Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia–Reoxygenation Insult
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Primary Human Trophoblast Cells
2.3. Models of Preeclampsia
2.4. Isolation of mRNA and Quantitative RT-PCR
2.5. Lipid Peroxidation
2.6. Measurement of Protein Secretion by ELISA
2.7. Statistical Analysis
3. Results
3.1. Maternal and Neonatal Variables in PE and Normotensive Control Pregnancies
3.2. In Vitro Models Reflect the Angiogenic and RAS Receptor Expression Patterns Found in PE
3.3. Hypoxia, Oxidative Stress, and Endoplasmic Reticulum Stress Markers Are Selectively Altered in the PE Cell Models
3.4. mRNA Expression of Placenta-Specific Proteins and Cell Cycle Regulators in PE Placentae and PE Cell Models
3.5. Inflammasome Complex Is Altered in PE Placentae and in PE Cell Models
3.6. Human Chorionic Gonadotrophin Is Altered in PE Placentae and the PE Cell Models
3.7. Lipid Peroxidation in PE Cell Models
3.8. Protein Secretion of sFlT-1 and PlGF in PE Cell Models Reflect the Phenotype of PE
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghulmiyyah, L.; Sibai, B. Maternal Mortality From Preeclampsia/Eclampsia. Semin. Perinatol. 2012, 36, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Lindheimer, M.D.; de Swiet, M.; Van Assche, A.; Moutquin, J.M. The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens. Pregnancy 2001, 20, IX–XIV. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Venkatesha, S.; Toporsian, M.; Lam, C.; Hanai, J.I.; Mammoto, T.; Kim, Y.M.; Bdolah, Y.; Lim, K.H.; Yuan, H.T.; Libermann, T.A.; et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 2006, 12, 642–649. [Google Scholar] [CrossRef]
- Young, B.C.; Levine, R.J.; Karumanchi, S.A. Pathogenesis of preeclampsia. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 173–192. [Google Scholar] [CrossRef]
- Fantone, S.; Mazzucchelli, R.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D.; Tossetta, G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem. Cell Biol. 2020, 154, 339–346. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Wang, L.J.; Chen, C.P.; Lee, Y.S.; Ng, P.S.; Chang, G.D.; Pao, Y.H.; Lo, H.F.; Peng, C.H.; Cheong, M.L.; Chen, H. Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation. Nat. Commun. 2022, 13, 1626. [Google Scholar] [CrossRef]
- Mistry, H.D.; Kurlak, L.O.; Broughton Pipkin, F. The placental renin-angiotensin system and oxidative stress in pre-eclampsia. Placenta 2013, 34, 182–186. [Google Scholar] [CrossRef]
- Poston, L.; Igosheva, N.; Mistry, H.D.; Seed, P.T.; Shennan, A.H.; Rana, S.; Karumanchi, S.A.; Chappell, L.C. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am. J. Clin. Nutr. 2011, 94, 1980S–1985S. [Google Scholar] [CrossRef]
- Kurlak, L.O.; Mistry, H.D.; Cindrova-Davies, T.; Burton, G.J.; Pipkin, F.B. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J. Physiol. 2016, 594, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.J.; Broughton Pipkin, F. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Sargent, I.L.; Borzychowski, A.M.; Redman, C.W. Immunoregulation in normal pregnancy and pre-eclampsia: An overview. Reprod. Biomed. Online 2006, 13, 680–686. [Google Scholar] [CrossRef]
- Kweider, N.; Huppertz, B.; Kadyrov, M.; Rath, W.; Pufe, T.; Wruck, C.J. A possible protective role of Nrf2 in preeclampsia. Ann. Anat. 2014, 196, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G.; Fantone, S.; Montanari, E.; Marzioni, D.; Goteri, G. Role of NRF2 in Ovarian Cancer. Antioxidants 2022, 11, 663. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, M.J.; Ferrándiz, M.L. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic. Biol. Med. 2020, 157, 83–93. [Google Scholar] [CrossRef]
- Kaundal, R.K.; Datusalia, A.K.; Sharma, S.S. Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer’s disease. Pharmacol. Res. 2022, 175, 106018. [Google Scholar] [CrossRef]
- Stødle, G.S.; Silva, G.B.; Tangerås, L.H.; Gierman, L.M.; Nervik, I.; Dahlberg, U.E.; Sun, C.; Aune, M.H.; Thomsen, L.C.V.; Bjørge, L.; et al. Placental inflammation in pre-eclampsia by Nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts. Clin. Exp. Immunol. 2018, 193, 84–94. [Google Scholar] [CrossRef]
- Weel, I.C.; Romão-Veiga, M.; Matias, M.L.; Fioratti, E.G.; Peraçoli, J.C.; Borges, V.T.; Araujo, J.P.; Peraçoli, M.T. Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia. J. Reprod. Immunol. 2017, 123, 40–47. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Shan, H.Y.; Gao, H.; Wang, P. microRNA-520c-3p suppresses NLRP3 inflammasome activation and inflammatory cascade in preeclampsia by downregulating NLRP3. Inflamm. Res. 2019, 68, 643–654. [Google Scholar] [CrossRef]
- Sagrillo-Fagundes, L.; Laurent, L.; Bienvenue-Pariseault, J.; Vaillancourt, C. In Vitro Induction of Hypoxia/Reoxygenation on Placental Cells: A Suitable Model for Understanding Placental Diseases. In Preeclampsia: Methods and Protocols. Methods Mol. Biol. 2018, 1710, 277–283. [Google Scholar] [PubMed]
- Soleymanlou, N.; Jurisica, I.; Nevo, O.; Ietta, F.; Zhang, X.; Zamudio, S.; Post, M.; Caniggia, I. Molecular evidence of placental hypoxia in preeclampsia. J. Clin. Endocrinol. Metab. 2005, 90, 4299–4308. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Brkić, J.; Liu, M.; Fu, G.; Peng, C.; Wang, Y.L. Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol. Aspects Med. 2013, 34, 981–1023. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Hubel, C. The Two Stage Model of Preeclampsia: Variations on the Theme. Placenta 2009, 30, S32–S37. [Google Scholar] [CrossRef]
- Fuenzalida, B.; Cantin, C.; Kallol, S.; Carvajal, L.; Pasten, V.; Contreras-Duarte, S.; Albrecht, C.; Gutierrez, J.; Leiva, A. Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci. Rep. 2020, 10, 5264. [Google Scholar] [CrossRef]
- Hung, T.H.; Skepper, J.N.; Burton, G.J. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am. J. Pathol. 2001, 159, 1031–1043. [Google Scholar] [CrossRef]
- Huang, X.; Anderle, P.; Hostettler, L.; Baumann, M.U.; Surbek, D.V.; Ontsouka, E.C.; Albrecht, C. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genom. 2018, 19, 173. [Google Scholar] [CrossRef]
- Potter, T.M.; Neun, B.W.; Stern, S.T. Assay to detect lipid peroxidation upon exposure to nanoparticles. Methods Mol. Biol. 2011, 697, 181–189. [Google Scholar]
- Fuenzalida, B.; Sobrevia, B.; Cantin, C.; Carvajal, L.; Salsoso, R.; Gutiérrez, J.; Contreras-Duarte, S.; Sobrevia, L.; Leiva, A. Maternal supraphysiological hypercholesterolemia associates with endothelial dysfunction of the placental microvasculature. Sci. Rep. 2018, 8, 7690. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.-H.; England, L.; Yu, K.; Schisterman, B.; Thadhani, R.; Sachs, B.; Epstei, F.; et al. Circulating Angiogenic Factors and the Risk of Preeclampsia. N. Engl. J. Med. 2004, 350, 673–683. [Google Scholar] [CrossRef]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Zeisler, H.; Calda, P.; Sabria, J.; Markfeld-Erol, F.; Galindo, A.; Schoofs, K.; et al. New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension 2014, 63, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Watson, A.L. Influence of oxygen supply on placental structure. In Fetal Programming: Influences on Development and Disease in Later Life; O’Brien, P.M.S., Wheeler, T., Barker, D.J.P., Eds.; RCOG Press: London, UK, 1999; pp. 326–341. [Google Scholar]
- Burton, G.J.; Hung, T.H. Hypoxia-reoxygenation; a potential source of placental oxidative stress in normal pregnancy and preeclampsia. Fetal Mat. Med. Rev. 2003, 14, 97–117. [Google Scholar] [CrossRef]
- Burton, G.J.; Hung, T.H.; Jauniaux, E. Placental hypoxia, hyperoxia and ischaemia-reperfusion injury in pre-eclampsia. In Pre-Eclampsia—Etiology and Clinical Practice; Lyall, F., Belfort, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 138–151. [Google Scholar]
- Neary, P.; Redmond, H.P. Ischaemia-Reperfusion Injury and the Systemic Inflammatory Response Syndrome. In Ischaemia-Reperfusion Injury; Grace, P.A., Mathie, R.T., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 123–136. [Google Scholar]
- Li, H.; Gu, B.; Zhang, Y.; Lewis, D.F.; Wang, Y. Hypoxia-induced increase in soluble Flt-1 production correlates with enhanced oxidative stress in trophoblast cells from the human placenta. Placenta 2005, 26, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.; Burton, G. Hypoxia and reoxygenation: A possible mechanism for placenta oxidative stress in preeclampsia. Taiwan J. Obstet. Gynecol. 2006, 45, 189–200. [Google Scholar] [CrossRef]
- Chau, K.; Hennessy, A.; Makris, A. Placental growth factor and pre-eclampsia. J. Hum. Hypertens. 2017, 31, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Scaife, P.J.; Simpson, A.; Kurlak, L.O.; Briggs, L.V.; Gardner, D.S.; Broughton Pipkin, F.; Jones, C.J.P.; Mistry, H.D. Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies. Int. J. Mol. Sci. 2021, 22, 7295. [Google Scholar] [CrossRef]
- Khaliq, A.; Dunk, C.; Jiang, J.; Shams, M.; Li, X.F.; Acevedo, C.; Weich, H.; Whittle, M.; Ahmed, A. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for "placental hyperoxia" in intrauterine growth restriction. Lab. Investig. 1999, 79, 151–170. [Google Scholar]
- Hoeller, A.; Ehrlich, L.; Golic, M.; Herse, F.; Perschel, F.H.; Siwetz, M.; Henrich, W.; Dechend, R.; Huppertz, B.; Verlohren, S. Placental expression of sFlt-1 and PlGF in early preeclampsia vs. early IUGR vs. age-matched healthy pregnancies. Hypertens. Pregnancy 2017, 36, 151–160. [Google Scholar] [CrossRef]
- Shah, D.M. The role of RAS in the pathogenesis of preeclampsia. Curr. Hypertens. Rep. 2006, 8, 144–152. [Google Scholar] [CrossRef]
- Broughton Pipkin, F. The Renin-Angiotensin System in Pre-eclampsia. In Pre-Eclampsia: Etiology and Clinical Practice; Lyall, F., Belfort, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 78–91. [Google Scholar]
- Irani, R.A.; Xia, Y. Role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta 2008, 29, 763–771. [Google Scholar] [CrossRef]
- Herse, F.; Dechend, R.; Harsem, N.K.; Wallukat, G.; Janke, J.; Qadri, F.; Hering, L.; Muller, D.N.; Luft, F.C.; Staff, A.C. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension 2007, 49, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.J.; Mistry, H.D.; Innes, B.A.; Bulmer, J.N.; Broughton Pipkin, F. Expression of AT1R, AT2R and AT4R and Their Roles in Extravillous Trophoblast Invasion in the Human. Placenta 2010, 31, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Akhilesh, M.; Mahalingam, V.; Nalliah, S.; Ali, R.M.; Ganesalingam, M.; Haleagrahara, N. Hypoxia-inducible factor-1α as a predictive marker in pre-eclampsia. Biomed. Rep. 2013, 1, 257–258. [Google Scholar] [CrossRef]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schluz, L.C.; Schust, D.J. Preeclampsia: Multiple approaches for multifactorial disease. Dis. Model Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kurlak, L.O.; Williams, P.J.; Bulmer, J.N.; Broughton Pipkin, F.; Mistry, H.D. Placental expression of adenosine A(2A) receptor and hypoxia inducible factor-1 alpha in early pregnancy, term and pre-eclamptic pregnancies: Interactions with placental renin-angiotensin system. Placenta 2015, 36, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Harati-Sadegh, M.; Kohan, L.; Teimoori, B.; Mehrabani, M.; Salimi, S. The association of the placental Hypoxia-inducible factor1-α polymorphisms and HIF1-α mRNA expression with preeclampsia. Placenta 2018, 67, 31–37. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, C.; Wang, P.; Gao, J.; Liu, X.; Li, Y.; Yan, S.; Shi, Y. HIF-1α affects trophoblastic apoptosis involved in the onset of preeclampsia by regulating FOXO3a under hypoxic conditions. Mol. Med. Rep. 2020, 21, 2484–2492. [Google Scholar] [CrossRef]
- Cindrova-Davies, T. Gabor Than Award Lecture 2008: Pre-eclampsia—From Placental Oxidative Stress to Maternal Endothelial Dysfunction. Placenta 2009, 30, 55–65. [Google Scholar] [CrossRef]
- Kweider, N.; Wruck, C.J.; Rath, W. New insights into the pathogenesis of preeclampsia—The role of Nrf2 activators and their potential therapeutic impact. Geburtshilfe Frauenheilkd 2013, 73, 1236–1240. [Google Scholar] [CrossRef]
- Matsubara, K.; Higaki, T.; Matsubara, Y.; Nawa, A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int. J. Mol. Sci. 2015, 16, 4600–4614. [Google Scholar] [CrossRef]
- Du, L.; He, F.; Kuang, L.; Tang, W.; Li, Y.; Chen, D. ENOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia. J. Hum. Hypertens. 2017, 31, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, J.; Ye, Y.; Liu, Q.; Wang, X.; Zhang, N.; Wang, X. Increased Heme Oxygenase-1 and Nuclear Factor Erythroid 2-Related Factor-2 in the Placenta Have a Cooperative Action on Preeclampsia. Gynecol. Obstet. Investig. 2016, 81, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Chigusa, Y.; Tatsumi, K.; Kondoh, E.; Fujita, K.; Nishimura, F.; Mogami, H.; Konishi, I. Decreased lectin-like oxidized LDL receptor 1 (LOX-1) and low Nrf2 activation in placenta are involved in preeclampsia. J. Clin. Endocrinol. Metab. 2012, 97, 1862–1870. [Google Scholar] [CrossRef]
- Vaughan, J.E.; Walsh, S.W. Activation of NF-KB in placentas of women with preeclampsia. Hypertens. Pregnancy 2012, 31, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Yung, H.W. Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens. 2011, 1, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.P.; Fox, H. An ultrastructural and ultrahistochemical study of the human placenta in maternal essential hypertension. Placenta 1980, 1, 61–76. [Google Scholar] [CrossRef]
- Anderson, U.D.; Olsson, M.G.; Kristensen, K.H.; Åkerström, B.; Hansson, S.R. Review: Biochemical markers to predict preeclampsia. Placenta 2012, 33, S42–S47. [Google Scholar] [CrossRef]
- Zadeh, M.N.; Naghshvar, F.; Peyvandi, S.; Gheshlaghi, P.; Ehetshami, S. PP13 and PAPP-A in the First and Second Trimesters: Predictive Factors for Preeclampsia? ISRN Obstet. Gynecol. 2012, 2012, 263871. [Google Scholar]
- Romero, R.; Kusanovic, J.P.; Than, N.G.; Erez, O.; Gotsch, F.; Espinoza, J.; Chefetz, I.; Gomez, R.; Nien, J.K.; Kuhnreich, I.; et al. First Trimester Maternal Serum PP13 in the Risk Assessment for Preeclampsia. Am. J. Obset. Gynecol. 2008, 199, 122.e1–122.e11. [Google Scholar] [CrossRef]
- Gadde, R.; Dayanand, C.D.; Sheela, S.R. Placental protein 13: An important biological protein in preeclampsia. J. Circ. Biomark. 2018, 7, 1–16. [Google Scholar] [CrossRef]
- Yaron, Y.; Heifetz, S.; Ochshorn, Y.; Lehavi, O.; Orr-Urtreger, A. Decreased first trimester PAPP-A is a predictor of adverse pregnancy outcome. Prenat. Diagn. 2002, 22, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Luewan, S.; Teja-Intr, M.; Sirichotiyakul, S.; Tongsong, T. Low maternal serum pregnancy-associated plasma protein-A as a risk factor of preeclampsia. Singap. Med. J. 2018, 59, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Grill, S.; Rusterholz, C.; Zanetti-Dällenbach, R.; Tercanli, S.; Holzgreve, W.; Hahn, S.; Lapaire, O. Potential markers of preeclampsia—A review. Reprod. Biol. Endocrinol. 2009, 7, 70. [Google Scholar] [CrossRef]
- Wang, Q.J.; Song, B.F.; Zhang, Y.H.; Ma, Y.Y.; Shao, Q.Q.; Liu, J.; Qu, X. Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta 2015, 36, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Versnel, M.A.; Cheung, W.Y.; Leenen, P.J.M.; Khan, N.A.; Benner, R.; Kiekens, R.C.M. Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. J. Leukoc. Biol. 2007, 82, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, B. The role of immune activation in contributing to vascular dysfunction and the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2010, 62, 105–120. [Google Scholar] [PubMed]
- Barjaktarovic, M.; Korevaar, T.I.M.; Jaddoe, V.W.V.; de Rijke, Y.B.; Peeters, R.P.; Steegers, E.A.P. Human chorionic gonadotropin and risk of pre-eclampsia: Prospective population-based cohort study. Ultrasound Obstet. Gynecol. 2019, 54, 477–483. [Google Scholar] [CrossRef]
- Strohmer, H.; Kiss, H.; Mösl, B.; Egarter, C.; Husslein, P.; Knöfler, M. Hypoxia downregulates continuous and interleukin-1-induced expression of human chorionic gonadotropin in choriocarcinoma cells. Placenta 1997, 18, 597–604. [Google Scholar] [CrossRef]
- Knöfler, M.; Stenzel, M.; Mösl, B.; Strohmer, H.; Husslein, P. Hypoxia-mediated downregulation of human chorionic gonadotrophin subunit mRNA expression in cytotrophoblast JAr cells. Placenta 1998, 19, 387–402. [Google Scholar] [CrossRef]
- Mistry, H.D.; Wilson, V.; Ramsay, M.M.; Symonds, M.E.; Broughton Pipkin, F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 2008, 52, 881–888. [Google Scholar] [CrossRef]
- Gupta, S.; Aziz, N.; Sekhon, L.; Agarwal, R.; Mansour, G.; Li, J.; Agarwal, A. Lipid peroxidation and antioxidant status in preeclampsia. A systematic review. Obstet. Gynecol. Surv. 2009, 64, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Serdar, Z.; Gür, E.; Develioǧlu, O.; Çolakoǧullari, M.; Dirican, M. Placental and decidual lipid peroxidation and antioxidant defenses in preeclampsia—Lipid peroxidation in preeclampsia. Pathophysiology 2002, 9, 21–25. [Google Scholar] [CrossRef]
- Herraiz, I.; Llurba, E.; Verlohren, S.; Galindo, A.; Bartha, J.L.; De La Calle, M.; Delgado, J.L.; De Paco, C.; Escudero, A.I.; Moreno, F.; et al. Update on the Diagnosis and Prognosis of Preeclampsia with the Aid of the sFlt-1/PLGF Ratio in Singleton Pregnancies. Fetal Diagn. Ther. 2018, 43, 81–89. [Google Scholar] [CrossRef] [PubMed]
Category | Gene | Accession Number | Primer Sequence (5′-3′) |
---|---|---|---|
Angiogenic and antiangiogenic markers | FlT-1 | NM_001160030.1 | F-AAGAGCCTGAACTGTATA R-TGATGACGATGATGATGA |
ENG | NM_001114753.2 | F-CAAGACCAGGAAGTCCATA R-CGTGTGCGAGTAGATGTA | |
PIGF | NM_001293643.1 | F-CTCCTAAAGATCCGTTCTG R-CTTTCCGGCTTCATCTTC | |
VEGF A | NM_001287044.1 | F-TACATCTTCAAGCCATCC R-TTCTTTGGTCTGCATTCA | |
RAS receptors | AGTR1 | NM_032049.3 | F-TCTCAGCATTGATCGATACC R-TGACTTTGGCTACAAGCATT |
AGTR4 | NM_005575.3 | F-TATGCCTAAGAAGTCATCAG R-CCAAGTAAGTGCTCATCT | |
Hypoxia and oxidative stress markers | HIF1α | NM_001530.4 | F-CGTTGTGAGTGGTATTATTC R-GGCTACTTGTATCTTCTGA |
NRF2 | NM_005654.6 | F-ATCGTGCTGTTCACGTCAGAC R-TGGCTCCTCACGTACTCCTC | |
Endoplasmic reticulum (ER) stress markers | GRP78 | NM_005347.5 | F-TGTGCAGCAGGACATCAAGT R-TCCCAAATAAGCCTCAGCGG |
GRP94 | NM_003299.3 | F-GCCAGTTTGGTGTCGGTTTC R-GGGTAATTGTCGTTCCCCGT | |
Placenta-specific proteins | PP13 | NM_013268.3 | F- GATATTGCCTTCCGTTTC R-GTAGTCTGTTGTCTCCTC |
PAPP-A | NM_002581.5 | F-GCTGTCACATACATCCAT R-GCTGGGTTCATCAATACA | |
Cell cycle regulator | RGC-32 | NM_014059.3 | F-ATTCTCCAACAGACTCTAC R-CAAGATCAGCAATGAAGG |
Syncytial marker | β-hCG | NM_033043.2 | F-CGGGACATGGGCATCCAA R-GCGCACATCGCGGTAGTT |
Inflammasome | NLRP3 | NM_001079821 | F-CACCTGTTGTGCAATCTGAAG R-GCAAGATCCTGACAACATGC |
IL-1β | NM_000576 | F-CTGTCCTGCGTGTTGAAAGA R-TTGGGTAATTTTTGGGATCTAC | |
CASP1 | NM_033295 | F-GCCTGTTCCTGTGATGTGGAG R-TGCCCACAGACATTCATACAGTTTC | |
Reference gene | YWHAZ | XM_024447266.1 | F-CCGTTACTTGGCTGAGGTTG R-AGTTAAGGGCCAGACCCAGT |
Pregnancy Characteristics | Normal | Preeclampsia |
---|---|---|
Numbers | n = 25 | n = 13 |
Maternal variables | ||
Age (years) | 31.4 ± 4.9 (22–41) | 31.7 ± 4.5 (24–42) |
Length (cm) | 163 ± 6.3 (155–176) | 159.6 ± 7 (147–168) |
Weight pre-pregnancy (kg) | 61.7 ± 9.5 (45–86) | 59.8 ± 10.6 (38–85) |
Weight at delivery (kg) | 73.3 ± 10 (58–102) | 72.4 ± 10.8 (46–89) |
BMI pre-pregnancy (kg/m2) | 23 ± 2.4 (18.5–27.8) | 23.4 ± 3.8 (17.6–33.6) |
BMI at delivery (kg/m2) | 27.5 ± 2.3 (23.2–32.9) | 28.1 ± 3.8 (21.3–35-2) |
Systolic blood pressure at delivery (mm Hg) | 112.7 ± 10.9 (90–130) | 155 ± 16.9 (138–185) * |
Diastolic blood pressure at delivery (mm Hg) | 70.9 ± 7 (60–88) | 93.1 ± 10.4 (70–113) * |
Basal glycemia (mg/dL) | 77.6 ± 7.1 (66–92) | 79 ± 11.2 (52–87) |
Creatinine (mg/dL) | n.d. | 115.8 ± 70.9 (26–236) |
Proteinuria (mg/dL) | n.d. | 2494 ± 1454 (150–19241) |
Newborn variables | ||
Sex (female/male) | 15/10 | 8/5 |
Gestational age (weeks) | 39.1 ± 0.8 (38–40) | 36.9 ± 2.1 (32–40) * |
Route of delivery (C-section/Labor) | 16/9 | 10/3 |
Birth weight (g) | 3388 ± 367 (2765–4045) | 2811 ± 866.2 (1030–3860) * |
Height (cm) | 50.2 ± 1.6 (48–53) | 47.8 ± 4.7 (38–54) * |
Ponderal index (g/cm3 x100) | 2.7 ± 0.2 (2.3–3) | 2.5 ± 0.3 (1.9–2.8) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuenzalida, B.; Kallol, S.; Zaugg, J.; Mueller, M.; Mistry, H.D.; Gutierrez, J.; Leiva, A.; Albrecht, C. Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia–Reoxygenation Insult. Cells 2022, 11, 1898. https://doi.org/10.3390/cells11121898
Fuenzalida B, Kallol S, Zaugg J, Mueller M, Mistry HD, Gutierrez J, Leiva A, Albrecht C. Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia–Reoxygenation Insult. Cells. 2022; 11(12):1898. https://doi.org/10.3390/cells11121898
Chicago/Turabian StyleFuenzalida, Barbara, Sampada Kallol, Jonas Zaugg, Martin Mueller, Hiten D. Mistry, Jaime Gutierrez, Andrea Leiva, and Christiane Albrecht. 2022. "Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia–Reoxygenation Insult" Cells 11, no. 12: 1898. https://doi.org/10.3390/cells11121898
APA StyleFuenzalida, B., Kallol, S., Zaugg, J., Mueller, M., Mistry, H. D., Gutierrez, J., Leiva, A., & Albrecht, C. (2022). Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia–Reoxygenation Insult. Cells, 11(12), 1898. https://doi.org/10.3390/cells11121898