [Google Scholar]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Lavker, R.M.; Sun, T.-T. Epidermal stem cells: Properties, markers, and location. Proc. Natl. Acad. Sci. USA 2000, 97, 13473–13475. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, E.; Segre, J.A. Stem Cells: A New Lease on Life. Cell 2000, 100, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [Green Version]
- Montagnani, S.; Rueger, M.A.; Hosoda, T.; Nurzynska, D. Adult Stem Cells in Tissue Maintenance and Regeneration. Stem Cells Int. 2016, 2016, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Henningson, C.T.; Stanislaus, M.A.; Gewirtz, A.M. Embryonic and adult stem cell therapy. J. Allergy Clin. Immunol. 2003, 111, S745–S753. [Google Scholar] [CrossRef] [PubMed]
- Nuti, N.; Corallo, C.; Chan, B.M.F.; Ferrari, M.; Gerami-Naini, B. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Rev. Rep. 2016, 12, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Catacchio, I.; Berardi, S.; Reale, A.; De Luisi, A.; Racanelli, V.; Vacca, A.; Ria, R. Evidence for Bone Marrow Adult Stem Cell Plasticity: Properties, Molecular Mechanisms, Negative Aspects, and Clinical Applications of Hematopoietic and Mesenchymal Stem Cells Transdifferentiation. Stem Cells Int. 2013, 2013, 589139. [Google Scholar] [CrossRef] [Green Version]
- So, W.-K.; Cheung, T.H.; Lacorazza, H.D. Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches. Adv. Struct. Saf. Stud. 2017, 1686, 1–25. [Google Scholar]
- Bhartiya, D.; Mohammad, S.A.; Guha, A.; Singh, P.; Sharma, D.; Kaushik, A. Evolving Definition of Adult Stem/Progenitor Cells. Stem Cell Rev. Rep. 2019, 15, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Almada, A.E.; Wagers, A.E.A.A.J. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat. Rev. Mol. Cell Biol. 2016, 17, 267–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davanger, M.; Evensen, A. Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium. Nat. Cell Biol. 1971, 229, 560–561. [Google Scholar] [CrossRef]
- Keivyon, K.R.; Tseng, S.C. Limbal Autograft Transplantation for Ocular Surface Disorders. Ophthalmology 1989, 96, 709–723. [Google Scholar] [CrossRef]
- Pellegrini, G.; Golisano, O.; Paterna, P.; Lambiase, A.; Bonini, S.; Rama, P.; De Luca, M. Location and Clonal Analysis of Stem Cells and Their Differentiated Progeny in the Human Ocular Surface. J. Cell Biol. 1999, 145, 769–782. [Google Scholar] [CrossRef]
- Huang, A.J.; Tseng, S.C. Corneal epithelial wound healing in the absence of limbal epithelium. Investig. Ophthalmol. Vis. Sci. 1991, 32, 96–105. [Google Scholar]
- Amano, S.; Yamagami, S.; Mimura, T.; Uchida, S.; Yokoo, S. Corneal Stromal and Endothelial Cell Precursors. Cornea 2006, 25, S73–S77. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Y.; Sheridan, C.; Grierson, I.; Mason, S.; Kearns, V.; Lo, A.C.Y.; Wong, D. Progenitors for the Corneal Endothelium and Trabecular Meshwork: A Potential Source for Personalized Stem Cell Therapy in Corneal Endothelial Diseases and Glaucoma. J. Biomed. Biotechnol. 2011, 2011, 412743. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Funderburgh, M.L.; Mann, M.M.; SundarRaj, N.; Funderburgh, J.L. Multipotent Stem Cells in Human Corneal Stroma. Stem Cells 2005, 23, 1266–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funderburgh, J.L.; Funderburgh, M.L.; Du, Y. Stem Cells in the Limbal Stroma. Ocul. Surf. 2016, 14, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnamaneni, N.; Funderburgh, J.L. Concise Review: Stem Cells in the Corneal Stroma. Stem Cells 2012, 30, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Joe, A.W.; Yeung, S.N. Concise Review: Identifying Limbal Stem Cells: Classical Concepts and New Challenges. Stem Cells Transl. Med. 2014, 3, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-N.; Mi, S.-L. Corneal stromal mesenchymal stem cells: Reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int. J. Ophthalmol. 2021, 14, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Massoudi, D.; Malecaze, F.; Galiacy, S.D. Collagens and proteoglycans of the cornea: Importance in transparency and visual disorders. Cell Tissue Res. 2016, 363, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Mukhija, R.; Gupta, N.; Vashist, P.; Tandon, R.; Gupta, S.K. Population-based assessment of visual impairment and pattern of corneal disease: Results from the CORE (Corneal Opacity Rural Epidemiological) study. Br. J. Ophthalmol. 2019, 104, 994–998. [Google Scholar] [CrossRef]
- World Health Organization. World Report on Vision. 2019. World Health Organization Website. Available online: https://www.who.int/docs/default-source/documents/publications/world-vision-report-accessible.pdf?sfvrsn=223f9bf7_2 (accessed on 20 June 2021).
- McMahon, T.T.; Robin, J.B. Corneal trauma: I--Classification and management. J. Am. Optom. Assoc. 1991, 62, 170–178. [Google Scholar]
- Shaheen, B.S.; Bakir, M.; Jain, S. Corneal nerves in health and disease. Surv. Ophthalmol. 2014, 59, 263–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthaei, M.; Hribek, A.; Clahsen, T.; Bachmann, B.; Cursiefen, C.; Jun, A.S. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects. Annu. Rev. Vis. Sci. 2019, 5, 151–175. [Google Scholar] [CrossRef]
- Haagdorens, M.; Van Acker, S.I.; Van Gerwen, V.; Dhubhghaill, S.N.; Koppen, C.; Tassignon, M.-J.; Zakaria, N. Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int. 2016, 2016, 9798374. [Google Scholar] [CrossRef] [Green Version]
- Mathews, P.M.; Lindsley, K.; Aldave, A.J.; Akpek, E.K. Etiology of Global Corneal Blindness and Current Practices of Corneal Transplantation: A Focused Review. Cornea 2018, 37, 1198–1203. [Google Scholar] [CrossRef]
- Alio, J.L.; Montesel, A.; El Sayyad, F.; Barraquer, R.I.; Arnalich-Montiel, F.; Del Barrio, J.L.A. Corneal graft failure: An update. Br. J. Ophthalmol. 2020, 105. [Google Scholar] [CrossRef]
- Shaharuddin, B.; Ahmad, S.; Meeson, A.; Ali, S. Concise Review: Immunological Properties of Ocular Surface and Importance of Limbal Stem Cells for Transplantation. Stem Cells Transl. Med. 2013, 2, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar]
- Dua, H.S.; Faraj, L.A. Human corneal anatomy redefined: A novel pre-descemet’s layer (dua’s layer). Ophthalmology 2013, 120, 1778–1785. [Google Scholar] [CrossRef]
- Dua, H.S.; Faraj, L.A. Author reply: To pmid 23714320. Ophthalmology 2014, 121, e25-6. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.S.; Birbal, R.S. Are descemet membrane ruptures the root cause of corneal hydrops in keratoconic eyes? Am. J. Ophthalmol. 2019, 205, 147–152. [Google Scholar] [CrossRef]
- Yahia Chérif, H.; Gueudry, J. Efficacy and safety of pre-descemet’s membrane sutures for the management of acute corneal hydrops in keratoconus. Br. J. Ophthalmol. 2015, 99, 773–777. [Google Scholar] [CrossRef]
- Ross, A.R.; Said, D.G.; Gisoldi, R.A.M.C.; Nubile, M.; El-Amin, A.; Gabr, A.F.; El-Moniem, M.A.; Mencucci, R.; Pocobelli, A.; Mastropasqua, L.; et al. Optimizing pre-Descemet’s endothelial keratoplasty (PDEK) technique. J. Cataract Refract. Surg. 2020, 46, 667–674. [Google Scholar] [CrossRef]
- Pereira, N.C.; Forseto, A.D.S.; Maluf, R.C.P.; Dua, H.S. Pre-Descemet’s endothelial keratoplasty: A simple, Descemet’s membrane scoring technique for successful graft preparation. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Wasielica-Poslednik, J.; Lisch, W.; Bell, K.; Weyer, V.; Pfeiffer, N.; Gericke, A. Reproducibility and Daytime-Dependent Changes of Corneal Epithelial Thickness and Whole Corneal Thickness Measured with Fourier Domain Optical Coherence Tomography. Cornea 2016, 35, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, C.H. The function of the corneal epithelium in health and disease: The jonas s. Friedenwald memorial lecture. Investig. Ophthalmol. Vis. Sci. 1971, 10, 383–407. [Google Scholar]
- Thoft, R.A.; Friend, J. The X, Y, Z hypothesis of corneal epithelial maintenance. Investig. Ophthalmol. Vis. Sci. 1983, 24, 1442–1443. [Google Scholar]
- Lehrer, M.S.; Sun, T.T.; Lavker, R.M. Strategies of epithelial repair: Modulation of stem cell and transit amplifying cell proliferation. J. Cell Sci. 1998, 111, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Auran, J.D.; Koester, C.J.; Kleiman, N.; Rapaport, R.; Bomann, J.S.; Wirotsko, B.M.; Florakis, G.J.; Koniarek, J.P. Scanning Slit Confocal Microscopic Observation of Cell Morphology and Movement within the Normal Human Anterior Cornea. Ophthalmology 1995, 102, 33–41. [Google Scholar] [CrossRef]
- Thoft, R.A. The role of the limbus in ocular surface maintenance and repair. Acta Ophthalmol. 2009, 67, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Schermer, A.; Galvin, S.; Sun, T.-T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 1986, 103, 49–62. [Google Scholar] [CrossRef]
- Chung, E.H.; Bukusoglu, G.; Zieske, J. Localization of corneal epithelial stem cells in the developing rat. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2199–2206. [Google Scholar]
- Moriyama, H.; Kasashima, Y.; Kuwano, A.; Wada, S. Anatomical location and culture of equine corneal epithelial stem cells. Vet. Ophthalmol. 2013, 17, 106–112. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, C.S.; Chen, Z. Abcg2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 2005, 23, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Ebato, B.; Friend, J.; Thoft, R.A. Comparison of central and peripheral human corneal epithelium in tissue culture. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1450–1456. [Google Scholar]
- Ebato, B.; Friend, J.; Thoft, R.A. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1533–1537. [Google Scholar]
- Dua, H.S.; Shanmuganathan, V.A.; O Powell-Richards, A.; Tighe, P.; Joseph, A. Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. Br. J. Ophthalmol. 2005, 89, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.F.; Bron, A.J. Limbal palisades of Vogt. Trans. Am. Ophthalmol. Soc. 1982, 80, 155–171. [Google Scholar]
- Shortt, A.J.; Secker, G.A.; Munro, P.M.; Khaw, P.T.; Tuft, S.J.; Daniels, J.T. Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of Limbal Epithelial Stem Cells. Stem Cells 2007, 25, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Kaghad, M.; Wang, Y.; Gillett, E.; Fleming, M.; Dotsch, V.; Andrews, N.; Caput, D.; McKeon, F. p63, a p53 Homolog at 3q27–29, Encodes Multiple Products with Transactivating, Death-Inducing, and Dominant-Negative Activities. Mol. Cell 1998, 2, 305–316. [Google Scholar] [CrossRef]
- Barbaro, V.; Testa, A.; Di Iorio, E.; Mavilio, F.; Pellegrini, G.; De Luca, M. C/EBPδ regulates cell cycle and self-renewal of human limbal stem cells. J. Cell Biol. 2007, 177, 1037–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, G.; Dellambra, E.; Golisano, O.; Martinelli, E.; Fantozzi, I.; Bondanza, S.; Ponzin, D.; McKeon, F.; De Luca, M. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA 2001, 98, 3156–3161. [Google Scholar] [CrossRef] [Green Version]
- Koster, M.I.; Kim, S.; Mills, A.A.; DeMayo, F.; Roop, D.R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 2004, 18, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Di Iorio, E.; Barbaro, V. Isoforms of δnp63 and the migration of ocular limbal cells in human corneal regeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 9523. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Sasaki, K.; Morita, M.; Tanaka, T.; Teranishi, Y.; Ogasawara, T.; Oie, Y.; Kusumi, I.; Inoie, M.; Hata, K.-I.; et al. Cell jamming, stratification and p63 expression in cultivated human corneal epithelial cell sheets. Sci. Rep. 2020, 10, 9282. [Google Scholar] [CrossRef]
- Mills, A.A.; Zheng, B.; Wang, X.-J.; Vogel, O.H.; Roop, D.R.; Bradley, A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nat. Cell Biol. 1999, 398, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Rama, P.; Matuska, S.; Paganoni, G.; Spinelli, A.; De Luca, M.; Pellegrini, G. Limbal Stem-Cell Therapy and Long-Term Corneal Regeneration. New Engl. J. Med. 2010, 363, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; de Paiva, C.S. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004, 22, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Turnquist, H.; Jackson, J.; Sgagias, M.; Yan, Y.; Gong, M.; Dean, M.; Sharp, J.G.; Cowan, K. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 2002, 8, 22–28. [Google Scholar]
- Watanabe, K.; Nishida, K. Human limbal epithelium contains side population cells expressing the atp-binding cassette transporter abcg2. FEBS Lett. 2004, 565, 6–10. [Google Scholar] [CrossRef]
- Morita, M.; Fujita, N.; Takahashi, A.; Nam, E.R.; Yui, S.; Chung, C.S.; Kawahara, N.; Lin, H.Y.; Tsuzuki, K.; Nakagawa, T.; et al. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells. Vet. Ophthalmol. 2014, 18, 59–68. [Google Scholar] [CrossRef]
- Kethiri, A.R.; Basu, S.; Shukla, S.; Sangwan, V.S.; Singh, V. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: An in vitro study. PLoS ONE 2017, 12, e0185623. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Shimmura, S.; Miyashita, H.; Kawashima, M.; Kawakita, T.; Tsubota, K. The Anti-oxidative Role of ABCG2 in Corneal Epithelial Cells. Investig. Opthalmol. Vis. Sci. 2010, 51, 5617–5622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, H.-J.; Yao, C.-L.; Chen, H.-I.; Cheng, H.-C.; Hwang, S.-M. Cryopreservation of Human Limbal Stem Cells Ex Vivo Expanded on Amniotic Membrane. Cornea 2008, 27, 327–333. [Google Scholar] [CrossRef]
- Zieske, J.D.; Wasson, M. Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. J. Cell Sci. 1993, 106, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Carvajal, M.; Carraway, C.A.C.; Carraway, K.; Pflugfelder, S.C. Expression of the Receptor Tyrosine Kinases, Epidermal Growth Factor Receptor, ErbB2, and ErbB3, in Human Ocular Surface Epithelia. Cornea 2001, 20, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Tseng, S.C. Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts. J. Cell. Physiol. 1997, 172, 361–372. [Google Scholar] [CrossRef]
- Cheng, C.C.; Wang, D.Y. The growth-promoting effect of kgf on limbal epithelial cells is mediated by upregulation of deltanp63alpha through the p38 pathway. J. Cell Sci. 2009, 122, 4473–4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, M.; Sasamoto, Y.; Hayashi, R.; Ishikawa, Y.; Tsujikawa, M.; Hayashizaki, Y.; Itoh, M.; Kawaji, H.; Nishida, K. High-resolution promoter map of human limbal epithelial cells cultured with keratinocyte growth factor and rho kinase inhibitor. Sci. Rep. 2017, 7, 2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.-Q.; Tseng, S.C.G. Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface. J. Cell. Physiol. 1995, 163, 61–79. [Google Scholar] [CrossRef]
- Takada, Y.; Ye, X. The integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepp, M.A.; Spurr-Michaud, S.; Gipson, I.K. Integrins in the wounded and unwounded stratified squamous epithelium of the cornea. Investig. Ophthalmol. Vis. Sci. 1993, 34, 1829–1844. [Google Scholar]
- Tervo, K.; Tervo, T.; Van Setten, G.-B.; Virtanen, I. Integrins in Human Corneal Epithelium. Cornea 1991, 10, 461–465. [Google Scholar] [CrossRef]
- Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Simmens, S.J.; Stepp, M.A. Integrins in Slow-Cycling Corneal Epithelial Cells at the Limbus in the Mouse. Stem Cells 2006, 24, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, R.; Yamato, M.; Saito, T.; Oshima, T.; Okano, T.; Tano, Y.; Nishida, K. Enrichment of corneal epithelial stem/progenitor cells using cell surface markers, integrin α6 and CD71. Biochem. Biophys. Res. Commun. 2008, 367, 256–263. [Google Scholar] [CrossRef]
- Reinshagen, H.; Auw-Haedrich, C.; Sorg, R.V.; Boehringer, D.; Eberwein, P.; Schwartzkopff, J.; Sundmacher, R.; Reinhard, T. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2011, 89, 741–748. [Google Scholar] [CrossRef]
- Matic, M.; Petrov, I.N.; Chen, S.; Wang, C.; Wolosin, J.M.; Dimitrijevich, S.D. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation 1997, 61, 251–260. [Google Scholar] [CrossRef]
- Ordonez, P.; Di Girolamo, N. Limbal Epithelial Stem Cells: Role of the Niche Microenvironment. Stem Cells 2012, 30, 100–107. [Google Scholar] [CrossRef]
- Li, A.; Simmons, P.J.; Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 1998, 95, 3902–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maseruka, H.; Ridgway, A.; Tullo, A.; Bonshek, R. Developmental changes in patterns of expression of tenascin-C variants in the human cornea. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4101–4107. [Google Scholar]
- Fuchs, E. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 1995, 11, 123–153. [Google Scholar] [CrossRef]
- Moll, R.; Divo, M.; Langbein, L. The human keratins: Biology and pathology. Histochem. Cell Biol. 2008, 129, 705–733. [Google Scholar] [CrossRef] [Green Version]
- Kao, W.W.-Y. Keratin expression by corneal and limbal stem cells during development. Exp. Eye Res. 2020, 200, 108206. [Google Scholar] [CrossRef] [PubMed]
- Figueira, E.C.; Di Girolamo, N.; Coroneo, M.T.; Wakefield, D. The Phenotype of Limbal Epithelial Stem Cells. Investig. Ophthalmol. Vis. Sci. 2007, 48, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.-A.; Ortt, K.; Birkaya, B.; Smalley, K.; Sinha, S. An Active Role of the ΔN Isoform of p63 in Regulating Basal Keratin Genes K5 and K14 and Directing Epidermal Cell Fate. PLoS ONE 2009, 4, e5623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Mi, S.; Wright, B.; Connon, C.J. Investigation of K14/K5 as a Stem Cell Marker in the Limbal Region of the Bovine Cornea. PLoS ONE 2010, 5, e13192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, A.D.; Corden, L.D. Mutations in cornea-specific keratin k3 or k12 genes cause meesmann’s corneal dystrophy. Nat. Genet. 1997, 16, 184–187. [Google Scholar] [CrossRef]
- Kurpakus, M.A.; Maniaci, M.T.; Esco, M. Expression of keratins K12, K4 and K14 during development of ocular surface epithelium. Curr. Eye Res. 1994, 13, 805–814. [Google Scholar] [CrossRef]
- Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Tadvalkar, G.; Stepp, M.A. K14 + Compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev. Dyn. 2015, 245, 132–143. [Google Scholar] [CrossRef]
- Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Tadvalkar, G.; Stepp, M.A. Corneal Goblet Cells and Their Niche: Implications for Corneal Stem Cell Deficiency. Stem Cells 2012, 30, 2032–2043. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Richardson, A.; Pandzic, E.; Lobo, E.P.; Whan, R.; Watson, S.L.; Lyons, G.; Wakefield, D.; Di Girolamo, N. Visualizing the Contribution of Keratin-14+ Limbal Epithelial Precursors in Corneal Wound Healing. Stem Cell Rep. 2019, 12, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Chaloin-Dufau, C.; Dhouailly, D.; Sun, T.-T. Appearance of the keratin pair K3/K12 during embryonic and adult corneal epithelial differentiation in the chick and in the rabbit. Cell Differ. Dev. 1990, 32, 97–108. [Google Scholar] [CrossRef]
- Saghizadeh, M.; Soleymani, S.; Harounian, A.; Bhakta, B.; Troyanovsky, S.M.; Brunken, W.J.; Pellegrini, G.; Ljubimov, A.V. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol. Vis. 2011, 17, 2177–2190. [Google Scholar] [PubMed]
- Zhao, M.; Zhang, H.; Zhen, D.; Huang, M.; Li, W.; Li, Z.; Liu, Y.; Xie, Y.; Zeng, B.; Wang, Z.; et al. Corneal Recovery Following Rabbit Peripheral Blood Mononuclear Cell–Amniotic Membrane Transplantation with Antivascular Endothelial Growth Factor in Limbal Stem Cell Deficiency Rabbits. Tissue Eng. Part C Methods 2020, 26, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, A.E.; Lako, M.; Figueiredo, F.C. Recent Advances in Stem Cell Therapy for Limbal Stem Cell Deficiency: A Narrative Review. Ophthalmol. Ther. 2020, 9, 809–831. [Google Scholar] [CrossRef] [PubMed]
- Bobba, S.; Di Girolamo, N.; Mills, R.; Daniell, M.; Chan, E.; Harkin, D.; Cronin, B.G.; Crawford, G.; McGhee, C.N.; Watson, S. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin. Exp. Ophthalmol. 2016, 45, 174–181. [Google Scholar] [CrossRef]
- Baylis, O.; Figueiredo, F.; Henein, C.; Lako, M.; Ahmad, S. 13 years of cultured limbal epithelial cell therapy: A review of the outcomes. J. Cell. Biochem. 2011, 112, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.X.; Sejpal, K.; Bakhtiari, P. Presentation, diagnosis and management of limbal stem cell deficiency. Middle East Afr. J. Ophthalmol. 2013, 20, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Kinoshita, S.; Ohashi, Y.; Kuwayama, Y.; Yamamoto, S. Ocular Surface Abnormalities in Aniridia. Am. J. Ophthalmol. 1995, 120, 368–375. [Google Scholar] [CrossRef]
- Aslan, D.; Akata, R.F.; Holme, H.; Vulliamy, T.; Dokal, I. Limbal stem cell deficiency in patients with inherited stem cell disorder of dyskeratosis congenita. Int. Ophthalmol. 2012, 32, 615–622. [Google Scholar] [CrossRef]
- Rossen, J.; Amram, A.; Milani, B.; Park, D.; Harthan, J.; Joslin, C.; McMahon, T.; Djalilian, A. Contact Lens-induced Limbal Stem Cell Deficiency. Ocul. Surf. 2016, 14, 419–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujishima, H.; Shimazaki, J.; Tsubota, K. Temporary corneal stem cell dysfunction after radiation therapy. Br. J. Ophthalmol. 1996, 80, 911–914. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Bishop, R.J.; A Herzlich, A.; Patel, M.; Chan, C.-C. Limbal Stem Cell Deficiency Arising From Systemic Chemotherapy with Hydroxycarbamide. Cornea 2009, 28, 221–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartes, C.; Lako, M.; Figueiredo, F.C. Referral Patterns of Patients with Limbal Stem Cell Deficiency to a Specialized Tertiary Center in the United Kingdom. Ophthalmol. Ther. 2021, 10, 535–545. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Sarnicola, E.; Denny, M.R.; Sepsakos, L.; Auteri, N.J.; Holland, E.J. Limbal Stem Cell Deficiency. Cornea 2021. [Google Scholar] [CrossRef]
- Skeens, H.M.; Brooks, B.P.; Holland, E.J. Congenital Aniridia Variant: Minimally Abnormal Irides with Severe Limbal Stem Cell Deficiency. Ophthalmology 2011, 118, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Deng, S.X.; Xu, J. In vivo confocal microscopy of congenital aniridia-associated keratopathy. Eye 2013, 27, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Di Pascuale, M.A.; Espana, E.M.; Liu, D.T.-S.; Kawakita, T.; Li, W.; Gao, Y.Y.; Baradaran-Rafii, A.; Elizondo, A.; Raju, V.-K.; Tseng, S.C. Correlation of Corneal Complications with Eyelid Cicatricial Pathologies in Patients with Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis Syndrome. Ophthalmology 2005, 112, 904–912. [Google Scholar] [CrossRef]
- Salik, I.; Gupta, A. Peters anomaly: A 5-year experience. Paediatr. Anaesth. 2020, 30, 577–583. [Google Scholar] [CrossRef]
- López-García, J.S.; Jara, L.R.; García-Lozano, C.I.; Conesa, E.; de Juan, I.E.; del Castillo, J.M. Ocular Features and Histopathologic Changes during Follow-up of Toxic Epidermal Necrolysis. Ophthalmology 2011, 118, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Mudhar, H.S.; Leyland, M. Early pathological features of the cornea in toxic epidermal necrolysis. Br. J. Ophthalmol. 2007, 91, 1129–1132. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.B.; Butrus, S.; Bazemore, M.G. Ectrodactyly-ectodermal dysplasia-clefting syndrome causing blindness in a child. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2011, 15, 80–82. [Google Scholar] [CrossRef]
- Hessen, M.; Akpek, E.K. Ocular graft-versus-host disease. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 540–547. [Google Scholar] [CrossRef]
- Messmer, E.M.; Kenyon, K.R. Ocular manifestations of keratitis– ichthyosis–deafness (kid) syndrome. Ophthalmology 2005, 112, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Zein, G.; Khawaja, F.; Foster, C.S. Ocular cicatricial pemphigoid: Pathogenesis, diagnosis and treatment. Prog. Retin. Eye Res. 2004, 23, 579–592. [Google Scholar] [CrossRef]
- Kirzhner, M.; Jakobiec, F.A. Ocular Cicatricial Pemphigoid: A Review of Clinical Features, Immunopathology, Differential Diagnosis, and Current Management. Semin. Ophthalmol. 2011, 26, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Aslan, D.; Akata, R.F. Dyskeratosis congenita and limbal stem cell deficiency. Exp. Eye Res. 2010, 90, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Aslan, D.; Ozdek, S.; Çamurdan, O.; Bideci, A.; Cinaz, P. Dyskeratosis congenita with corneal limbal insufficiency. Pediatr. Blood Cancer 2009, 53, 95–97. [Google Scholar] [CrossRef]
- Tabin, G.; Levin, S.; Snibson, G.; Loughnan, M.; Taylor, H. Late Recurrences and the Necessity for Long-term Follow-up in Corneal and Conjunctival Intraepithelial Neoplasia. Ophthalmology 1997, 104, 485–492. [Google Scholar] [CrossRef]
- Waring, G.O.; Roth, A.M.; Ekins, M.B. Clinical and Pathologic Description of 17 Cases of Corneal Intraepithelial Neoplasia. Am. J. Ophthalmol. 1984, 97, 547–559. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Javadi, M.-A. Keratitis Associated With Multiple Endocrine Deficiency. Cornea 2006, 25, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Javadi, M.-A.; Kanavi, M.R.; Faramarzi, A.; Feizi, S.; Azizi, F.; Javadi, F. Confocal Scan Imaging and Impression Cytology of the Cornea in a Case of Multiple Endocrine Neoplasia Type-2b. J. Ophthalmic Vis. Res. 2012, 7, 176–179. [Google Scholar]
- Alomar, T.S.; Nubile, M.; Lowe, J.; Dua, H.S. Corneal Intraepithelial Neoplasia: In Vivo Confocal Microscopic Study with Histopathologic Correlation. Am. J. Ophthalmol. 2011, 151, 238–247. [Google Scholar] [CrossRef]
- Merchant, A.; Zhao, T.-Z.; Foster, C. Chronic keratoconjunctivitis associated with congenital dyskeratosis and erythrokeratodermia variablis: Two rare genodermatoses. Ophthalmology 1998, 105, 1286–1291. [Google Scholar] [CrossRef]
- Shanker, V.; Gupta, M.; Prashar, A. Keratitis-Ichthyosis-Deafness syndrome: A rare congenital disorder. Indian Dermatol. Online J. 2012, 3, 48–50. [Google Scholar] [CrossRef]
- Mednick, Z.; Boutin, T.; Einan-Lifshitz, A.; Sorkin, N.; Slomovic, A. Simple limbal epithelial transplantation for recurrent pterygium: A case series. Am. J. Ophthalmol. Case Rep. 2018, 12, 5–8. [Google Scholar] [CrossRef]
- Chaurasia, S.; Mulay, K.; Ramappa, M.; Sangwan, V.; Murthy, S.; Nair, R.M.; Vemuganti, G. Corneal Changes in Xeroderma Pigmentosum: A Clinicopathologic Report. Am. J. Ophthalmol. 2014, 157, 495–500.e2. [Google Scholar] [CrossRef]
- Fernandes, M.; Sangwan, V.; Vemuganti, G.K. Limbal stem cell deficiency and xeroderma pigmentosum: A case report. Eye 2004, 18, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Kethiri, A.R.; Raju, E.; Bokara, K.K.; Mishra, D.K.; Basu, S.; Rao, C.M.; Sangwan, V.S.; Singh, V. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns. Exp. Eye Res. 2019, 185, 107665. [Google Scholar] [CrossRef] [PubMed]
- Strungaru, M.H.; Mah, D. Focal limbal stem cell deficiency in turner syndrome: Report of two patients and review of the literature. Cornea 2014, 33, 207–209. [Google Scholar] [CrossRef]
- Afsharkhamseh, N.; Movahedan, A.; Gidfar, S.; Huvard, M.; Wasielewski, L.; Milani, B.Y.; Eslani, M.; Djalilian, A.R. Stability of limbal stem cell deficiency after mechanical and thermal injuries in mice. Exp. Eye Res. 2016, 145, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Baradaran-Rafii, A.; Javadi, M.-A.; Kanavi, M.R.; Eslani, M.; Jamali, H.; Karimian, F. Limbal Stem Cell Deficiency in Chronic and Delayed-onset Mustard Gas Keratopathy. Ophthalmology 2010, 117, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Giuliano, E.A.; Sinha, N.R.; Mohan, R.R. Ocular toxicity of mustard gas: A concise review. Toxicol. Lett. 2021, 343, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.R.; Turner, A. Trachoma. Lancet 2008, 371, 1945–1954. [Google Scholar] [CrossRef]
- Carreno-Galeano, J.T.; Dohlman, T. Limbal stem cell deficiency associated with herpetic keratitis: A retrospective study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 871. [Google Scholar]
- Sun, Y.; Yung, M.; Huang, L.; Tseng, C.; Deng, S.X. Limbal Stem Cell Deficiency After Glaucoma Surgery. Cornea 2020, 39, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, K.; Tuft, S.J. Iatrogenic limbal stem cell deficiency following drainage surgery for glaucoma. Can. J. Ophthalmol. 2018, 53, 574–579. [Google Scholar] [CrossRef]
- Termote, K.; Schendel, S.; Moloney, G.; Holland, S.P.; Lange, A.P. Focal limbal stem cell deficiency associated with soft contact lens wear. Can. J. Ophthalmol. 2017, 52, 552–558. [Google Scholar] [CrossRef]
- Martin, R. Corneal conjunctivalisation in long-standing contact lens wearers. Clin. Exp. Optom. 2007, 90, 26–30. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, H.J.; Khwarg, S.I.; Wee, W.R. Corneal cell viability and structure after transcorneal freezing–thawing in the human cornea. Clin. Ophthalmol. 2010, 4, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Barachetti, L.; Giudice, C.; Cescon, M.; Mortellaro, C.M.; Ferrari, R.; Rampazzo, A. The effects of soft cryotherapy on conjunctiva and cornea in isolated pig eyes and comparison with standard liquid nitrogen: A pilot ex vivo study. Vet. Ophthalmol. 2020, 23, 544–551. [Google Scholar] [CrossRef]
- Kim, T.-I.; Pak, J.H.; Lee, S.Y.; Tchah, H. Mitomycin C-Induced Reduction of Keratocytes and Fibroblasts after Photorefractive Keratectomy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2978–2984. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.S.; A Thoft, R.; Friend, J.; Parrish, R.K.; Gressel, M.G. 5-Fluorouracil toxicity to the ocular surface epithelium. Investig. Ophthalmol. Vis. Sci. 1985, 26, 580–583. [Google Scholar]
- Lattanzio, F.A., Jr.; Sheppard, J.D., Jr.; Allen, R.; Baynham, S.; Samuel, P.; Samudre, S. Do Injections of 5-Fluorouracil After Trabeculectomy Have Toxic Effects on the Anterior Segment? J. Ocul. Pharmacol. Ther. 2005, 21, 223–235. [Google Scholar] [CrossRef]
- Vitoux, M.-A.; Kessal, K.; Parsadaniantz, S.M.; Claret, M.; Guerin, C.; Baudouin, C.; Brignole-Baudouin, F.; LE Goazigo, A.R. Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: Proinflammatory and apoptotic responses in vitro. Toxicol. Lett. 2020, 319, 74–84. [Google Scholar] [CrossRef]
- Inaba, K.; Minami, M.; Yamaguchi, M.; Goto, R.; Otake, H.; Kotake, T.; Nagai, N. Effects of the Ophthalmic Additive Mannitol on Antimicrobial Activity and Corneal Toxicity of Various Preservatives. Chem. Pharm. Bull. 2020, 68, 1069–1073. [Google Scholar] [CrossRef]
- Akagunduz, O.O.; Yilmaz, S.G.; Tavlayan, E.; Baris, M.E.; Afrashi, F.; Esassolak, M. Radiation-Induced Ocular Surface Disorders and Retinopathy: Ocular Structures and Radiation Dose-Volume Effect. Cancer Res. Treat. 2021. [Google Scholar] [CrossRef]
- Hayashi, S.; Ishimoto, S.-I.; Wu, G.-S.; Wee, W.R.; A Rao, N.; McDonnell, P.J. Oxygen free radical damage in the cornea after excimer laser therapy. Br. J. Ophthalmol. 1997, 81, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capella, M.; De Toledo, J.Á.; De La Paz, M. Limbal stem cell deficiency following multiple intravitreal injections. Arch. Soc. Española Oftalmol. (Engl. Ed.) 2011, 86, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Ledbetter, E.C.; Marfurt, C.F.; Dubielzig, R.R. Metaherpetic corneal disease in a dog associated with partial limbal stem cell deficiency and neurotrophic keratitis. Vet. Ophthalmol. 2013, 16, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Lambiase, A.; Sacchetti, M. Diagnosis and management of neurotrophic keratitis. Clin. Ophthalmol. 2014, 8, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Uchino, Y.; Goto, E.; Takano, Y.; Dogru, M.; Shinozaki, N.; Shimmura, S.; Yagi, Y.; Tsubota, K.; Shimazaki, J. Long-standing Bullous Keratopathy Is Associated with Peripheral Conjunctivalization and Limbal Deficiency. Ophthalmology 2006, 113, 1098–1101. [Google Scholar] [CrossRef]
- Notara, M.; Lentzsch, A.; Coroneo, M.; Cursiefen, C. The Role of Limbal Epithelial Stem Cells in Regulating Corneal (Lymph)angiogenic Privilege and the Micromilieu of the Limbal Niche following UV Exposure. Stem Cells Int. 2018, 2018, 8620172. [Google Scholar] [CrossRef] [Green Version]
- Chui, J.; Coroneo, M.T.; Tat, L.T.; Crouch, R.; Wakefield, D.; Di Girolamo, N. Ophthalmic Pterygium: A Stem Cell Disorder with Premalignant Features. Am. J. Pathol. 2011, 178, 817–827. [Google Scholar] [CrossRef]
- Di Girolamo, N. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Prog. Retin. Eye Res. 2015, 48, 203–225. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.I.R.; Zachary, I. The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biol. 2005, 6, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, S.; Rohan, R.; Kuroki, M.; Tolentino, M.; Adamis, A.P. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Investig. Ophthalmol. Vis. Sci. 1998, 39, 18–22. [Google Scholar]
- Joussen, A.M.; Poulaki, V.; Mitsiades, N.; Stechschulte, S.U.; Kirchhof, B.; Dartt, D.A.; Fong, G.-H.; Rudge, J.; Wiegand, S.J.; Yancopoulos, G.D.; et al. VEGF-Dependent Conjunctivalization of the Corneal Surface. Investig. Ophthalmol. Vis. Sci. 2003, 44, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Sharif, Z.; Sharif, W. Corneal neovascularization: Updates on pathophysiology, investigations & management. Rom. J. Ophthalmol. 2019, 63, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shoshani, Y.; Pe’Er, J.; Doviner, V.; Frucht-Pery, J.; Solomon, A. Increased Expression of Inflammatory Cytokines and Matrix Metalloproteinases in Pseudophakic Corneal Edema. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1940–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, K.W.; Joo, K.; Kim, J.C. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol. 2016, 16, 57. [Google Scholar] [CrossRef] [Green Version]
- Maier, A.-K.B.; Reichhart, N.; Gonnermann, J.; Kociok, N.; Riechardt, A.I.; Gundlach, E.; Strauß, O.; Joussen, A.M. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE 2021, 16, e0245143. [Google Scholar] [CrossRef]
- Zahir-Jouzdani, F.; Atyabi, F.; Mojtabavi, N. Interleukin-6 participation in pathology of ocular diseases. Pathophysiology 2017, 24, 123–131. [Google Scholar] [CrossRef]
- Dua, H.S.; King, A.; Joseph, A. A new classification of ocular surface burns. Br. J. Ophthalmol. 2001, 85, 1379–1383. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.X.; Borderie, V.; Chan, C.C.; Dana, R.; Figueiredo, F.C.; Gomes, J.A.P.; Pellegrini, G.; Shimmura, S.; Kruse, F.E. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea 2019, 38, 364–375. [Google Scholar] [CrossRef]
- Gericke, A.; Wasielica-Poslednik, J. Expansion and Transplantation of Limbal Stem Cells for Corneal Surface Regeneration. Klin. Mon. Augenheilkd. 2019, 236, 777–783. [Google Scholar]
- Azari, A.; Rapuano, C.J. Autologous Serum Eye Drops for the Treatment of Ocular Surface Disease. Eye Contact Lens Sci. Clin. Pr. 2015, 41, 133–140. [Google Scholar] [CrossRef]
- Lim, L.; Lim, E.W.L. Therapeutic Contact Lenses in the Treatment of Corneal and Ocular Surface Diseases-A Review. Asia Pac. J. Ophthalmol. 2020, 9, 524–532. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, M.J.; Ha, S.W.; Kim, H.K. Autologous Platelet-rich Plasma Eye Drops in the Treatment of Recurrent Corneal Erosions. Korean J. Ophthalmol. 2016, 30, 101–107. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, C.S.; Pflugfelder, S.C. Topical cyclosporine a therapy for dry eye syndrome. Cochrane Database Syst. Rev. 2019, 9, Cd010051. [Google Scholar] [CrossRef]
- Uehara, H.; Das, S.K.; Cho, Y.K.; Archer, B.; Ambati, B.K. Comparison of the Anti-angiogenic and Anti-inflammatory Effects of Two Antibiotics: Clarithromycin Versus Moxifloxacin. Curr. Eye Res. 2015, 41, 474–484. [Google Scholar] [CrossRef]
- Yeh, S.-I.; Chu, T.-W.; Cheng, H.-C.; Wu, C.-H.; Tsao, Y.-P. The Use of Autologous Serum to Reverse Severe Contact Lens-induced Limbal Stem Cell Deficiency. Cornea 2020, 39, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Lekhanont, K.; Jongkhajornpong, P.; Anothaisintawee, T.; Chuckpaiwong, V. Undiluted Serum Eye Drops for the Treatment of Persistent Corneal Epitheilal Defects. Sci. Rep. 2016, 6, 38143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeng, B.H.; Dupps, W.J. Autologous Serum 50% Eyedrops in the Treatment of Persistent Corneal Epithelial Defects. Cornea 2009, 28, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Huang, W.; Kim, G.Y.; Lim, B.S. Comparison of Autologous Serum Eye Drops with Different Diluents. Curr. Eye Res. 2012, 38, 9–17. [Google Scholar] [CrossRef]
- Dalmon, C.A.; Chandra, N.S.; Jeng, B.H. Use of Autologous Serum Eyedrops for the Treatment of Ocular Surface Disease: First US Experience in a Large Population as an Insurance-Covered Benefit. Arch. Ophthalmol. 2012, 130, 1612–1613. [Google Scholar] [CrossRef] [Green Version]
- Salamone, J.C.; Salamone, A.B.; Swindle-Reilly, K.; Leung, K.X.-C.; McMahon, R.E. Grand challenge in Biomaterials-wound healing. Regen. Biomater. 2016, 3, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.S.; Carrasquillo, K.G.; Cottrell, P.D.; Fernández-Velázquez, F.J.; Gil-Cazorla, R.; Jalbert, I.; Pucker, A.D.; Riccobono, K.; Robertson, D.M.; Szczotka-Flynn, L.; et al. CLEAR–Medical use of contact lenses. Contact Lens Anterior Eye 2021, 44, 289–329. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Bakhtiari, P. Medical management of limbal stem cell deficiency with anti-inflammatory therapy and tear film optimization. Investig. Ophthalmol. Vis. Sci. 2013, 54, 545. [Google Scholar]
- Miserocchi, E.; Modorati, G.; Rama, P. Effective Treatment with Topical Cyclosporine of a Child with Steroid-Dependent Interstitial Keratitis. Eur. J. Ophthalmol. 2008, 18, 816–818. [Google Scholar] [CrossRef]
- Kadar, T.; Dachir, S.; Cohen, L.; Sahar, R.; Fishbine, E.; Cohen, M.; Turetz, J.; Gutman, H.; Buch, H.; Brandeis, R.; et al. Ocular injuries following sulfur mustard exposure—Pathological mechanism and potential therapy. Toxicology 2009, 263, 59–69. [Google Scholar] [CrossRef]
- Jung, H.H.; Ji, Y.S. Long-term outcome of treatment with topical corticosteroids for severe dry eye associated with sjögren’s syndrome. Chonnam. Med. J. 2015, 51, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Dua, H.S.; Azuara-Blanco, A. Limbal Stem Cells of the Corneal Epithelium. Surv. Ophthalmol. 2000, 44, 415–425. [Google Scholar] [CrossRef]
- Tseng, S.C.; Farazdaghi, M.; A Rider, A. Conjunctival transdifferentiation induced by systemic vitamin A deficiency in vascularized rabbit corneas. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1497–1504. [Google Scholar]
- Huang, A.J.; Watson, B.D.; Hernandez, E.; Tseng, S.C. Induction of conjunctival transdifferentiation on vascularized corneas by photothrombotic occlusion of corneal neovascularization. Ophthalmology 1988, 95, 228–235. [Google Scholar] [CrossRef]
- Pillai, C.T.; Dua, H.S.; Hossain, P. Fine needle diathermy occlusion of corneal vessels. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2148–2153. [Google Scholar]
- Kruse, F.E.; Chen, J.J.; Tsai, R.J.; Tseng, S.C. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1903–1913. [Google Scholar]
- Dua, H.S. The conjunctiva in corneal epithelial wound healing. Br. J. Ophthalmol. 1998, 82, 1407–1411. [Google Scholar] [CrossRef]
- Dua, H.S.; Miri, A.; Elalfy, M.S.; Lencova, A.; Said, D.G. Amnion-assisted conjunctival epithelial redirection in limbal stem cell grafting. Br. J. Ophthalmol. 2016, 101, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Tseng, S.C. Amniotic Membrane Transplantation for Persistent Epithelial Defects with Ulceration. Am. J. Ophthalmol. 1997, 123, 303–312. [Google Scholar] [CrossRef]
- Le, Q.; Deng, S.X. The application of human amniotic membrane in the surgical management of limbal stem cell deficiency. Ocul. Surf. 2019, 17, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, A.; Vajpayee, R.B.; Biswas, N.R.; Pandey, R.M.; Sharma, N.; Titiyal, J.S.; Tandon, R. Evaluation of Amniotic Membrane Transplantation as an Adjunct to Medical Therapy as Compared with Medical Therapy Alone in Acute Ocular Burns. Ophthalmology 2005, 112, 1963–1969. [Google Scholar] [CrossRef]
- Díaz-Valle, D.; Santos-Bueso, E. Sectorial Conjunctival Epitheliectomy and Amniotic Membrane Transplantation for Partial Limbal Stem Cells Deficiency. Arch. Soc. Esp. Oftalmol. 2007, 82, 769–772. [Google Scholar]
- Tseng, S.C.G.; Prabhasawat, P.; Barton, K.; Gray, T.; Meller, D. Amniotic Membrane Transplantation With or Without Limbal Allografts for Corneal Surface Reconstruction in Patients With Limbal Stem Cell Deficiency. Arch. Ophthalmol. 1998, 116, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-F.; Stachon, T.; Langenbucher, A.; Seitz, B.; Szentmáry, N. Effect of Amniotic Membrane Suspension (AMS) and Amniotic Membrane Homogenate (AMH) on Human Corneal Epithelial Cell Viability, Migration and Proliferation In Vitro. Curr. Eye Res. 2017, 42, 351–357. [Google Scholar] [CrossRef]
- Bischoff, M.; Stachon, T.; Seitz, B.; Huber, M.; Zawada, M.; Langenbucher, A.; Szentmáry, N. Growth Factor and Interleukin Concentrations in Amniotic Membrane-Conditioned Medium. Curr. Eye Res. 2016, 42, 174–180. [Google Scholar] [CrossRef]
- Malhotra, C.; Jain, A.K. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J. Transpl. 2014, 4, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yoshitani, M.; Rigby, H.; Fullwood, N.J.; Ito, W.; Inatomi, T.; Sotozono, C.; Shimizu, Y.; Kinoshita, S. Sterilized, Freeze-Dried Amniotic Membrane: A Useful Substrate for Ocular Surface Reconstruction. Investig. Ophthalmol. Vis. Sci. 2004, 45, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Marsit, N.M.; Sidney, L.E.; Britchford, E.R.; McIntosh, O.D.; Allen, C.L.; Ashraf, W.; Bayston, R.; Hopkinson, A. Validation and assessment of an antibiotic-based, aseptic decontamination manufacturing protocol for therapeutic, vacuum-dried human amniotic membrane. Sci. Rep. 2019, 9, 12854. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.L.; Clare, G.; Stewart, E.A.; Branch, M.J.; McIntosh, O.D.; Dadhwal, M.; Dua, H.S.; Hopkinson, A. Augmented Dried versus Cryopreserved Amniotic Membrane as an Ocular Surface Dressing. PLoS ONE 2013, 8, e78441. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, S.; Elsawah, K.; Dhillon, N.; Soliman, S.; Laginaf, M.; Lodhia, V.; Lake, D.; Hamada, S.; Elalfy, M. Management of Persistent Corneal Epithelial Defects with Human Amniotic Membrane-derived Dry Matrix. Clin. Ophthalmol. 2021, 15, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, A.; Britchford, E.R. Preparation of dried amniotic membrane for corneal repair. In Corneal Regeneration; Springer: Berlin/Heidelberg, Germany, 2020; pp. 143–157. [Google Scholar]
- Modified Amnion-Assisted Technique Shows Efficacy in Managing Limbal Stem Cell Deficiency. Available online: https://www.healio.com/news/ophthalmology/20210302/modified-amnionassisted-technique-shows-efficacy-in-managing-limbal-stem-cell-deficiency (accessed on 20 June 2021).
- Han, S.; Ibrahim, F.; Liu, Y.-C.; Mehta, J. Efficacy of Modified Amnion-Assisted Conjunctival Epithelial Redirection (ACER) for Partial Limbal Stem Cell Deficiency. Medicina 2021, 57, 369. [Google Scholar] [CrossRef]
- Ahmad, M.S.Z.; Baba, M.; Pagano, L.; Romano, V.; Kaye, S.B. Use of dried amniotic membrane with glue to manage a corneal perforation. Eye 2021. [Google Scholar] [CrossRef] [PubMed]
- Burman, S.; Sangwan, V. Cultivated limbal stem cell transplantation for ocular surface reconstruction. Clin. Ophthalmol. 2008, 2, 489–502. [Google Scholar]
- Daya, S.M.; Chan, C.C.; Holland, E.J. Cornea Society Nomenclature for Ocular Surface Rehabilitative Procedures. Cornea 2011, 30, 1115–1119. [Google Scholar] [CrossRef]
- Options for Limbal Stem Cell Deficiency. Available online: https://www.eurotimes.org/options-for-limbal-stem-cell-deficiency/ (accessed on 21 June 2021).
- Daya, S.M. Conjunctival-limbal autograft. Curr. Opin. Ophthalmol. 2017, 28, 370–376. [Google Scholar] [CrossRef]
- Shahraki, T.; Arabi, A.; Feizi, S. Pterygium: An update on pathophysiology, clinical features, and management. Ther. Adv. Ophthalmol. 2021, 13, 25158414211020152. [Google Scholar] [CrossRef]
- Panthier, C.; Bouvet, M.; Debellemaniere, G.; Gatinel, D. Conjunctival limbal autografting (CLAU) combined with customised simple limbal epithelial transplantation (SLET) in a severe corneal chemical burn: Case report. Am. J. Ophthalmol. Case Rep. 2020, 20, 100906. [Google Scholar] [CrossRef]
- Eslani, M.; Cheung, A.Y.; Kurji, K.; Pierson, K.; Sarnicola, E.; Holland, E.J. Long-term outcomes of conjunctival limbal autograft in patients with unilateral total limbal stem cell deficiency. Ocul. Surf. 2019, 17, 670–674. [Google Scholar] [CrossRef]
- Fernandez-Buenaga, R.; Aiello, F.; Zaher, S.S.; Grixti, A.; Ahmad, S. Twenty years of limbal epithelial therapy: An update on managing limbal stem cell deficiency. BMJ Open Ophthalmol. 2018, 3, e000164. [Google Scholar] [CrossRef]
- Chen, J.J.; Tseng, S.C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investig. Ophthalmol. Vis. Sci. 1991, 32, 2219–2233. [Google Scholar]
- Chen, J.J.; Tseng, S.C. Corneal epithelial wound healing in partial limbal deficiency. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1301–1314. [Google Scholar]
- Basti, S.; Rao, S.K. Current status of limbal conjunctival autograft. Curr. Opin. Ophthalmol. 2000, 11, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Sangwan, V.S. Limbal stem cell transplantation. Indian J. Ophthalmol. 2004, 52, 5–22. [Google Scholar] [PubMed]
- Akbari, M.; Shirzadeh, E.; Shams, M.; Baradaran-Rafii, A. Single block conjunctival limbal autograft for unilateral total limbal stem cell deficiency. J. Ophthalmic Vis. Res. 2015, 10, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Meallet, M.A.; Espana, E.M.; Grueterich, M.; Ti, S.-E.; Goto, E.; Tseng, S.C. Amniotic membrane transplantation with conjunctival limbal autograft for total limbal stem cell deficiency. Ophthalmology 2003, 110, 1585–1592. [Google Scholar] [CrossRef]
- Fallah, M.; Golabdar, M.R.; Amozadeh, J.; A Zare, M.; Moghimi, S.; Fakhraee, G. Transplantation of conjunctival limbal autograft and amniotic membrane vs mitomycin C and amniotic membrane in treatment of recurrent pterygium. Eye 2006, 22, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Amescua, G.; Atallah, M.; Palioura, S.; Perez, V. Limbal stem cell transplantation: Current perspectives. Clin. Ophthalmol. 2016, 10, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Holland, E.J. Epithelial transplantation for the management of severe ocular surface disease. Trans. Am. Ophthalmol. Soc. 1996, 94, 677–743. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.Y.; Holland, E.J. Keratolimbal allograft. Curr. Opin. Ophthalmol. 2017, 28, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Croasdale, C.R.; Schwartz, G.S. Keratolimbal allograft: Recommendations for tissue procurement and preparation by eye banks, and standard surgical technique. Cornea 1999, 18, 52–58. [Google Scholar] [CrossRef]
- Biber, J.M.; Skeens, H.M.; Neff, K.D.; Holland, E.J. The Cincinnati Procedure: Technique and Outcomes of Combined Living-Related Conjunctival Limbal Allografts and Keratolimbal Allografts in Severe Ocular Surface Failure. Cornea 2011, 30, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.; Biber, J.M. The modified cincinnati procedure: Combined conjunctival limbal autografts and keratolimbal allografts for severe unilateral ocular surface failure. Cornea 2012, 31, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Sepsakos, L.; Cheung, A.Y.; Nerad, J.A.; Mogilishetty, G.; Holland, E.J. Donor-Derived Conjunctival-Limbal Melanoma after a Keratolimbal Allograft. Cornea 2017, 36, 1415–1418. [Google Scholar] [CrossRef]
- Ebaa Major Guidance and Standards Changes. Available online: http://eyebankingjournal.org/wp-content/uploads/2016/08/EBAA-Major-Guidance-and-Standards-Changes.pdf (accessed on 21 June 2021).
- Hjortdal, J.; Jones, G. The European Eye Bank Association—Current Standards and Regulations; Nova Science Publishers, Inc.: Venice, Italy, 2015; pp. 19–26. [Google Scholar]
- Foster, C.S.; De La Maza, M.S. Ocular cicatricial pemphigoid review. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, S.; Saeed, H.N.; Paschalis, E.; Chodosh, J. Keratolimbal allograft for limbal stem cell deficiency after severe corneal chemical injury: A systematic review. Br. J. Ophthalmol. 2018, 102, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Soifer, M.; Mousa, H.M.; Levy, R.B.; Perez, V.L. Understanding Immune Responses to Surgical Transplant Procedures in Stevens Johnsons Syndrome Patients. Front. Med. 2021, 8, 656998. [Google Scholar] [CrossRef]
- Daya, S.M.; Bell, R.D.; Habib, N.E.; Powell–Richards, A.; Dua, H.S. Clinical and Pathologic Findings in Human Keratolimbal Allograft Rejection. Cornea 2000, 19, 443–450. [Google Scholar] [CrossRef]
- Williams, K.A.; Coster, D.J. The role of the limbus in corneal allograft rejection. Eye 1989, 3, 158–166. [Google Scholar] [CrossRef]
- Krakauer, M.; Welder, J.D.; Pandya, H.K.; Nassiri, N.; Djalilian, A.R. Adverse Effects of Systemic Immunosuppression in Keratolimbal Allograft. J. Ophthalmol. 2012, 2012, 576712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, E.J.; Djalilian, A.R.; Schwartz, G.S. Management of aniridic keratopathy with keratolimbal allograft: A limbal stem cell transplantation technique. Ophthalmology 2003, 110, 125–130. [Google Scholar] [CrossRef]
- Karani, R.; Sherman, S.; Trief, D. A case of infectious crystalline keratopathy after corneal cross-linking. Am. J. Ophthalmol. Case Rep. 2021, 23, 101139. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, P.; Djalilian, A. Update on Limbal Stem Cell Transplantation. Middle East Afr. J. Ophthalmol. 2010, 17, 9–14. [Google Scholar] [CrossRef]
- Living-Related Conjunctival–Limbal Allograft (lr-clal) Transplantation. Available online: https://clinicalgate.com/living-related-conjunctival-limbal-allograft-lr-clal-transplantation/ (accessed on 21 June 2021).
- Daya, S.M.; Ilari, F. Living related conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmology 2001, 108, 126–133. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Eslani, M.; Kurji, K.H.; Wright, E.; Sarnicola, E.; Govil, A.; Holland, E.J. Long-term Outcomes of Living-Related Conjunctival Limbal Allograft Compared With Keratolimbal Allograft in Patients With Limbal Stem Cell Deficiency. Cornea 2020, 39, 980–985. [Google Scholar] [CrossRef]
- Espana, E.M.; Di Pascuale, M.; Grueterich, M.; Solomon, A.; Tseng, S.C.G. Keratolimbal allograft in corneal reconstruction. Eye 2004, 18, 406–417. [Google Scholar] [CrossRef]
- Behaegel, J.; Dhubhghaill, S.N.; Koppen, C.; Zakaria, N. Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration. Stem Cells Int. 2017, 2017, 6978253. [Google Scholar] [CrossRef]
- Shortt, A.J.; Secker, G.A.; Notara, M.D.; Limb, G.A.; Khaw, P.T.; Tuft, S.J.; Daniels, J.T. Transplantation of Ex Vivo Cultured Limbal Epithelial Stem Cells: A Review of Techniques and Clinical Results. Surv. Ophthalmol. 2007, 52, 483–502. [Google Scholar] [CrossRef]
- Chotikavanich, S.; Prabhasawat, P.; Ekpo, P.; Uiprasertkul, M.; Tesavibul, N. Efficacy of cultivated corneal epithelial stem cells for ocular surface reconstruction. Clin. Ophthalmol. 2012, 6, 1483–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, G.; Traverso, C.E.; Franzi, A.T.; Zingirian, M.; Cancedda, R.; De Luca, M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997, 349, 990–993. [Google Scholar] [CrossRef]
- Shortt, A.J.; Tuft, S.J.; Daniels, J.T. Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul. Surf. 2010, 8, 80–90. [Google Scholar] [CrossRef]
- Shortt, A.J.; Bunce, C.; Levis, H.; Blows, P.; Doré, C.J.; Vernon, A.; Secker, G.A.; Tuft, S.J.; Daniels, J.T. Three-Year Outcomes of Cultured Limbal Epithelial Allografts in Aniridia and Stevens-Johnson Syndrome Evaluated Using the Clinical Outcome Assessment in Surgical Trials Assessment Tool. Stem Cells Transl. Med. 2014, 3, 265–275. [Google Scholar] [CrossRef]
- Qi, X.; Xie, L.; Cheng, J.; Zhai, H.; Zhou, Q. Characteristics of Immune Rejection after Allogeneic Cultivated Limbal Epithelial Transplantation. Ophthalmology 2013, 120, 931–936. [Google Scholar] [CrossRef]
- Schwab, I.R.; Reyes, M. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 2000, 19, 421–426. [Google Scholar] [CrossRef]
- Bobba, S.; Chow, S.; Watson, S.; Di Girolamo, N. Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: A prospective case series. Stem Cell Res. Ther. 2015, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Lawrence, B.D.; Liu, A.; Schwab, I.R.; de Oliveira, L.A.; Rosenblatt, M.I. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4130–4138. [Google Scholar] [CrossRef] [Green Version]
- Massie, I.; Levis, H.J.; Daniels, J.T. Response of human limbal epithelial cells to wounding on 3D RAFT tissue equivalents: Effect of airlifting and human limbal fibroblasts. Exp. Eye Res. 2014, 127, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Levis, H.J.; Brown, R.A.; Daniels, J.T. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 2010, 31, 7726–7737. [Google Scholar] [CrossRef]
- The Story Behind the First Stem Cell Therapy. Available online: https://www.mednous.com/system/files/HoloclarStoryMar15.pdf (accessed on 22 June 2021).
- Haagdorens, M.; Cėpla, V.; Melsbach, E.; Koivusalo, L.; Skottman, H.; Griffith, M.; Valiokas, R.; Zakaria, N.; Pintelon, I.; Tassignon, M.-J. In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells Int. 2019, 2019, 7867613. [Google Scholar] [CrossRef] [Green Version]
- Thokala, P.; Singh, A.; Singh, V.K.; Rathi, V.M.; Basu, S.; Singh, V.; MacNeil, S.; Sangwan, V.S. Economic, clinical and social impact of simple limbal epithelial transplantation for limbal stem cell deficiency. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Sangwan, V.S.; Basu, S.; MacNeil, S.; Balasubramanian, D. Simple limbal epithelial transplantation (SLET): A novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br. J. Ophthalmol. 2012, 96, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Vazirani, J.; Ali, M.H.; Sharma, N.; Gupta, N.; Mittal, V.; Atallah, M.; Amescua, G.; Chowdhury, T.; Abdala-Figuerola, A.; Ramirez-Miranda, A.; et al. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: Multicentre results. Br. J. Ophthalmol. 2016, 100, 1416–1420. [Google Scholar] [CrossRef]
- Shanbhag, S.; Nikpoor, N.; Donthineni, P.R.; Singh, V.; Chodosh, J.; Basu, S. Autologous limbal stem cell transplantation: A systematic review of clinical outcomes with different surgical techniques. Br. J. Ophthalmol. 2019, 104, 247–253. [Google Scholar] [CrossRef]
- Basu, S.; Mohan, S.; Bhalekar, S.; Singh, V.; Sangwan, V. Simple limbal epithelial transplantation (SLET) in failed cultivated limbal epithelial transplantation (CLET) for unilateral chronic ocular burns. Br. J. Ophthalmol. 2018, 102, 1640–1645. [Google Scholar] [CrossRef]
- Gupta, N.; Farooqui, J.H.; Patel, N.; Mathur, U. Early Results of Penetrating Keratoplasty in Patients With Unilateral Chemical Injury After Simple Limbal Epithelial Transplantation. Cornea 2018, 37, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, X.; Yang, K.; Zhang, Y.; Deng, S.; Wang, Z.; Li, S.; Tian, L.; Jie, Y. Clinical outcomes of modified simple limbal epithelial transplantation for limbal stem cell deficiency in Chinese population: A retrospective case series. Stem Cell Res. Ther. 2021, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.J.; Ernø, I.T.M.; Ringstad, H.; Tønseth, K.A.; Dartt, D.A.; Utheim, T.P. Simple limbal epithelial transplantation: Current status and future perspectives. Stem Cells Transl. Med. 2019, 9, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Shanbhag, S.; Patel, C.N.; Goyal, R.; Donthineni, P.R.; Singh, V. Simple limbal epithelial transplantation (SLET): Review of indications, surgical technique, mechanism, outcomes, limitations, and impact. Indian J. Ophthalmol. 2019, 67, 1265–1277. [Google Scholar] [CrossRef]
- Bhalekar, S.; Basu, S.; Sangwan, V.S. Successful management of immunological rejection following allogeneic simple limbal epithelial transplantation (SLET) for bilateral ocular burns. BMJ Case Rep. 2013, 2013, bcr2013009051. [Google Scholar] [CrossRef] [Green Version]
- Riedl, J.C.; Musayeva, A.; Wasielica-Poslednik, J.; Pfeiffer, N.; Gericke, A. Allogenic simple limbal epithelial transplantation (alloSLET) from cadaveric donor eyes in patients with persistent corneal epithelial defects. Br. J. Ophthalmol. 2021, 105, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Iyer, G.; Srinivasan, B.; Agarwal, S.; Tarigopula, A. Outcome of allo simple limbal epithelial transplantation (alloSLET) in the early stage of ocular chemical injury. Br. J. Ophthalmol. 2016, 101, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Koizumi, N.; Sotozono, G.; Yamada, J.; Nakamura, T.; Inatomi, T. Concept and Clinical Application of Cultivated Epithelial Transplantation for Ocular Surface Disorders. Ocul. Surf. 2004, 2, 21–33. [Google Scholar] [CrossRef]
- Nakamura, T.; Inatomi, T.; Sotozono, C.; Amemiya, T.; Kanamura, N.; Kinoshita, S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br. J. Ophthalmol. 2004, 88, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Endo, K.-I.; Cooper, L.J.; Fullwood, N.J.; Tanifuji, N.; Tsuzuki, M.; Koizumi, N.; Inatomi, T.; Sano, Y.; Kinoshita, S. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Investig. Ophthalmol. Vis. Sci. 2003, 44, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Prabhasawat, P.; Chirapapaisan, C. Phenotypic characterization of corneal epithelium in long-term follow-up of patients post-autologous cultivated oral mucosal epithelial transplantation. Cornea 2021, 40, 842–850. [Google Scholar] [CrossRef]
- Gipson, I.K.; Inatomi, T. Mucin genes expressed by the ocular surface epithelium. Prog. Retin. Eye Res. 1997, 16, 81–98. [Google Scholar] [CrossRef]
- Nakamura, T.; Inatomi, T.; Cooper, L.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S. Phenotypic Investigation of Human Eyes with Transplanted Autologous Cultivated Oral Mucosal Epithelial Sheets for Severe Ocular Surface Diseases. Ophthalmology 2007, 114, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Komai, S.; Inatomi, T.; Nakamura, T.; Ueta, M.; Horiguchi, G.; Teramukai, S.; Kimura, Y.; Kagimura, T.; Fukushima, M.; Kinoshita, S.; et al. Long-term outcome of cultivated oral mucosal epithelial transplantation for fornix reconstruction in chronic cicatrising diseases. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, R.; Nagpal, R.; Mohanty, S.; Sen, S.; Kashyap, S.; Agarwal, T.; Maharana, P.K.; Vajpayee, R.B.; Sharma, N. Outcomes of Cultivated Oral Mucosal Epithelial Transplantation in Eyes With Chronic Stevens-Johnson Syndrome Sequelae. Am. J. Ophthalmology 2021, 222, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.V.; Jackson, C.J.; Utheim, T.P.; Jirsova, K. Ex vivo cultivated oral mucosal epithelial cell transplantation for limbal stem cell deficiency: A review. Stem Cell Res. Ther. 2020, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.-S.; Cai, L.; Ji, W.-Y.; Hui, Y.-N.; Wang, Y.-S.; Hu, D.; Zhu, J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol. Vis. 2010, 16, 1304–1316. [Google Scholar] [PubMed]
- Coulson-Thomas, V.J.; Coulson-Thomas, Y.M.; Gesteira, T.F.; Kao, W.W.-Y. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul. Surf. 2016, 14, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Miguel, T.; Galindo, S.; Reinoso, R.; Corell, A.; Martino, M.; Pérez-Simón, J.A.; Calonge, M. In Vitro Simulation of Corneal Epithelium Microenvironment Induces a Corneal Epithelial-like Cell Phenotype from Human Adipose Tissue Mesenchymal Stem Cells. Curr. Eye Res. 2013, 38, 933–944. [Google Scholar] [CrossRef]
- Nieto-Nicolau, N.; Martínez-Conesa, E.M.; Fuentes-Julián, S.; Arnalich-Montiel, F.; García-Tuñón, I.; De Miguel, M.P.; Casaroli-Marano, R.P. Priming human adipose-derived mesenchymal stem cells for corneal surface regeneration. J. Cell. Mol. Med. 2021, 25, 5124–5137. [Google Scholar] [CrossRef]
- Venugopal, B.; Shenoy, S.J.; Mohan, S.; Kumar, P.R.A.; Kumary, T.V. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells—A functional alternative to limbal stem cells for ocular surface reconstruction. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1033–1045. [Google Scholar] [CrossRef]
- Shojaati, G.; Khandaker, I.; Funderburgh, M.L.; Mann, M.M.; Basu, R.; Stolz, D.B.; Geary, M.L.; Dos Santos, A.; Deng, S.X.; Funderburgh, J.L. Mesenchymal Stem Cells Reduce Corneal Fibrosis and Inflammation via Extracellular Vesicle-Mediated Delivery of miRNA. Stem Cells Transl. Med. 2019, 8, 1192–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.; Lee, P.; Lu, C.; Liu, Y.; Wang, S.; Liu, C.; Chang, Y.; Chen, Y.; Su, C.; Li, C.; et al. Thrombospondin 1-induced exosomal proteins attenuate hypoxia-induced paraptosis in corneal epithelial cells and promote wound healing. FASEB J. 2021, 35, e21200. [Google Scholar] [CrossRef]
- Wahlund, C.; Güclüler, G.; Hiltbrunner, S.; Veerman, R.E.; Näslund, T.I.; Gabrielsson, S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci. Rep. 2017, 7, 17095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suntres, Z.E.; Smith, M.G. Therapeutic uses of exosomes. Exosomes Microvesicles 2013, 1, 5. [Google Scholar] [CrossRef]
- Meyer-Blazejewska, E.A.; Call, M.K.; Yamanaka, O.; Liu, H.; Schlötzer-Schrehardt, U.; Kruse, F.E.; Kao, W.W. From Hair to Cornea: Toward the Therapeutic Use of Hair Follicle-Derived Stem Cells in the Treatment of Limbal Stem Cell Deficiency. Stem Cells 2010, 29, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, B.G.; Serafim, R.C.; Melo, G.B.; Silva, M.C.P.; Lizier, N.F.; Maranduba, C.M.C.; Smith, R.L.; Kerkis, A.; Cerruti, H.; Gomes, J.A.P.; et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif. 2009, 42, 587–594. [Google Scholar] [CrossRef]
- Wang, X.; Gericke, A.; Ackermann, M.; Wang, S.; Neufurth, M.; Schröder, H.C.; Pfeiffer, N.; Müller, W.E.G. Polyphosphate, the physiological metabolic fuel for corneal cells: A potential biomaterial for ocular surface repair. Biomater. Sci. 2019, 7, 5506–5515. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Keratan sulfate: An up-to-date review. Int. J. Biol. Macromol. 2015, 72, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Osei, K.A.; Deivanayagam, C.; Nichols, J.J. Glycoprotein 340 in mucosal immunity and ocular surface. Ocul. Surf. 2018, 16, 282–288. [Google Scholar] [CrossRef]
- Kong, B.; Chen, Y.; Liu, R.; Liu, X.; Liu, C.; Shao, Z.; Xiong, L.; Liu, X.; Sun, W.; Mi, S. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 2020, 11, 1435. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Fu, W.; Liu, Y.; Wang, Q.; Wang, L.; Huang, Y. Agrin Promotes Limbal Stem Cell Proliferation and Corneal Wound Healing Through Hippo-Yap Signaling Pathway. Investig. Ophthalmol. Vis. Sci. 2020, 61, 7. [Google Scholar] [CrossRef] [PubMed]
- Sakai, O.; Uchida, T.; Imai, H.; Ueta, T. Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells. FEBS Open Bio 2016, 6, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Laihia, J.; Kaarniranta, K. Trehalose for Ocular Surface Health. Biomolecules 2020, 10, 809. [Google Scholar] [CrossRef] [PubMed]
Keratins | Species | Stage | Location | References |
---|---|---|---|---|
K3 | Rabbit | 21-day embryos | The peridermal layer of the cornea | [98] |
23-day embryos | The suprabasal layer of the cornea | |||
7 to 12 days after birth | The basal layer of the cornea | |||
Adult | The basal layer of the corneal epithelium and the suprabasal layer of the limbal epithelium | |||
K4 | Mouse | 16-, 18-, and 20-day embryos 2 and 4 days after birth | The superficial layer of the cornea | [94] |
Adult | Not observed | |||
K5/K12 | Mouse | 7 days after birth | The basal and apical cells of the central and peripheral cornea and limbus | [95] |
K12 | Rabbit | 17-day embryos | The peridermal layer of the cornea | [98] |
23-day embryos | The basal layer of the cornea | |||
Adult | The basal layer of the corneal epithelium and the suprabasal layer of the limbal epithelium | |||
K12 | Chick | 12-day embryos | Both peridermal and basal ectodermal layers of the cornea | [98] |
14- to 21-day embryos | All the epithelial strata of the central cornea | |||
21-day embryos | The suprabasal layer of the limbal epithelium | |||
K12 | Mouse | 15-day embryos | The superficial layer of the corneal epithelium | [94] |
18-day embryos | The suprabasal layer of the cornea | |||
0 h after wounding | The peripheral corneal epithelium | [97] | ||
24 h after wounding | Occasionally in superficial cells of the central and peripheral cornea | |||
K14 | Mouse | 15-day embryos | Corneal epithelial cells | [94] |
7 days after birth | The basal layers over the entire mouse ocular surface with higher expression at the limbal region compared with the central cornea | [95] | ||
49 days after birth | The localization decreases in the central corneal epithelium but remains strong at the limbus. | |||
0 h after wounding | Restricted to the limbus | [97] | ||
24 h after wounding | The layer of epithelial cells that covered the defect | |||
1 day after wounding | Corneal epithelial cells at and behind the leading edge | [95] | ||
7 days after wounding | The corneal center | |||
28 days after wounding | Cells adjacent to an erosion at the corneal center and around goblet cell clusters at the limbus | |||
K15 | Mouse | 7 days after birth | Limbal cells and well spread apical cells of the corneal periphery and center | [95] |
49 days after birth | The localization decreases in the central corneal epithelium but remains strong at the limbus. | |||
1 day after wounding | Extending toward the leading edge | |||
7 days after wounding | The corneal center | |||
28 days after wounding | Cells adjacent to an erosion at the corneal center and around goblet cell clusters at the limbus | |||
K17 | Human | Within 24 h (for ex vivo) to 48 h after death | Clusters of limbal basal cells in normal corneas and significantly decreased in diabetic limbal basal epithelium | [99] |
K18 | Mouse | 14 days after birth | The limbus | [95] |
7 days after wounding, | The center of the clusters | |||
28 days after wounding | Compound niches | |||
K8/K19 | Mouse | 7 days after birth | Basal and suprabasal cells throughout the corneal epithelium and limbus | [95] |
14 days after birth | Fewer cells on the central cornea and more restricted toward the peripheral and limbal region | |||
1 day after wounding | K19 + clusters are migrating away from the limbus | |||
7 days after wounding | K19 is localized to cells at the edges of large clusters | |||
28 days after wounding | Near the limbal region and on the peripheral cornea | [95,96] |
Congenital | Acquired |
---|---|
Congenital aniridia [112,113] | Stevens-Johnson syndrome [114] |
Peter’s anomaly [115] | Toxic epidermal necrolysis [116,117] |
Ectrodactyly-ectodermal-dysplasia-clefting syndrome [118] | Graft-versus-host disease [119] |
Keratitis-ichthyosis-deafness syndrome [120] | Ocular cicatricial pemphigoid [121,122] |
Dyskeratosis congenita [123,124] | Conjunctival intraepithelial neoplasia [125,126] |
Multiple endocrine deficiency [127,128] | Corneal intraepithelial neoplasia [129] |
Congenital erythrokeratodermia [130,131] | Pterygium [132] |
Xeroderma pigmentosum [133,134] | Chemical burn [135] |
Turner syndrome [136] | Thermal injury [137] |
Mustard gas [138,139] | |
Trachoma [140] | |
Herpetic Keratitis [141] | |
Ocular surgeries [142,143] | |
Contact lens wear [107,144,145] | |
Cryotherapy [146,147] | |
Medication toxicity (mitomycin C, 5-fluorouracil, and preservative) [148,149,150,151,152] | |
Radiation therapy [153] | |
Phototherapeutic keratectomy [154] | |
Intravitreal injections [155] | |
Neurotrophic keratitis [156,157] | |
Bullous keratopathy [158] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Y.; Jiang, S.; Musayeva, A.; Pfeiffer, N.; Gericke, A. Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options. Cells 2021, 10, 2302. https://doi.org/10.3390/cells10092302
Ruan Y, Jiang S, Musayeva A, Pfeiffer N, Gericke A. Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options. Cells. 2021; 10(9):2302. https://doi.org/10.3390/cells10092302
Chicago/Turabian StyleRuan, Yue, Subao Jiang, Aytan Musayeva, Norbert Pfeiffer, and Adrian Gericke. 2021. "Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options" Cells 10, no. 9: 2302. https://doi.org/10.3390/cells10092302
APA StyleRuan, Y., Jiang, S., Musayeva, A., Pfeiffer, N., & Gericke, A. (2021). Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options. Cells, 10(9), 2302. https://doi.org/10.3390/cells10092302