The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description and Recruitment
2.2. Headache Characteristics and Psychometric Questionnaires
2.3. Plasma Concentrations of FGF-21 and GDF-15
2.4. Statistical Analysis
3. Results
3.1. Composition and Description of Study Groups
3.2. Influence of Migraine on the Biomarkers
3.3. Association of Age and GDF-15 Levels
3.4. Association of BMI and FGF-21 Levels
3.5. Multiple Regression Analysis
4. Discussion
- (a)
- The determination of FGF-21 und GDF-15 does not allow a valid statement about mitochondrial involvement in migraine. This may also be true in other diseases where mitochondrial involvement is suspected. This is in line with a recently published study, in which plasma levels of GDF-15 assessed in patients with open angle glaucoma were found to be strongly confounded by age and vascular diseases [41]. Due to the extremely diverse factors influencing serum concentrations of both FGF-21 and GDF-15, it is difficult to define an independent control group.
- (b)
- Studies that investigated FGF-21 and GDF-15 and did not correct for vascular, inflammatory and metabolic disease should be interpreted with caution.
- (c)
- Mitochondrial involvement in migraine cannot be excluded. There are still no known biomarkers in migraine that can predict, e.g., a therapeutic response to prophylaxis and/or acute therapy. Further studies, preferably in a younger group, could investigate the effect of vitamin B2 (riboflavin) and coenzyme Q 10 in migraine patients with elevated GDF-15 and/or FGF-21 levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goadsby, P.; Holland, P.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef]
- Okada, H.; Araga, S.; Takeshima, T.; Nakashima, K. Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache J. Head Face Pain 1998, 38, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, M.; Feleppa, M.; Lipton, R.B.; Rapoport, A.M.; Bigal, M.E. Mitochondrial dysfunction and migraine: Evidence and hypotheses. Cephalalgia 2006, 26, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Montagna, P.; Sacquegna, T.; Martinelli, P.; Cortelli, P.; Bresolin, N.; Moggio, M.; Baldrati, A.; Riva, R.; Lugaresi, E. Mitochondrial Abnormalities in Migraine. Preliminary Findings. Headache J. Head Face Pain 1988, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Reyngoudt, H.; Achten, E.; Paemeleire, K. Magnetic resonance spectroscopy in migraine: What have we learned so far? Cephalalgia 2012, 32, 845–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyngoudt, H.; Paemeleire, K.; Descamps, B.; De Deene, Y.; Achten, E. 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 2011, 31, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Sándor, P.S.; Di Clemente, L.; Coppola, G.; Saenger, U.; Fumal, A.; Magis, D.; Seidel, L.; Agosti, R.M.; Schoenen, J. Efficacy of coenzyme Q10 in migraine prophylaxis: A randomized controlled trial. Neurology 2005, 64, 713–715. [Google Scholar] [CrossRef] [PubMed]
- Schoenen, J.; Jacquy, J.; Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis A randomized controlled trial. Neurology 1998, 50, 466–470. [Google Scholar] [CrossRef]
- Smeitink, J.; Koene, S.; Beyrath, J.; Saris, C.; Turnbull, U.; Janssen, M. Mitochondrial Migraine: Disentangling the angiopathy paradigm in m.3243A>G patients. JIMD Rep. 2019, 46, 52–62. [Google Scholar] [CrossRef]
- Ferrari, M.D.; Klever, R.R.; Terwindt, G.M.; Ayata, C.; Maagdenberg, A.M.J.M.V.D. Migraine pathophysiology: Lessons from mouse models and human genetics. Lancet Neurol. 2015, 14, 65–80. [Google Scholar] [CrossRef]
- Vollono, C.; Primiano, G.; Della Marca, G.; Losurdo, A.; Servidei, S. Migraine in mitochondrial disorders: Prevalence and characteristics. Cephalalgia 2017, 38, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Kraya, T.; Deschauer, M.; Joshi, P.R.; Zierz, S.; Gaul, C. Prevalence of Headache in Patients With Mitochondrial Disease: A Cross-Sectional Study. Headache J. Head Face Pain 2017, 58, 45–52. [Google Scholar] [CrossRef]
- Altmann, J.; Büchner, B.; Nadaj-Pakleza, A.; Schäfer, J.; Jackson, S.; Lehmann, D.; Deschauer, M.; Kopajtich, R.; Lautenschläger, R.; Kuhn, K.A.; et al. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: Data from the German mitoNET registry. J. Neurol. 2016, 263, 961–972. [Google Scholar] [CrossRef]
- Pfeffer, G.; Sirrs, S.; Wade, N.K.; Mezei, M.M. Multisystem Disorder in Late-Onset Chronic Progressive External Ophthalmoplegia. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2011, 38, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, P.; Meyer, A.; Naegel, S.; Watzke, S.; Zierz, S.; Kraya, T. Headache and migraine in mitochondrial disease and its impact on life—results from a cross-sectional, questionnaire-based study. Acta Neurol. Belg. 2021, 121, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Klopstock, T.; May, A.; Seibel, P.; Papagiannuli, E.; Diener, H.C.; Reichmann, H. Mitochondrial DNA in migraine with aura. Neurology 1996, 46, 1735–1738. [Google Scholar] [CrossRef]
- Zaki, E.; Freilinger, T.; Klopstock, T.; Baldwin, E.E.; Heisner, K.R.U.; Adams, K.; Dichgans, M.; Wagler, S.; Boles, R.G. Two Common Mitochondrial DNA Polymorphisms are Highly Associated with Migraine Headache and Cyclic Vomiting Syndrome. Cephalalgia 2009, 29, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Børte, S.; Zwart, J.-A.; Skogholt, A.H.; Gabrielsen, M.E.; Thomas, L.F.; Fritsche, L.G.; Surakka, I.; Nielsen, J.B.; Zhou, W.; Wolford, B.N.; et al. Mitochondrial genome-wide association study of migraine—The HUNT Study. Cephalalgia 2020, 40, 625–634. [Google Scholar] [CrossRef]
- Kalko, S.G.; Paco, S.; Jou, C.; Rodríguez, M.A.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.; Moggio, M.; Fagiolari, G.; et al. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genom. 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suomalainen, A.; Elo, J.M.; Pietiläinen, K.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef]
- Montero, R.; Yubero, D.; Villarroya, J.; Henares, D.; Jou, C.; Rodríguez, M.A.; Ramos, F.; Nascimento, A.; Ortez, C.I.; Campistol, J.; et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE 2016, 11, e0148709. [Google Scholar] [CrossRef] [Green Version]
- Kharitonenkov, A.; Shiyanova, T.L.; Koester, A.; Ford, A.M.; Micanovic, R.; Galbreath, E.; Sandusky, G.E.; Hammond, L.J.; Moyers, J.S.; Owens, R.A.; et al. FGF-21 as a novel metabolic regulator. J. Clin. Investig. 2005, 115, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, L.; Qin, W.; Zhang, G.; Yuan, J.; Wang, F. Adaptive Induction of Growth Differentiation Factor 15 Attenuates Endothelial Cell Apoptosis in Response to High Glucose Stimulus. PLoS ONE 2013, 8, e65549. [Google Scholar] [CrossRef]
- Lehtonen, J.M.; Forsström, S.; Bottani, E.; Viscomi, C.; Baris, O.R.; Isoniemi, H.; Höckerstedt, K.; Österlund, P.; Hurme, M.; Jylhävä, J.; et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 2016, 87, 2290–2299. [Google Scholar] [CrossRef]
- Scholle, L.M.; Lehmann, D.; Deschauer, M.; Kraya, T.; Zierz, S. FGF-21 as a Potential Biomarker for Mitochondrial Diseases. Curr. Med. Chem. 2018, 25, 2070–2081. [Google Scholar] [CrossRef]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Ji, K.; Ma, X.; Liu, S.; Li, W.; Zhao, Y.; Yan, C. Accuracy of FGF-21 and GDF-15 for the diagnosis of mitochondrial disorders: A meta-analysis. Ann. Clin. Transl. Neurol. 2020, 7, 1204–1213. [Google Scholar] [CrossRef]
- Zimmers, T.A.; Jin, X.; Hsiao, E.C.; McGrath, S.A.; Esquela, A.F.; Koniaris, L.G. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005, 23, 543–548. [Google Scholar] [PubMed]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Unsicker, K.; Spittau, B.; Krieglstein, K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013, 24, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013, 33, 629–808. [Google Scholar]
- Herrmann-Lingen, C.; Buss, U.; Snaith, R.P. HADS-D Hospital Anxiety and Depression Scale Deutsche Version; Deutsche Adaption der Hospital and Depression Scale (HADS): Göttingen, Germany, 2011. [Google Scholar]
- Wirtz, M.A.; Morfeld, M.; Glaesmer, H.; Brähler, E. Normierung des SF-12 Version 2. 0 zur Messung der gesundheitsbezogenen Lebensqualität in einer deutschen bevölkerungsrepräsentativen Stichprobe. Diagnostica 2018, 64, 215–226. [Google Scholar] [CrossRef]
- Stewart, W.F.; Lipton, R.B.; Kolodner, K.B.; Sawyer, J.; Lee, C.; Liberman, J.N. Validity of the Migraine Disability Assessment (MIDAS) score in comparison to a diary-based measure in a population sample of migraine sufferers. Pain 2000, 88, 41–52. [Google Scholar] [CrossRef]
- Davis, R.; Liang, C.; Sue, C.M. A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology 2016, 86, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Verhamme, F.M.; Freeman, C.M.; Brusselle, G.; Bracke, K.; Curtis, J.L. GDF-15 in Pulmonary and Critical Care Medicine. Am. J. Respir. Cell Mol. Biol. 2019, 60, 621–628. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef]
- Ho, J.E.; Mahajan, A.; Chen, M.-H.; Larson, M.G.; McCabe, E.L.; Ghorbani, A.; Cheng, S.; Johnson, A.D.; Lindgren, C.M.; Kempf, T.; et al. Clinical and Genetic Correlates of Growth Differentiation Factor 15 in the Community. Clin. Chem. 2012, 58, 1582–1591. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Horn-Wichmann, R.; Brabant, G.; Peter, T.; Allhoff, T.; Klein, G.; Drexler, H.; Johnston, N.; Wallentin, L.; Wollert, K.C. Circulating Concentrations of Growth-Differentiation Factor 15 in Apparently Healthy Elderly Individuals and Patients with Chronic Heart Failure as Assessed by a New Immunoradiometric Sandwich Assay. Clin. Chem. 2007, 53, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubens, W.H.G.; Kievit, M.T.; Berendschot, T.T.J.M.; de Coo, I.F.M.; Smeets, H.J.M.; Webers, C.A.B.; Gorgels, T.G.M.F. Plasma GDF-15 concentration is not elevated in open-angle glaucoma. PLoS ONE 2021, 16, e0252630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yeung, D.C.; Karpisek, M.; Stejskal, D.; Zhou, Z.-G.; Liu, F.; Wong, R.L.; Chow, W.-S.; Tso, A.W.; Lam, K.S.; et al. Serum FGF21 Levels Are Increased in Obesity and Are Independently Associated With the Metabolic Syndrome in Humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas-Ramos, D.; Almeda-Valdes, P.; Gómez-Pérez, F.J.; Meza-Arana, C.E.; Cruz-Bautista, I.; Arellano-Campos, O.; Navarrete-López, M.; Aguilar-Salinas, C.A. Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur. J. Endocrinol. 2010, 163, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, M.; Tan, X.; Wang, X.; Yang, X.; Xiao, J.; Li, X.; Wang, F. Negative correlation between cerebrospinal fluid FGF21 levels and BDI scores in male Chinese subjects. Psychiatry Res. 2017, 252, 111–113. [Google Scholar] [CrossRef]
- Gruosso, F.; Montano, V.; Simoncini, C.; Siciliano, G.; Mancuso, M. Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update. J. Clin. Med. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Mahjoub, S.Z. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin. Drug Metab. Toxicol. 2011, 8, 71–79. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Migraine Group (n = 230) | Control Group (n = 98) | p-Value |
---|---|---|---|
age (years) | 44.16 ± 9.10 range: 18–69 | 36.86 ± 10.60 range: 18–59 | <0.001 (t-test) |
gender (female/male) | 206/24 (89% female) | 71/27 (72% female) | 0.001 (chi2-test) |
BMI (kg/m2) | 24.37 ± 3.57 | 23.96 ± 3.41 | 0.24 (t-test) |
Migraine Group (n = 230) | |||
migraine type (CM/EM) | 110/120 (48% CM) | ||
migraine with/without aura | 96/134 (42% with aura) | ||
average headache days (monthly) | whole group: 15.16 ± 9.21 (n = 230) CM: 22.79 ± 6.33 (n = 110) EM: 8.10 ± 4.74 (n = 120) | ||
average intensity of attacks (NRS 0–10) | 6.09 ± 1.44 | ||
family history for migraine | 165 positive /75 negative (72% positive) | ||
medication-overuse headache (yes/no) | 18/107 (14% MOH, n = 125) | ||
previous migraine prophylaxis (attempts) | 1.42 ± 1.31 (n = 156) | ||
migraine prophylaxis present at the time of study participation (yes/no) | 116/40 (74% yes, n = 156) 34% ß-blocker (metoprolol or bisoprolol) 32% amitriptyline or another antidepressant 17% anticonvulsant (14% topiramate, 2% valproate) 6% erenumab, 4% onabotulinumtoxin A, 1% flunarizine 6% other (e.g., candesartane) |
Clinical Parameters | GDF-15 | FGF-21 | Test Method Used |
---|---|---|---|
episodic vs. chronic migraine | 0.924 | 0.195 | Kruskal-Wallis test |
headache days | 0.837 | 0.267 | simple linear regression |
headache intensity (groups) | 0.398 | 0.042 | Kruskal-Wallis test |
uni- vs. bilateral headache | 0.303 | 0.506 | Kruskal-Wallis test |
positive vs. negative family history for migraine | 0.103 | 0.459 | Kruskal-Wallis test |
Clinical Parameters | GDF-15 1 | FGF-21 1 |
---|---|---|
Migraine present yes/no | 0.177 (−18.3–99.0) | 0.564 (−32.2–17.6) |
Episodic vs. chronic migraine | 0.922 (−148.8–299.5) | 0.107 (−6.3–64.1) |
Headache days/month | 0.925 (−5.9–6.5) | 0.548 (−2.6–1.3) |
Headache intensity (groups) | 0.041 (1.0–48.8) | 0.044 (0.2–15.2) |
Uni- vs. bilateral headache | 0.632 (−91.4–55.7) | 0.236 (−9.3–37.3) |
Family history for headache (pos. /neg.) | 0.156 (−128.8–20.7) | 0.983 (−23.5–24.0) |
gender (female vs. male) | 0.404 (−40.9–101.4) | 0.160 (−52.1–1.9) |
Age (years) | <0.001 (6.6–10.9) | 0.120 (−0.2–1.6) |
BMI | 0.236 (−13.0–3.2) | 0.017 (0.8–7.8) |
Questionnaire | GDF-15 1 | FGF-21 1 |
---|---|---|
MIDAS | 0.909 (−70.6–62.8) | 0.761 (−17.5–23.9) |
HADS−D depression | 0.316 (−29.0–89.3) | 0.738 (−21.9–15.6) |
HADS−D anxiety | 0.158 (−88.4–14.5) | 0.017 (−36.0−(−3.6)) |
SF−12 physical part | 0.909 (−4.5–4.0) | 0.019 (−2.9−(−0.263)) |
SF−12 mental part | 0.626 (−5.2–3.1) | 0.162 (−2.2–0.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burow, P.; Haselier, M.; Naegel, S.; Scholle, L.M.; Gaul, C.; Kraya, T. The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine. Cells 2021, 10, 2471. https://doi.org/10.3390/cells10092471
Burow P, Haselier M, Naegel S, Scholle LM, Gaul C, Kraya T. The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine. Cells. 2021; 10(9):2471. https://doi.org/10.3390/cells10092471
Chicago/Turabian StyleBurow, Philipp, Marc Haselier, Steffen Naegel, Leila Motlagh Scholle, Charly Gaul, and Torsten Kraya. 2021. "The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine" Cells 10, no. 9: 2471. https://doi.org/10.3390/cells10092471
APA StyleBurow, P., Haselier, M., Naegel, S., Scholle, L. M., Gaul, C., & Kraya, T. (2021). The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine. Cells, 10(9), 2471. https://doi.org/10.3390/cells10092471