Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer—When Does Cachexia Start?
Abstract
:1. Introduction
2. Materials and Methods
2.1. KPC Mouse Model
2.2. Pancreatic Histopathological Phenotype/Group Assignment
2.3. Genotyping of the KPC Mice
2.4. Fiber Size, Composition and Capillarization
2.5. Immunohistochemistry of CD68+ Macrophages and COX2+ Cells
2.6. Density and Integrity (Pre-/Post-Synaptic Co-Staining) of Neuromuscular Junctions (NMJ)
2.7. Transmission Electron Microscopy (TEM)
2.8. Intramyocellular Levels of Reduced or Oxidized Glutathione (GSH, GSSG) and of Free Amino Acids
2.9. Real-Time Quantitative Transcription Polymerase Chain Reaction (RT-qPCR)
2.10. Statistics
3. Results
3.1. Study Population
3.2. Fibers Size (Gastrocnemius and Soleus Muscle) and Fiber Composition (Soleus Muscle)
3.3. Capillarization of Gastrocnemius and Soleus Muscles
3.4. Density of CD68+ Macrophages and COX2+ Cells in Gastrocnemius and Soleus Muscles
3.5. Perivenous Density of CD68+ Macrophages and COX2+ Cells in the Liver
3.6. Gene Expression in Gastrocnemius and Soleus Muscle
3.7. Free Proteinogenic Amino Acids in in Gastrocnemius Muscle
3.8. Antioxidants GSH and Carnosine as Well as Precursor Amino Acids in Gastrocnemius Muscle
3.9. Correlations between Inflammatory Signals, SOCS3 Expression, and GSH Redox State in Gastrocnemius Muscle
3.10. Correlation of Free Amino Acids to Atrogin-1 Expression and of GSH to Glycine Levels in Gastrocnemius Muscle
3.11. Integrity of NMJ in Quadriceps Muscle
3.12. Mitochondrial Ultrastructural Integrity
4. Discussion
- (a)
- A still lacking detailed description of PDAC-related changes in fiber type-specific CSA, capillarization, NMJ integrity, amino acid and glutathione levels, mitochondrial ultrastructure, and pro-inflammatory, -apoptotic and -atrophic gene expression in fast- and slow-twitch skeletal muscles;
- (b)
- The onset of initial, likely inflammatory, changes in skeletal muscle phenotypes in relation to the progression of precancerous PanIN stages from 1A-B to 2-3 (in 2x and/or 3x-transgenic mice), and the transition to invasive PDAC (3x-transgenic mice).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Argiles, J.M.; Anker, S.D.; Evans, W.J.; Morley, J.E.; Fearon, K.C.; Strasser, F.; Muscaritoli, M.; Baracos, V.E. Consensus on cachexia definition. J. Am. Med. Dir. Assoc. 2010, 11, 229–230. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, M.J. Mechanisms of cancer cachexia. Physiol. Rev. 2009, 89, 381–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.; Freyssenet, D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function. J. Cachexia Sarcopenia Muscle 2021, 12, 252–273. [Google Scholar] [CrossRef]
- Bachmann, J.; Ketterer, K.; Marsch, C.; Fechtner, K.; Krakowski-Roosen, H.; Büchler, M.W.; Friess, H.; Martignoni, M.E. Pancreatic cancer related cachexia: Influence on metabolism and correlation to weight loss and pulmonary function. BMC Cancer 2009, 9, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, J.; Heiligensetzer, M.; Krakowski-Roosen, H.; Büchler, M.W.; Friess, H.; Martignoni, M.E. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J. Gastrointest. Surg. 2008, 1287, 1193–1201. [Google Scholar] [CrossRef]
- Atlanta, G.A.; US Department of Health and Human Services; Centers for Disease Control (CDC) and Prevention. Division of Cancer Prevention and Control Centers for Disease Control and Prevention: An Update on Cancer Deaths in the United States; CDC: Atlanta, GA, USA, 2020. [Google Scholar]
- Argiles, J.M.; Busquets, S.; Stemmler, B.; Lopez-Soriano, F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef]
- Johns, N.; Hatakeyama, S.; Stephens, N.A.; Degen, M.; Degen, S.; Frieauff, W.; Lambert, C.; Ross, J.A.; Roubenoff, R.; Glass, D.J.; et al. Clinical Classification of cancer cachexia: Phenotypic correlates in human skeletal muscle. PLoS ONE 2014, 9, e83618. [Google Scholar] [CrossRef]
- Tisdale, M.J. Reversing cachexia. Cell 2010, 142, 511–512. [Google Scholar] [CrossRef] [Green Version]
- Lieffers, J.R.; Mourtzakis, M.; Hall, K.H.; McCargar, L.J.; Prado, C.M.M.; Baracos, V.E. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: Contributions of organ and tumor mass to whole-body energy demands. Am. J. Clin. Nutr. 2009, 89, 1173–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martignoni, M.E.; Kunze, P.; Hildebrandt, W.; Kunzli, B.; Berberat, P.; Giese, T.; Kloters, O.; Hammer, J.; Buchler, M.W.; Giese, N.A.; et al. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin. Cancer. Res. 2005, 11, 5802–5808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, C.S.; Delitto, A.E.; Patel, R.; Nosacka, R.L.; D’Lugos, A.C.; Delitto, D.; Deyhle, M.R.; Trevino, J.G.; Judge, S.M.; Judge, A.R. IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers 2019, 11, 1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Burfeind, K.G.; Michaelis, K.A.; Braun, T.P.; Olson, B.; Pelz, K.R.; Morgan, T.K.; Marks, D.L. MyD88 signalling is critical in the development of pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle 2019, 10, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolly, A.; Dumas, J.F.; Servais, S. Cancer cachexia and skeletal muscle atrophy in clinical studies: What do we really know? J. Cachexia Sarcopenia Muscle 2020, 11, 1413–1428. [Google Scholar] [CrossRef] [PubMed]
- Johns, N.; Stephens, N.A.; Fearon, K.C.H. Muscle wasting in cancer. Int. J. Biochem. Cell Biol. 2013, 45, 2215–2229. [Google Scholar] [CrossRef]
- Fearon, K.C.; Glass, D.J.; Guttridge, D.C.C. Ancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Manoli, I.; Le, H.; Alesci, S.; McFann, K.K.; Su, Y.A.; Kino, T.; Chrousos, G.P.; Blackman, M.R. Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J. 2005, 19, 1359–1361. [Google Scholar] [CrossRef]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dhar-marajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef]
- Nosacka, R.L.; Delitto, A.E.; Delitto, D.; Patel, R.; Judge, S.M.; Trevino, J.G.; Judge, A.R. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J. Cachexia Sarcopenia Muscle 2020, 11, 820–837. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.M.; Kempen, L.J.A.P.; Hardy, R.S.; Langen, R.C.J. Inflammation and skeletal muscle wasting during cachexia. Front. Physiol. 2020, 11, 597675. [Google Scholar] [CrossRef] [PubMed]
- Judge, S.M.; Nosacka, R.L.; Delitto, D.; Gerber, M.H.; Cameron, M.E.; Trevino, J.G.; Judge, A.R. Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival. JNCI Cancer Spectr. 2018, 2, pky043. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Markov, S.D.; Attri, K.S.; Vernucci, E.; King, R.J.; Dasgupta, A.; Grandgenett, P.M.; Hollingsworth, M.A.; Singh, P.K.; Yu, F.; et al. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett. 2020, 484, 29–39. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, B.N.; Murphy, E.A.; Carson, J.A. The impact of immune cells on the skeletal muscle microenvironment during cancer cachexia. Front. Physiol. 2020, 11, 1037. [Google Scholar] [CrossRef]
- Miller, A.; McLeod, L.; Alhayyani, S.; Szczepny, A.; Watkins, D.N.; Chen, W.; Enriori, P.; Ferlin, W.; Ruwanpura, S.; Jenkins, B.J. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene 2017, 36, 3059–3066. [Google Scholar] [CrossRef]
- Bonetto, A.; Aydogdu, T.; Kunzevitzky, N.; Guttridge, D.C.; Khuri, S.; Koniaris, L.G.; Zimmers, T.A. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS ONE 2011, 6, e22538. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, P.; Cognard, E.; Bellon-Paul, R.; Gontard, P.; Filloux, C.; Jehl-Pietri, C.; Grimaldi, P.; Samson, M.; Penicaud, L.; Ruberte, J.; et al. Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice. Diabetologia 2009, 52, 2201–2212. [Google Scholar] [CrossRef] [Green Version]
- Hetzler, K.L.; Hardee, J.P.; Puppa, M.J.; Narsale, A.A.; Sato, S.; Davis, J.M.; James, A. Sex Differences in the Relationship of IL-6 Signaling to Cancer Cachexia Progression. Biochim. Biophys. Acta 2015, 1852, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.A.; Dong, J.; Dong, Y.; Dong, Y.; Schor, N.; Tweardy, D.J.; Zhang, L.; Mitch, W.E. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J. Biol. Chem. 2015, 290, 11177–11187. [Google Scholar] [CrossRef] [Green Version]
- Fei, F.; Sun, S.; Li, Q.; Pei, Z.; Wang, L.; Zhang, R.; Luo, F.; Yu, M.; Wang, X. Combinatorial Normalization of Liver-Derived Cytokine Pathways Alleviates Hepatic Tumor-Associated Cachexia in Zebrafish. Cancer Res. 2021, 81, 873–884. [Google Scholar] [CrossRef]
- Liou, G.Y.; Storz, P. Inflammatory macrophages in pancreatic acinar cell metaplasia and initiation of pancreatic cancer. Oncoscience 2015, 2, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Liou, G.Y.; Bastea, L.; Fleming, A.; Döppler, H.; Edenfield, B.H.; Dawson, D.W.; Zhang, L.; Bardeesy, N.; Storz, P. The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis. Cell Rep. 2017, 19, 1322–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hingorani, S.R.; Petricoin, E.F.; Maitra, A.; Rajapakse, V.; King, C.; Jacobetz, M.A.; Ross, S.; Conrads, T.P.; Veenstra, T.D.; Hitt, B.A.; et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003, 4, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Hingorani, S.R.; Wang, L.; Multani, A.S.; Combs, C.; Deramaudt, T.B.; Hruban, R.H.; Rustgi, A.K.; Chang, S.; Tuveson, D.A. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005, 7, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, K.A.; Zhu, X.; Burfeind, K.G.; Krasnow, S.M.; Levasseur, P.R.; Morgan, T.K.; Marks, D.L. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle 2017, 8, 824–838. [Google Scholar] [CrossRef]
- Guarnier, F.A.; Cecchini, A.L.; Suzukawa, A.A.; Maragno, A.L.C.G.; Simão, A.N.C.; Gomes, M.D.; Cecchini, R. Time course of skeletal muscle loss and oxidative stress in rats with Walker 256 solid tumor. Muscle Nerve 2010, 42, 950–958. [Google Scholar] [CrossRef]
- Daou, N.; Hassani, M.; Matos, E.; De Castro, G.S.; Costa, R.G.F.; Seelaender, M.; Moresi, V.; Rocchi, M.; Adamo, S.; Li, Z.; et al. Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. Int. J. Mol. Sci. 2020, 21, 1092. [Google Scholar] [CrossRef] [Green Version]
- Boehm, I.; Miller, J.; Wishart, T.M.; Wigmore, S.J.; Skipworth, R.J.; Jones, R.A.; Gillingwater, T.H. Neuromuscular junctions are stable in patients with cancer cachexia. J. Clin. Investig. 2020, 130, 1461–1465. [Google Scholar] [CrossRef]
- Argiles, J.M.; Lopez-Soriano, F.J.; Busquet, S. Muscle wasting in cancer: The role of mitochondria. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 221–225. [Google Scholar] [CrossRef]
- Hruban, R.H.; Adsay, N.V.; Albores-Saavedra, J.; Anver, M.R.; Biankin, A.V.; Boivin, G.P.; Furth, E.E.; Furukawa, T.; Klein, A.; Klimstra, D.S.; et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: Consensus report and recommendations. Cancer Res. 2006, 66, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Bannow, L.; Bonaterra, G.A.; Bertoune, M.; Maus, S.; Schulz, R.; Weissmann, N.; Kraut, S.; Kinscherf, R.; Hildebrandt, W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice-the role of iNOS. Skelet. Muscle 2022, 12, 6. [Google Scholar] [CrossRef]
- Hack, V.; Gross, A.; Kinscherf, R.; Bockstette, M.; Fiers, W.; Berke, G.; Dröge, W. Abnormal glutathione and sulfate levels after interleukin 6 treatment and in tumor-induced cachexia. FASEB J. 1996, 10, 1219–1226. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- Tuveson, D.A.; Hingorani, S.R. Ductal pancreatic cancer in humans and mice. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S.H.; Goldberg, A. Foxo transcription factors induce the atrophy-re-lated ubiquitin ligase atrogin-1 and cause skeletalmuscle atrophy. Cell 2004, 117, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Léger, B.; Derave, W.; De Bock, K.; Hespel, P.; Russell, A.P. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 2008, 11, 163–175B. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, S.B.; O’Neill, H.M.; Sylow, L.; Honeyman, J.; Hewitt, K.A.; Palanivel, R.; Fullerton, M.D.; Öberg, L.; Balendran, A.; Galic, S.; et al. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity. Diabetes 2013, 62, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, B.R.; Ogborn, D.I.; Baker, J.M.; Toth, K.G.; Tarnopolsky, M.A.; Parise, G. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am. J. Physiol. Cell Physiol. 2013, 304, C717–C728. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Tang LNi Xu, T.; Fang, Q.; Xu, L.; Ma, W.; Yang, X.; Sun, H. Salidroside Attenuates Denervation-Induced Skeletal Muscle Atrophy Through Negative Regulation of Pro-inflammatory Cytokine. Front. Physiol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Fang, Q.; Ma, W.; Zhang, Q.; Qiu, J.; Gu, X.; Yang, H.; Sun, H. Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Front. Pharmacol. 2019, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Gamrin-Gripenberg, L.; Sundström-Rehal, M.; Olsson, D.; Grip, J.; Wernerman, J.; Rooyackers, O. An attenuated rate of leg muscle protein depletion and leg free amino acid efflux over time is seen in ICU long-stayers. Crit. Care 2018, 22, 13. [Google Scholar] [CrossRef] [Green Version]
- Holm, E.; Hildebrandt, W.; Kinscherf, R.; Dröge, W. Low postabsorptive net protein degradation in male cancer patients: Lack of sensitivity to regulatory amino acids? Oncol. Rep. 2007, 17, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipton, K.D.; Borsheim, E.; Wolf, S.E.; Sanford, A.P.; Wolfe, R.R. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E76–E89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjölin, J.; Stjernström, H.; Friman, G.; Larsson, J.; Wahren, J. Total and net muscle protein breakdown in infection determined by amino acid effluxes. Am. J. Physiol. 1990, 258 Pt 1, E856–E863. [Google Scholar] [CrossRef] [PubMed]
- Demasi, M.; Netto, L.E.; Silva, G.M.; Hand, A.; de Oliveira, C.L.; Bicev, R.N.; Gozzo, F.; Barros, M.H.; Leme, J.M.; Ohara, E. Redox regulation of the proteasome via S-glutathionylation. Redox. Biol. 2013, 2, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Frottin, F.; Espagne, C.; Traverso, J.A.; Mauve, C.; Valot, B.; Lelarge-Trouverie, C.; Zivy, M.; Noctor, G.; Meinnel, T.; Giglione, C. Cotranslational proteolysis dominates glutathione homeostasis to support proper growth and development. Plant. Cell 2009, 21, 3296–3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes-Marcondes, M.C.; Tisdale, M.J. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett. 2002, 180, 69–74. [Google Scholar] [CrossRef]
- Kim, G.Y.; Jeong, H.; Yoon, H.Y.; Yoo, H.M.; Lee, J.Y.; Park, S.H.; Lee, C.E. Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Rep. 2020, 53, 640–645. [Google Scholar] [CrossRef]
- Lettieri-Barbato, D.; Minopoli, G.; Caggiano, R.; Izzo, R.; Santillo, M.; Aquilano, K.; Faraonio, R. Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 7780. [Google Scholar] [CrossRef]
- Kitaoka, Y. The Role of Nrf2 in Skeletal Muscle on Exercise Capacity. Antioxidants 2021, 10, 1712. [Google Scholar] [CrossRef]
- Barreiro, E.; Puig-Vilanova, E.; Salazar-Degracia, A.; Pascual-Guardia, S.; Casadevall, C.; Gea, J. The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with COPD cachexia. J. Appl. Physiol. 2018, 125, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory models. J. Biomed. Sci. 2020, 27, 87. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, S.; Liu, K.; Abbasi, I.H.R.; Cai, C.; Yao, J. Molecular mechanisms relating to amino acid regulation of protein synthesis. Nutr. Res. Rev. 2019, 32, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, D.J.; Murphy, K.T.; Chee, A.; Lynch, G.S.; Koopman, R. Glycine adminsitration attenuates skeletal msucle wasting in a mouse model of cancert cachexia. Clin. Nutr. 2014, 33, 448–458. [Google Scholar] [CrossRef]
- Caldow, M.K.; Ham, D.J.; Chee QATrieu, J.; Naim, T.; Stapleton, D.I.; Swiderski, K.; Lynch, G.S.; Koopman, R. Muscle-specific deletion of SOCS3 does not reduce the anabolic response to leucine in a mouse model of acute inflammation. Cytokine 2017, 96, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- De Brandt, J.; Burtin, C.; Pomiès, P.; Vandenabeele, F.; Verboven, K.; Aumann, J.; Blancquaert, L.; Everaert, I.; Van Ryckeghem, L.; Cops, J.; et al. Carnosine, oxidative and carbonyl stress, antioxidants, and muscle fiber characteristics of quadriceps muscle of patients with COPD. J. Appl. Physiol. 2021, 131, 1230–1240. [Google Scholar] [CrossRef]
- Breen, E.; Tang, K.; Olfert, M.; Knapp, A.; Wagner, P. Skeletal muscle capillarity during hypoxia: VEGF and its activation. High. Alt. Med. Biol. 2008, 9, 158–166. [Google Scholar] [CrossRef]
- Mizuna, M.; Savard, G.K.; Areskog, N.H.; Lundby, C.; Saltin, B. Skeletal muscle adaptations to prolonged exposure to extreme altitude: A role of physical activity? High. Alt. Med. Biol. 2008, 9, 311–317. [Google Scholar] [CrossRef]
- Weber, M.A.; Krakowski-Roosen, H.; Schröder, L.; Kinscherf, R.; Krix, M.; Kopp-Schneider, A.; Essig, M.; Bachert, P.; Kauczor, H.U.; Hildebrandt, W. Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol. 2009, 48, 116–124. [Google Scholar] [CrossRef]
- Gupta, R.; Chan, J.P.; Uong, J.; Palispis, W.A.; Wright, D.J.; Shah, S.B.; Ward, S.R.; Lee, T.Q.; Steward, O. Human motor endplate remodeling after traumatic nerve injury. J. Neurosurg. 2020, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Cui, C.; Chow, S.K.; Qin, L.; Wong, R.M.Y.; Cheung, W.H. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front. Aging Neurosci. 2020, 12, 597811. [Google Scholar] [CrossRef] [PubMed]
- Kapchinsky, S.; Vuda, M.; Miguez, K.; Elkrief, D.; de Souza, A.R.; Baglole, C.J.; Aare, S.; MacMillan, N.J.; Baril, J.; Rozakis, P.; et al. Smoke-induced neuromuscular junction degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary disease. J. Physiol. 2018, 596, 2865–2881. [Google Scholar] [CrossRef] [PubMed]
- Ushmorov, A.; Hack, V.; Dröge, W. Differential reconstitution of mitochondrial respiratory chain activity and plasma redox state by cysteine and ornithine in a model of cancer cachexia. Cancer Res. 1999, 59, 3527–3534. [Google Scholar] [PubMed]
- Vohra, R.; Campbell, M.D.; Park, J.; Whang, S.; Gravelle, K.; Wang, Y.N.; Hwang, J.H.; Marcinek, D.J.; Lee, D. Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer. JCSM Rapid Commun. 2020, 3, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Op den Kamp, C.M.; Langen, R.C.; Minnaard, R.; Kelders, M.C.; Snepvangers, F.J.; Hesselink, M.K.; Dingemans, A.C.; Schols, A.M. Pre-cachexia in patients with stages I-III non-small cell lung cancer: Systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system. Lung Cancer 2012, 76, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martignoni, M.E.; Dimitriu, C.; Bachmann, J.; Krakowski-Roosen, H.; Ketterer, K.; Kinscherf, R.; Friess, H. Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol. Rep. 2009, 21, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T.L.; Martignoni, M.E.; Bachmann, J.; Fechtner, K.; Friess, H.; Kinscherf, R.; Hildebrandt, W. Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. J. Mol. Med. 2007, 85, 647–654. [Google Scholar] [CrossRef]
- Nagathihalli, N.S.; Castellanos, J.A.; Van Saun, M.N.; Dai, X.; Ambrose, M.; Guo, O.; Xiong, Y.; Merchant, N.B. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 2016, 7, 65982–65992. [Google Scholar] [CrossRef] [Green Version]
- Young, R.P.; Hopkin, R.J.; Marsland, B. The gut-liver-lung axis. Modulation of the innate immune response and its possible rloe in chronic obstructive pulmonary disease. Am. J. Resp. Cell Mol. Biol. 2016, 54, 161–169. [Google Scholar] [CrossRef]
Pancreatic Phenotype | WT (Normal) | PanIN 1A-B | PanIN 2-3 | PDAC | |
---|---|---|---|---|---|
n | all | 13 | 22 | 11 | 11 |
male | 7 | 12 | 5 | 7 | |
female | 6 | 10 | 6 | 4 | |
Genotype | all | 13 WT | 16 2x-, 6 3x-transgenic | 6 2x-, 5 3x transgenic | 11 3x-transgenic |
male | 7 WT | 10 2x-, 2 3x-transgenic | 3 2x-, 2 3x-transgenic | 7 3x-trasngenic | |
female | 6 WT | 6 2x-, 4 3x-transgenic | 3 2x-, 3 3x-transgenic | 4 3x-transgenic | |
Age (weeks) | all | 17.0 ± 0.6 | 21.7 ± 1.8 | 20.4 ± 1.2 ** | 23.6 ± 1.0 ***# |
male | 17.1 ± 1.0 | 22.4 ± 2.6 | 20.2 ± 2.2 | 24.3 ± 1.3 ** | |
female | 16.8 ± 0.5 | 20.9 ± 2.4 | 20.5 ± 1.3 * | 22.5 ± 1.6 * | |
Body weight (g) | all | 29.0 ± 1.7 | 27.5 ± 1.2 | 27.4 ± 1.7 | 27.7 ± 1.0 |
male | 34.0 ± 1.5 | 31.2 ± 1.3 | 31.8 ± 2.7 | 29.8 ± 0.4 * | |
female | 23.2 ± 0.6 $$$ | 23.2 ± 0.5 $$$ | 23.8 ± 0.6 $ | 24.1 ± 1.5 $$ |
KERRYPNX | WT | PanIN 1AB | PanIN 2-3 | PDAC | p Value ANOVA | p Value ANOVA | |||
---|---|---|---|---|---|---|---|---|---|
PDAC | Sex | PanIN | Sex | ||||||
n (m/f) | 12–13 (6–7/6) | 16–18 (8–10/8) | 9–11 (4–5/5–6) | 10 (7/3) | 22–23 (13–14/9) | 37–42 (18–22/19–20) | |||
Gastrocnemius muscle (type 2x fiber) | |||||||||
Capillary density | mm−2 | 70.4 ± 3.4 | 76.9 ± 6.2 | 70.4 ± 6.5 | 70.3 ± 4.2 | 0.846 | 0.542 | 0.599 | 0.794 |
Capillary/fiber | ratio | 1.29 ± 0.11 | 1.29 ± 0.06 | 1.15 ± 0.09 | 1.15 ± 0.05 | 0.210 | 0.342 | 0.655 | 0.463 |
Capillary contacts | n | 2.94 ± 0.20 | 2.80 ± 0.16 | 2.82 ± 0.13 | 2.56 ± 0.18 | 0.210 | 0.415 | 0.730 | 0.226 |
Capillaries/CSA | n/103 µm2 | 1.35 ± 0.20 | 1.22 ± 0.13 | 1.22 ± 0.11 | 1.06 ± 0.07 | 0.203 | 0.255 | 0.459 | 0.600 |
Soleus muscle (type 1, 2a and 2x fibers) | |||||||||
Capillary density | mm−2 | 194 ± 12 | 194 ± 15 | 184 ± 13 | 196 ± 12 | 0.864 | 0.487 | 0.916 | 0.549 |
Capillary/fiber | ratio | 2.09 ± 0.20 | 2.24 ± 0.14 | 1.98 ± 0.24 | 1.75 ± 0.14 | 0.119 | 0.078 | 0.827 | 0.121 |
Capill. contacts | |||||||||
fiber type 1 | n | 4.77 ± 0.33 | 4.71 ± 0.25 | 4.78 ± 0.26 | 4.37 ± 0.19 | 0.534 | 0.285 | 0.818 | 0.036 |
fiber type 2a | n | 4.40 ± 0.26 | 4.39 ± 0.26 | 4.50 ± 0.25 | 4.21 ± 0.21 | 0.864 | 0.295 | 0.693 | 0.009 |
fiber type 2x | n | 3.89 ± 0.50 | 4.39 ± 0.34 | 3.80 ± 0.43 | 4.00 ± 0.26 | 0.657 | 0.142 | 0.334 | 0.225 |
Capillaries/CSA | |||||||||
fiber type 1 | n/103 µm2 | 4.06 ± 0.91 | 3.42 ± 0.25 | 3.68 ± 0.30 | 3.28 ± 0.23 | 0.394 | 0.548 | 0.403 | 0.094 |
fiber type 2a | n/103 µm2 | 4.20 ± 0.83 | 3.41 ± 0.34 | 3.92 ± 0.39 | 3.73 ± 0.35 | 0.751 | 0.121 | 0.366 | 0.063 |
fiber type 2x | n/103 µm2 | 3.54 ± 0.37 | 3.71 ± 0.38 | 3.86 ± 0.34 | 3.65 ± 0.39 | 0.706 | 0.541 | 0.668 | 0.230 |
(a) gastrocenmius muscle | ||||||||
WT | PanIN 1A-B | PanIN 2-3 | PDAC | p Value ANOVA | p Value ANOVA | |||
PDAC | Sex | PanIN | Sex | |||||
n (m/f) | 9–11 (5–6/4–5) | 17 (10/7) | 10 (4/6) | 11 (7/4) | 20–22 (12–13/8–9) | 36–38 (19–20/17–18) | ||
Atrophy and apoptosis signals | ||||||||
Atrogin-1 | 1 ± 0.35 | 0.83 ± 0.14 | 2.12 ± 0.90 | 2.80 ± 1.08 | 0.065 | 0.103 | 0.664 | 0.903 |
MuRF1 | 1 ± 2.45 | 0.14 ± 0.16 | 0.188 | 0.388 | ||||
Casp3 | 1 ± 0.26 | 1.44 ± 0.26 | 1.14 ± 0.23 | 1.29 ± 0.23 | 0.127 | 0.001 | 0.287 | 0.043 |
Bax | 1 ± 0.41 | 0.70 ± 0.11 | 1.75 ± 0.68 | 1.65 ± 0.58 | 0.226 | 0.030 | 0.935 | 0.142 |
BCL2 | 1 ± 0.18 | 0.91 ± 0.14 | 1.64 ± 0.53 | 1.44 ± 0.26 | 0.279 | 0.743 | 0.625 | 0.429 |
Pro-/anti-inflammatory signals and oxidative stress | ||||||||
CD68 | 1 ± 0.39 | 1.95 ± 0.85 | 0.82 ± 0.24 | 2.56 ± 0.82 | 0.046 | 0.045 | 0.554 | 0.191 |
COX2 | 1 ± 0.33 | 2.58 ± 0.55 * | 2.00 ± 0.54 | 3.30 ± 1.44 | 0.264 | 0.984 | 0.122 | 0.632 |
IL1β | 1 ± 0.63 | 0.99 ± 0.18 | 2.07 ± 1.07 | 3.52 ± 1.36 * | 0.089 | 0.078 | 0.797 | 0.541 |
IL6 | 1 ± 0.52 | 0.68 ± 0.16 | 0.97 ± 0.46 | 1.65 ± 0.47 | 0.192 | 0.263 | 0.652 | 0.957 |
TNFα | 1 ± 0.26 | 2.34 ± 0.59 * | 1.24 ± 0.47 | 1.84 ± 0.63 | 0.040 | 0.027 | 0.221 | 0.456 |
SOCS3 | 1 ± 0.17 | 3.60 ± 0.77 ** | 1.65 ± 0.29 | 2.74 ± 0.63 * | 0.050 | 0.886 | 0.038 | 0.690 |
MAO-A | 1 ± 0.36 | 0.39 ± 0.06 | 0.98 ± 0.45 | 0.99 ± 0.29 | 0.877 | 0.152 | 0.210 | 0.384 |
MAO-B | 1 ± 0.42 | 0.39 ± 0.06 | 1.46 ± 0.61 | 0.93 ± 0.37 | 0.948 | 0.164 | 0.691 | 0.336 |
MMP9 | 1 ± 0.35 | 0.67 ± 0.13 | 1.71 ± 0.94 | 1.72 ± 0.52 | 0.126 | 0.026 | 0.980 | 0.605 |
PGC1α | 1 ± 0.51 | 0.36 ± 0.06 | 0.65 ± 0.31 | 0.82 ± 0.16 | 0.750 | 0.749 | 0.154 | 0.571 |
(b) soleus muscle | ||||||||
WT | PDAC | p Value ANOVA | ||||||
PDAC | Sex | |||||||
n (m/f) | 11 (6/5) | 7 (5/2) | 18 (11/7) | |||||
Atrophy and apoptosis signals | ||||||||
Atrogin-1 | 1 ± 0.36 | 1.25 ± 0.73 | 0.420 | 0.796 | ||||
MuRF1 | 1 ± 0.71 | 1.70 ± 0.91 | 0.097 | 0.743 ! | ||||
Casp3 | 1 ± 0.47 | 0.92 ± 0.37 | 0.508 | 0.078 | ||||
Bax | 1 ± 0.22 | 0.90 ± 0.07 | 0.345 | 0.953 | ||||
BCL2 | 1 ± 0.52 | 0.94 ± 0.53 | 0.636 | 0.145 | ||||
p62 | 1 ± 0.16 | 1.19 ± 0.34 | 0.211 | 0.033 | ||||
Pro-/anti-inflammatory signals and oxidative stress | ||||||||
CD68 | 1 ± 0.24 | 1.40 ± 0.49 * | 0.033 | 0.019 ! | ||||
COX2 | 1 ± 1.09 | 2.55 ± 2.08 | 0.104 | 0.682 | ||||
IL1β | 1 ± 0.65 | 7.08 ± 5.65 ** | 0.005 | 0.282 | ||||
IL6 | 1 ± 0.34 | 1.18 ± 0.63 | 0.513 | 0.780 | ||||
TNFα | 1 ± 0.81 | 1.16 ± 1.09 | 0.893 | 0.267 | ||||
SOCS3 | 1 ± 1.12 | 2.32 ± 1.89 | 0.147 | 0.093 | ||||
MAO-A | 1 ± 0.21 | 0.94 ± 0.25 | 0.798 | 0.223 | ||||
MAO-B | 1 ± 0.23 | 0.89 ± 0.13 | 0.345 | 0.602 | ||||
MMP9 | 1 ± 0.61 | 0.63 ± 0.36 | 0.268 | 0.514 | ||||
PGC1α | 1 ± 1.02 | 1.74 ± 1.05 | 0.272 | 0.122 | ||||
Myogenic signals | ||||||||
MyoG | 1 ± 0.41 | 0.92 ± 0.22 | 0.983 | 0.004 | ||||
pax7 | 1 ± 0.62 | 1.03 ± 0.59 | 0.877 | 0.177 | ||||
Angiogenic signal | ||||||||
VEGFA | 1 ± 0.24 | 11.4 ± 0.21 | 0.378 | 0.080 |
WT | PanIN 1A-B | PanIN 2-3 | PDAC | p Value ANOVA | p Value ANOVA | |||
---|---|---|---|---|---|---|---|---|
PDAC | Sex | PanIN | Sex | |||||
n (m/f) | 11 (6/5) | 19 (10/9) | 11 (5/6) | 11 (7/4) | 22 (13/9) | 41 (21/20) | ||
Proteinogenic amino acids (nmol/mg) | 51.18 ± 1.94 | 59.13 ± 2.36 * | 69.12 ± 4.85 ** | 55.84 ± 3.51 # | 0.075 | 0.004 | 0.006 | 0.022 |
Leucine (nmol/mg) | 0.802 ± 0.045 | 1.133 ± 0.055 *** | 1.338 ± 0.121 ** | 1.053 ± 0.112 | 0.006 | 0.004 | 0.000 | 0.112 |
Isoleucine (nmol/mg) | 0.406 ± 0.041 | 0.485 ± 0.030 | 0.519 ± 0.069 | 0.503 ± 0.049 | 0.055 | 0.016 | 0.138 | 0.567 |
Valine (nmol/mg) | 0.953 ± 0.053 | 1.252 ± 0.055 ** | 1.387 ± 0.087 ** | 1.221 ± 0.080 * | 0.010 | 0.097 | 0.000 | 0.248 |
Arginine (nmol/mg) | 1.195 ± 0.175 | 1.254 ± 0.176 | 1.804 ± 0.318 | 1.262 ± 0.244 | 0.221 | 0.000 | 0.376 | 0.000 |
Glutamine (nmol/mg) | 7.660 ± 0.466 | 8.383 ± 0.411 | 10.410 ± 1.051 * | 9.079 ± 0.836 | 0.023 | 0.002 | 0.091 | 0.031 |
Serine (nmol/mg) | 1.486 ± 0.092. | 1.671 ± 0.101 | 2.118 ± 0.179 ** | 1.451 ± 0.143 ## | 0.692 | 0.082 | 0.043 | 0.528 |
Lysine (nmol/mg) | 3.469 ± 0.577 | 3.557 ± 0.514 | 5.654 ± 0.926 | 4.135 ± 1.102 | 0.182 | 0.000 | 0.288 | 0.000 |
Proline (nmol/mg) | 1.266 ± 0.092 | 1.623 ± 0.073 ** | 1.945 ± 0.182 ** | 1. 537 ± 0.144 | 0.117 | 0.959 | 0.003 | 0.567 |
Alanine (nmol/mg) | 10.96 ± 0.39 | 13.94 ± 0.55 ** | 16.01 ± 0.92 *** | 12.65 ± 0.86 # | 0.089 | 0.723 | 0.000 | 0.709 |
WT | PanIN 1A-B | PanIN 2-3 | PDAC | p Value ANOVA | p Value ANOVA | |||
---|---|---|---|---|---|---|---|---|
PDAC | Sex | PanIN | Sex | |||||
n (m/f) | 11 (6/5) | 21 (12/9) | 11 (5/6) | 11 (7/4) | 22 (13/9) | 43 (23/20) | ||
GSH total (nmol/mg) | 5.24 ± 0.16 | 6.42 ± 0.23 *** | 6.62 ± 0.23 *** | 5.45 ± 0.32 ## | 0.731 | 0.130 | 0.000 | 0.317 |
GSH reduced (nmol/mg) | 5.12 ± 0.16 | 6.17 ± 0.22 ** | 6.39 ± 0.25 *** | 5.29 ± 0.32 # | 0.796 | 0.183 | 0.001 | 0.335 |
GSSG (nmol/mg) | 0.117 ± 0.019 | 0.247 ± 0.048 * | 0.229 ± 0.050 | 0.161 ± 0.052 | 0.621 | 0.287 | 0.058 | 0.808 |
GSH reduced/GSSG | 60.1 ± 13.1 | 42.3 ± 5.6 | 41.5 ± 6.6 | 47.7 ± 6.1 | 0.535 | 0.737 | 0.106 | 0.643 |
Cystine (nmol/mg) | n.d. | n.d. | n.d. | n.d. | ||||
Glutamate (nmol/mg) | 4.03 ± 0.25 | 3.79 ± 0.28 | 3.65 ± 0.42 | 3.42 ± 0.32 | 0.162 | 0.006 | 0.389 | 0.014 |
Glycine (nmol/mg) | 9.40 ± 0.60 | 11.03 ± 0.60 | 12.39 ± 1.06 * | 10.08 ± 0.92 | 0.583 | 0.995 | 0.041 | 0.755 |
Carnosine (nmol/mg) | 12.45 ± 2.00 | 15.35 ± 1.94 | 13.30 ± 2.06 | 16.45 ± 2.18 | 0.024 | 0.000 | 0.049 | 0.000 |
Histidine (nmol/mg) | 0.510 ± 0.029 | 0.600 ± 0.026 * | 0.751 ± 0.085 * | 0.629 ± 0.060 | 0.007 | 0.011 ! | 0.032 | 0.472 |
WT | PanIN 1A-B | PanIN 2-3 | PDAC | |
---|---|---|---|---|
n (m/f) | 5 (3/2) | 5 (2/3) | 5 (2/3) | 4 (4/0) |
Btx+ NMJ density [mm2] | 29.1 ± 7.5 | 32.8 ± 5.7 | 44.1 ± 13.2 | 24.9 ± 4.9 |
Btx+ area [µm2] | 2.85 ± 0.18 | 2.88 ± 0.22 | 2.76 ± 0.11 | 3.06 ± 0.40 |
vAChT+ area [µm2] | 3.12 ± 0.28 | 3.03 ± 0.36 | 3.41 ± 0.36 | 4.31 ± 0.58 |
vAChT—Btx Overlap [µm2] | 0.53 ± 0.03 | 0.56 ± 0.10 | 0.61 ± 0.12 | 0.98 ± 0.25 |
vAChT—Btx Overlap [%] | 18.61 ± 0.57 | 18.67 ± 2.85 | 21.96 ± 2.34 | 30.54 ± 4.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hildebrandt, W.; Keck, J.; Schmich, S.; Bonaterra, G.A.; Wilhelm, B.; Schwarzbach, H.; Eva, A.; Bertoune, M.; Slater, E.P.; Fendrich, V.; et al. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer—When Does Cachexia Start? Cells 2022, 11, 1607. https://doi.org/10.3390/cells11101607
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, et al. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer—When Does Cachexia Start? Cells. 2022; 11(10):1607. https://doi.org/10.3390/cells11101607
Chicago/Turabian StyleHildebrandt, Wulf, Jan Keck, Simon Schmich, Gabriel A. Bonaterra, Beate Wilhelm, Hans Schwarzbach, Anna Eva, Mirjam Bertoune, Emily P. Slater, Volker Fendrich, and et al. 2022. "Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer—When Does Cachexia Start?" Cells 11, no. 10: 1607. https://doi.org/10.3390/cells11101607
APA StyleHildebrandt, W., Keck, J., Schmich, S., Bonaterra, G. A., Wilhelm, B., Schwarzbach, H., Eva, A., Bertoune, M., Slater, E. P., Fendrich, V., & Kinscherf, R. (2022). Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer—When Does Cachexia Start? Cells, 11(10), 1607. https://doi.org/10.3390/cells11101607