Features of Metabolic Support of Physical Performance in Highly Trained Cross-Country Skiers of Different Qualifications during Physical Activity at Maximum Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Experimental Protocol
2.4. Exercise Test on a Cycle Ergometer “until Exhaustion”
2.5. Determination of NOx
2.6. Determination of Lactate
2.7. Statistical Analysis
3. Results
3.1. Cardiorespiratory Parameters
3.2. Biochemical Parameters
3.3. Interrelationship of Cardiorespiratory Parameters and Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, L.; Schulz, T.; Oberhoffer, R.; Weberruß, H. Influence of vigorous physical activity on structure and function of the cardiovascular system in young athletes—The MuCAYA-Study. Front. Cardiovasc. Med. 2019, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Varro, A.; Baczko, I. Possible mechanisms of sudden cardiac death in top athletes: A basic cardiac electrophysiological point of view. Cardiovasc. Physiol. 2010, 460, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Turbasova, N.V.; Bulygin, A.S.; Revnivykh, I.Y.; Karpov, N.V.; Elifanov, A.V. Anxiety level and parameters of the cardiovascular system in athletes of various qualifications. Hum. Sport Med. 2019, 19, 14–19. [Google Scholar] [CrossRef]
- Saltin, B.; Astrand, P.O. Maximal oxygen uptake in athletes. J. Appl. Physiol. 1967, 23, 353–358. [Google Scholar] [CrossRef]
- Parshukova, O.I.; Varlamova, N.G.; Bojko, E.R. Nitric oxide production in professional skiers during physical activity at maximum load. Front. Cardiovasc. Med. Hypertens. 2020, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yol, Y.; Turgay, F.; Yigitturk, O.; Asıkovalı, S.; Durmaz, B. The effects of regular aerobic exercise training on blood nitric oxide levels and oxidized LDL and the role of eNOS intron 4a/b polymorphism. BBA Molec. Bas. Dis. 2020, 1866, 165913. [Google Scholar] [CrossRef] [PubMed]
- Windhaber, J.; Steinbauer, M.; Holter, M.; Wieland, A.; Kogler, K.; Riedl, R.; Schober, P.; Castellani, C.; Singer, G.; Till, H. Bicycle spiroergometry: Comparison of standardized examination protocols for adolescents: Is it necessary to define own standard values for each protocol? Eur. J. Appl. Physiol. 2021, 121, 1783–1794. [Google Scholar] [CrossRef]
- Dickstein, K.; Barvik, S.; Aarsland, T.; Snapinn, S.; Karlsson, J. A comparison of methodologies in detection of the anaerobic threshold. Circulation 1990, 81, 38–46. [Google Scholar] [PubMed]
- Myers, J.; Ashley, E. Dangerous curves. A perspective on exercise, lactate, and the anaerobic threshold. Chest 1997, 111, 787–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, D.L.; Taintor, R.R.; Boockvar, K.S.; Hibbs, J.B., Jr. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 1996, 268, 142–151. [Google Scholar] [CrossRef]
- Lorenz, D.S.; Reiman, M.P.; Lehecka, B.J.; Naylor, A. What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health 2013, 5, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Mitic, P.; Nedeljkovic, J.; Bojanic, Z.; Francesko, M.; Milovanovic, I.; Bianco, A.; Drid, P. Differences in the psychological profiles of elite and non-elite athletes. Front. Psychol. 2021, 12, 635651. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.L.; Jensen-Urstad, M.; Van Hall, G.; Holmberg, H.C.; Rosdahl, H.; Saltin, B. Maximal muscular vascular conductances during whole body upright exercise in humans. J. Physiology 2004, 558, 319–331. [Google Scholar] [CrossRef]
- Martin, S.A.; Hadmaș, R.M. Individual adaptation in cross-country skiing based on tracking during training conditions. Sports 2019, 7, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandbakk, O.; Holmberg, H.C. Physiological capacity and training routines of elite cross-country skiers: Approaching the per limits of human endurance. Int. J. Space Physiol. Perform. 2017, 1, 1003–1011. [Google Scholar] [CrossRef]
- Gjovaag, T.; Hjelmeland, A.K.; Oygard, J.B.; Vikne, H.; Mirtaheri, P. Acute hemodynamic and cardiovascular responses following resistance exercise to voluntary exhaustion. Effects of different loadings and exercise durations. J. Sports Med. Phys. Fit. 2016, 56, 616–623. [Google Scholar] [PubMed]
- Varlamova, N.G.; Zenchenko, T.A.; Boyko, E.R. Annual dynamics of blood pressure and me-Teosensitivity in women. Ther. Arch. 2017, 12, 56. [Google Scholar] [CrossRef]
- Mercer, J.B.; Osterud, B.; Tveita, T. The effect of short-term cold exposure on risk factors for cardiovascular diseases from China. Thromb. Res. 1999, 95, 93–104. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, S.; Ma, S.; Zhou, J.; Wang, B. Artificial cold air increases the cardiovascular risks in spontaneously hypertensive rats. Int. J. Environ. Res. Public Health 2012, 9, 3197–3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.; Hong, H.; Lee, B. The effects of strenuous exercises on resting heart rate, blood pressure, and maximal oxygen uptake. J. Exerc. Rehabil. 2016, 12, 42–46. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Marinaro, C.; Curci, C.; Invernizzi, M.; Ammendolia, A. Role of physical exercise and nutraceuticals in modulating molecular pathways of osteoarthritis. Int. J. Mol. Sci. 2021, 22, 5722. [Google Scholar] [CrossRef] [PubMed]
- Heitzer, T.; Krohn, K.; Albers, S.; Meinertz, T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II Diabetes mellitus. Diabetologia 2000, 43, 1435–3148. [Google Scholar] [CrossRef] [Green Version]
- Besedina, A. NO-synthase activity in patients with coronary heart disease associated with hypertension of different age Groups. J. Med. Biochem. 2016, 35, 43–49. [Google Scholar] [CrossRef]
- Chou, T.C.; Yen, M.H.; Li, C.Y.; Ding, Y.A. Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 1998, 31, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Kizub, I.V.; Kharchenko, O.I.; Kostiuk, O.S.; Ostapchenko, L.I.; Soloviev, A.I. Protein kinase C (PKC) involved in enhancement of alpha (1)-adrenoceptor-mediated responses of the main pulmonary artery in rats with diabetes mellitus. Regul. Mech. Biosyst. 2017, 8, 287–292. [Google Scholar] [CrossRef]
- Node, K.; Kitakaze, M.; Kosaka, H.; Komamura, K.; Minamino, T.; Inoue, M.; Tada, M.; Hori, M.; Kamada, T. Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation 1996, 93, 356–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampl, V.; Herget, J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol. Rev. 2000, 80, 1337–1372. [Google Scholar] [CrossRef]
- Allen, B.W.; Stamler, J.S.; Piantadosi, C.A. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol. Med. 2009, 15, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, I.Y.; Zenina, T.A.; Golubeva, L.Y.; Saltykova, V.A.; Manukhina, E.B.; Mikoyan, V.D.; Kubrina, L.N.; Vanin, A.F. NO-dependent mechanisms of adaptation to hypoxia. Nitric Oxide 1999, 3, 105–113. [Google Scholar] [CrossRef]
- Murray, A.J. Metabolic adaptation of skeletal muscle to high altitude hypoxia: How new technologies could resolve the controversies. Genome Med. 2009, 1, 117. [Google Scholar] [CrossRef]
- Sutton, J.R.; Reeves, J.T.; Wagner, P.D.; Groves, B.M.; Cymerman, A.; Malconian, M.K.; Rock, P.B.; Young, P.M.; Walter, S.D.; Houston, C.S. Operation Everest II: Oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol. 1988, 64, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Van Patot, M.C.T.; Serkova, N.J.; Haschke, M.; Kominsky, D.J.; Roach, R.C.; Christians, U.; Henthorn, T.K.; Honigman, B. Enhanced leukocyte HIF-1alpha and HIF-1 DNA binding in humans after rapid ascent to 4300 m. Free Radic. Biol. Med. 2009, 46, 1551–1557. [Google Scholar] [CrossRef]
- Boiko, E.R.; Burykh, E.A. Nitric oxide metabolites level in human serum in acute normobaric hypoxia. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 2012, 98, 147–154. [Google Scholar] [PubMed]
- MacInnis, M.J.; Carter, E.A.; Donnelly, J.; Koehle, M.S. A meta-analysis of exhaled nitric oxide in acute normobaric hypoxia. Aerosp. Med. Hum. Perform. 2015, 86, 693–697. [Google Scholar] [CrossRef]
- Carpenter, K.L.; Timofeev, I.; Al-Rawi, P.G.; Menon, D.K.; Pickard, J.D.; Hutchinson, P.J. Nitric oxide in acute brain injury: A pilot study of NO(x) concentrations in human brain microdialysates and their relationship with energy metabolism. Acta Neurochir. 2008, 102, 207–213. [Google Scholar] [CrossRef]
- Fujioka, S.; Noguchi, T.; Watanabe, T.; Takatsuto, S.; Yoshida, S. Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 2000, 53, 549–553. [Google Scholar] [CrossRef]
- Levy, B.; Valtier, M.; De Chillou, C.; Bollaert, P.E.; Cane, D.; Mallie, J.P. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats. Shock 1999, 11, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005, 353, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Borutaite, V.; Brown, G.C. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem. J. 1996, 1, 295–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klebl, B.M.; Ayoub, A.T.; Pette, D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca21-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett. 1998, 422, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Clementi, E.; Brown, G.C.; Feelisch, M.; Moncada, S. Persistent inhibition of cell respiration by nitric oxide: Crucial role of Snitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA 1998, 95, 7631–7636. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.S.; Meissner, G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef]
- Mazzone, M.; Carmeliet, P. Drug discovery: A lifeline for suffocating tissues. Nature 2008, 453, 1194–1195. [Google Scholar] [CrossRef]
- Schulman, I.H.; Hare, J.M. Regulation cardiovascular processes by S-nitrosylation. Biochim. Biophys. Acta 2012, 1820, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Gladwin, M.; Shelhamer, J.; Schechter, A.; Pease-Fye, M.; Waclawei, M.; Panza, J.; Oguibene, F.; Cannon, R. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of the regional blood floow in humans. Proc. Natl. Acad. Sci. USA 2000, 97, 11482–11486. [Google Scholar] [CrossRef] [Green Version]
- Gladwin, M.T.; Kim-Shapiro, D.B. The functional nitrite reductase activity of the heme globins. Blood 2008, 112, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Skaf, M.N.; Harrison, R.W.; Lee, K.; Minhas, K.M.; Kumor, A.; Fradley, M.; Shoukas, A.; Berkowitz, D.E.; Hare, J.M. Nitric oxide regulation of myocardial contractility and calcium cycling. Circ. Res. 2003, 92, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Layland, J.; Li, J.; Shah, A.M. Role cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J. Physiol. 2002, 540, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Godber, B.L.; Doel, J.J.; Sapkota, G.P.; Blake, D.R.; Stevens, C.R.; Eisenthal, R.; Harrison, R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J. Biol. Chem. 2000, 275, 7757–7763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebrowska, A.; Mizia-Stec, K.; Mizia, M.; Gąsiorb, Z.; Poprzęcki, S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur. J. Sport Sci. 2015, 15, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Chow, S.E.; Chen, J.K. Strenuous, acute exercise a Vects reciprocal modulation of platelet and polymorphonuclear leukocyte activities under shear Xow in men. J. Thromb. Haemost. 2003, 1, 2031–2037. [Google Scholar] [CrossRef]
- Delp, M.D.; Laughlin, M.H. Time course of enhanced endothelium mediated dilation in aorta of trained rats. Med. Sci. Sports Exerc. 1997, 29, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Cobb, F.R.; Gow, A.J. Regional and whole-body markers of nitric oxide production following hyperemic stimuli. Free Radic. Biol. Med. 2005, 38, 1164–1169. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Dejam, A.; Lauer, T.; Rassaf, T.; Picker, S.A.O.; Scheeren, T.; Godecke, A.; Schrader, J.; Schulz, R.; Heusch, G.; et al. Plasma nitrite resects constitutive nitric oxide synthase activity in mammals. Free Radic. Biol. Med. 2003, 35, 790–796. [Google Scholar] [CrossRef]
- Bode-Boger, S.M.; Boger, R.H.; Schroder, E.P.; Frolich, J.C. Exercise increases systemic nitric oxide production in men. J. Cardiovasc. Risk 1994, 1, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, E.M.; Gonzalez-Cotto, M.; Baseler, W.A.; Davies, L.C.; Ghesquière, B.; Maio, N.; Rice, C.M.; Rouault, T.A.; Cassel, T.; Higashi, R.M.; et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 2020, 4, 698. [Google Scholar] [CrossRef] [PubMed]
- Ilari, S.; Dagostino, C.; Malafoglia, V.; Lauro, F.; Giancotti, L.A.; Spila, A.; Proietti, S.; Ventrice, D.; Rizzo, M.; Gliozzi, M.; et al. Protective effect of antioxidants in nitric oxide/COX-2 interaction during inflammatory pain: The role of nitration. Antioxidants 2020, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Iorio, G.C.; Ammendolia, A.; Marotta, N.; Ricardi, U.; Sire, A. A bond between rheumatic diseases and cancer in the elderly: The interleukin-6 pathway. Int. J. Rheum. Dis. 2021, 24, 1317–1320. [Google Scholar] [CrossRef]
Parameters | Group I (n = 61) | Group II (n = 63) |
---|---|---|
AGE, YEARS | 19.1 ± 2.1 | 21.0 ± 3.1 |
WEIGHT, KG | 69.1 ± 4.8 | 71.1 ± 4.6 |
HEIGHT, CM | 174.9 ± 4.7 | 175.4 ± 4.9 |
Parameters | Stages of the Load | ||||
---|---|---|---|---|---|
At Rest | Anaerobic Threshold | Peak Load | Recovery | ||
Systolic blood pressure, mm Hg | I | 118.6 ± 11.7 | 168.5 ± 16.1 ### | 188.6 ± 15.9 ### | 122.2 ± 12.2 ### |
Ii | 115.2 ± 8.9 * | 163.9 ± 13.2 ### | 185.8 ± 18.6 ### | 125.3 ± 14.3 ### | |
Diastolic blood pressure, mm Hg | I | 77.6 ± 7.6 | 70.6 ± 13.9 ### | 75.2 ± 16.4 ### | 62.6 ± 13.5 ### |
Ii | 77.9 ± 8.8 | 77.1 ± 11.5 ** | 83.4 ± 14.7 *,### | 67.5 ± 15.4 **,### | |
Heart rate, beats/min | I | 62.8 ± 13.1 | 166.3 ± 13.3 ### | 180.2 ± 17.6 ### | 108.2 ± 13.3 ### |
Ii | 56.1 ± 10.1 ** | 165.1 ± 15.0 ### | 177.8 ± 17.3 ### | 99.9 ± 14.6 *,### | |
QRS complex, ms | I | 103.8 ± 8.9 | 191.8 ± 95.8 ### | 216.6 ± 76.3 # | 123.4 ± 41.9 ### |
Ii | 106.4 ± 8.9 | 187.4 ± 83.6 ### | 213.3 ± 87.3 # | 113.6 ± 19.7 ### | |
QT interval, ms | I | 394.2 ± 24.9 | 328.5 ± 93.5 ### | 361.8 ± 80.4 # | 316.8 ± 41.6 ### |
Ii | 412.5 ± 29.4 *** | 316.8 ± 84.3.1 ### | 345.4 ± 93.6 # | 311.1 ± 28.4 ## | |
Carbon dioxide production, L/min | I | 0.3 ± 0.1 | 3.6 ± 0.5 ### | 4.7 ± 0.6 ### | 0.8 ± 0.2 ### |
Ii | 0.3 ± 0.1 | 3.9 ± 0.6 **,### | 4.8 ± 0.7 ### | 0.8 ± 0.2 ### | |
Respiratory rate, breaths per minute | I | 13.9 ± 3.8 | 35.6 ± 8.2 ### | 50.2 ± 10.1 ### | 25.8 ± 5.8 ### |
Ii | 13.6 ± 3.9 | 36.8 ± 8.7 ### | 50.8 ± 12.4 ### | 25.7 ± 4.9 ### |
Parameters | Stages of the Load | ||||
---|---|---|---|---|---|
At Rest | Anaerobic Threshold | Peak Load | Recovery | ||
NO2, µmol/L | I | 8.1 ± 3.6 | 10.2 ± 4.9 ## | 9.8 ± 3.9 | 10.7 ± 4.5 |
Ii | 11.6 ± 5.2 * | 11.6 ± 6.1 | 11.1 ± 5.4 | 11.5 ± 5.7 | |
NO3, µmol/L | I | 8.2 ± 4.0 | 12.3 ± 6.9 ### | 11.9 ± 6.2 | 10.2 ± 5.8 # |
Ii | 17.2 ± 8.6 ** | 20.0 ± 10.6 **,## | 18.9 ± 11.3 **,# | 17.3 ± 10.5 ** | |
NO3/NO2 index | I | 1.5 ± 0.5 | 1.6 ± 0.9 | 1.6 ± 0.2 | 1.3 ± 0.8 |
Ii | 2.3 ± 0.6 * | 2.2 ± 0.6 * | 2.2 ± 1.3 * | 1.9 ± 0.5 * | |
Lactate, µmol/L | I | 2.9 ± 0.9 | 6.2 ± 1.6 ### | 9.6 ± 2.2 ### | 9.7 ± 2.3 |
Ii | 2.0 ± 0.8 ** | 6.4 ± 1.8 ### | 10.3 ± 1.8 ### | 9.8 ± 2.7 |
Stages of the Load | Parameters | Spearman Rank Order Correlations | ||
---|---|---|---|---|
NOx | NO2 | NO3 | ||
Before load, at rest | SBP | −0.32 * | ||
DBP | ||||
HR | ||||
QRS | ||||
QT | ||||
Lactate | −0.26 * | |||
V’O2 | ||||
V’O2 max | 0.30 * | |||
V’CO2 | ||||
Rer | ||||
Anaerobic threshold | SBP | −0.25 * | −0.36 ** | |
DBP | ||||
HR | ||||
QRS | ||||
QT | ||||
Lactate | ||||
V’O2 | 0.36 ** | 0.28 * | ||
V’O2 max | 0.29 * | |||
V’CO2 | 0.34 ** | |||
Rer | ||||
Peak load | SBP | |||
DBP | ||||
HR | ||||
QRS | ||||
QT | ||||
Lactate | 0.39 ** | |||
V’O2 | ||||
V’O2 max | ||||
V’CO2 | ||||
Rer | ||||
Recovery | SBP | |||
DBP | ||||
HR | 0.29 * | |||
QRS | ||||
QT | ||||
Lactate | ||||
V’O2 | ||||
V’O2 max | ||||
V’CO2 | ||||
Rer |
Stages of the Load | Parameters | Spearman Rank Order Correlations | ||
---|---|---|---|---|
NOx | NO2 | NO3 | ||
Before load, at rest | SBP | |||
DBP | ||||
HR | ||||
QRS | 0.37 ** | |||
QT | ||||
Lactate | −0.44 *** | −0.30 * | ||
V’O2 | ||||
V’O2 max | ||||
V’CO2 | −0.30 ** | |||
Rer | −0.26 * | −0.26 * | ||
Anaerobic threshold | SBP | 0.26 * | ||
DBP | ||||
HR | 0.31 ** | 0.43 *** | ||
QRS | ||||
QT | ||||
Lactate | 0.30 ** | 0.26 * | ||
V’O2 | 0.33 ** | 0.32 ** | ||
V’O2 max | ||||
V’CO2 | 0.26 * | 0.25 * | ||
Rer | 0.26 * | 0.26 * | ||
Peak load | SBP | −0.29 * | −0.26 * | |
DBP | 0.27 * | |||
HR | ||||
QRS | ||||
QT | ||||
Lactate | −0.26 * | |||
V’O2 | ||||
V’O2 max | 0.26 * | |||
V’CO2 | ||||
Rer | ||||
Recovery | SBP | |||
DBP | ||||
HR | 0.27 * | |||
QRS | ||||
QT | ||||
Lactate | ||||
V’O2 | ||||
V’O2 max | ||||
V’CO2 | ||||
Rer | −0.29 * | −0.28 * |
Stages of the Load | Parameters | Spearman Rank Order Correlations | ||
---|---|---|---|---|
Groups I | Groups II | |||
Before load, at rest | SBP | |||
DBP | ||||
HR | ||||
QRS | ||||
QT | ||||
Lactate | ||||
V’CO2 | ||||
Rer | ||||
Anaerobic threshold | SBP | −0.34 ** | ||
DBP | ||||
HR | ||||
QRS | ||||
QT | 0.26 * | |||
Lactate | 0.26 * | |||
V’CO2 | ||||
Rer | ||||
Peak load | SBP | |||
DBP | ||||
HR | ||||
QRS | ||||
QT | ||||
Lactate | 0.33 ** | |||
V’CO2 | ||||
Rer | ||||
Recovery | SBP | |||
DBP | −0.26 * | |||
HR | ||||
QRS | ||||
QT | ||||
Lactate | 0.33 ** | |||
V’CO2 | ||||
Rer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parshukova, O.I.; Varlamova, N.G.; Potolitsyna, N.N.; Lyudinina, A.Y.; Bojko, E.R. Features of Metabolic Support of Physical Performance in Highly Trained Cross-Country Skiers of Different Qualifications during Physical Activity at Maximum Load. Cells 2022, 11, 39. https://doi.org/10.3390/cells11010039
Parshukova OI, Varlamova NG, Potolitsyna NN, Lyudinina AY, Bojko ER. Features of Metabolic Support of Physical Performance in Highly Trained Cross-Country Skiers of Different Qualifications during Physical Activity at Maximum Load. Cells. 2022; 11(1):39. https://doi.org/10.3390/cells11010039
Chicago/Turabian StyleParshukova, Olga I., Nina G. Varlamova, Natalya N. Potolitsyna, Aleksandra Y. Lyudinina, and Evgeny R. Bojko. 2022. "Features of Metabolic Support of Physical Performance in Highly Trained Cross-Country Skiers of Different Qualifications during Physical Activity at Maximum Load" Cells 11, no. 1: 39. https://doi.org/10.3390/cells11010039
APA StyleParshukova, O. I., Varlamova, N. G., Potolitsyna, N. N., Lyudinina, A. Y., & Bojko, E. R. (2022). Features of Metabolic Support of Physical Performance in Highly Trained Cross-Country Skiers of Different Qualifications during Physical Activity at Maximum Load. Cells, 11(1), 39. https://doi.org/10.3390/cells11010039