Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Isolation
2.3. Whole Exome Sequencing, Filtering and Bioinformatic Analysis
3. Results
3.1. Patient 1
3.2. Patient 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turkyilmaz, A.; Cayir, A.; Yarali, O.; Kurnaz, E.; Baykan, E.K.; Ates, E.A.; Demirbilek, H. Clinical characteristics and molecular genetic analysis of a cohort with idiopathic congenital hypogonadism. J. Pediatr. Endocrinol. Metab. 2021, 34, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Dattani, M.T. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; George, A.S.; Brinkmeier, M.L.; Mortensen, A.H.; Gergics, P.; Cheung, L.Y.M.; Daly, A.; Ajmal, A.; Millan, M.P.; Ozel, A.B.; et al. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr. Rev. 2016, 37, 636–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, A.; Urban, R. Neuroendocrine consequences of traumatic brain injury. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 354–358. [Google Scholar] [CrossRef] [PubMed]
- de Bree, R.; Lips, P.; Leemans, C.R. The need for patients endocrine function vigilance following treatment of head and neck cancer. Curr. Opin. Otolaryngol. Head Neck Surg. 2008, 16, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Simm, F.; Griesbeck, A.; Choukair, D.; Weiß, B.; Paramasivam, N.; Klammt, J.; Schlesner, M.; Wiemann, S.; Martinez, C.; Hoffmann, G.F.; et al. Identification of SLC20A1 and SLC15A4 among other genes as potential risk factors for combined pituitary hormone deficiency. Genet. Med. 2018, 20, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.; Nokoff, N.J.; Meeks, N.J.L. Genetic causes of pituitary hormone deficiencies. Discov. Med. 2015, 19, 175–183. [Google Scholar]
- Budny, B.; Zemojtel, T.; Kaluzna, M.; Gut, P.; Niedziela, M.; Obara-Moszynska, M.; Rabska-Pietrzak, B.; Karmelita-Katulska, K.; Stajgis, M.; Ambroziak, U.; et al. SEMA3A and IGSF10 Are Novel Contributors to Combined Pituitary Hormone Deficiency (CPHD). Front. Endocrinol. 2020, 11, 368. [Google Scholar] [CrossRef]
- Kinjo, K.; Nagasaki, K.; Muroya, K.; Suzuki, E.; Ishiwata, K.; Nakabayashi, K.; Hattori, A.; Nagao, K.; Nozawa, R.-S.; Obuse, C.; et al. Rare variant of the epigenetic regulator SMCHD1 in a patient with pituitary hormone deficiency. Sci. Rep. 2020, 10, 10985. [Google Scholar] [CrossRef]
- Elizabeth, M.S.; Verkerk, A.J.; Hokken-Koelega, A.C.; Verlouw, J.A.; Argente, J.; Pfaeffle, R.; Visser, T.J.; Peeters, R.P.; De Graaff, L.C. Unique near-complete deletion of GLI2 in a patient with combined pituitary hormone deficiency and post-axial polydactyly. Growth Horm. IGF Res. 2020, 50, 35–41. [Google Scholar] [CrossRef]
- Zwaveling-Soonawala, N.; Alders, M.; Jongejan, A.; Kovačič, L.; Duijkers, F.A.; Maas, S.M.; Fliers, E.; Van Trotsenburg, A.S.P.; Hennekam, R.C. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients. J. Clin. Endocrinol. Metab. 2018, 103, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jee, Y.H.; Gangat, M.; Yeliosof, O.; Temnycky, A.G.; Vanapruks, S.; Whalen, P.; Gourgari, E.; Bleach, C.; Yu, C.H.; Marshall, I.; et al. Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic. Front. Genet. 2021, 12, 697549. [Google Scholar] [CrossRef] [PubMed]
- Brauner, R.; Bignon-Topalovic, J.; Bashamboo, A.; McElreavey, K. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity. PLoS ONE 2020, 15, e0242358. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.J.; Gaston-Massuet, C.; Tziaferi, V.; Gregory, L.C.; Alatzoglou, K.S.; Signore, M.; Puelles, E.; Gerrelli, D.; Farooqi, I.S.; Raza, J.; et al. Novel FGF8 Mutations Associated with Recessive Holoprosencephaly, Craniofacial Defects, and Hypothalamo-Pituitary Dysfunction. J. Clin. Endocrinol. Metab. 2011, 96, E1709–E1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raivio, T.; Avbelj, M.; McCabe, M.J.; Romero, C.J.; Dwyer, A.; Tommiska, J.; Sykiotis, G.; Gregory, L.C.; Diaczok, D.; Tziaferi, V.; et al. Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia. J. Clin. Endocrinol. Metab. 2012, 97, E694–E699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kałużna, M.; Budny, B.; Rabijewski, M.; Kałużny, J.; Dubiel, A.; Trofimiuk-Müldner, M.; Wrotkowska, E.; Hubalewska-Dydejczyk, A.; Ruchała, M.; Ziemnicka, K. Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes 2021, 12, 868. [Google Scholar] [CrossRef]
- Wozney, J.M.; Rosen, V.; Celeste, A.J.; Mitsock, L.M.; Whitters, M.J.; Kriz, R.W.; Hewick, R.M.; Wang, E.A. Novel regulators of bone formation: Molecular clones and activities. Science 1988, 242, 1528–1534. [Google Scholar] [CrossRef]
- Ericson, J.; Norlin, S.; Jessell, T.; Edlund, T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 1998, 125, 1005–1015. [Google Scholar] [CrossRef]
- Treier, M.; Gleiberman, A.S.; O’Connell, S.M.; Szeto, D.P.; McMahon, J.A.; McMahon, A.P.; Rosenfeld, M.G. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 1998, 12, 1691–1704. [Google Scholar] [CrossRef] [Green Version]
- Sieber, C.; Kopf, J.; Hiepen, C.; Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009, 20, 343–355. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Mues, G.; Wang, S.; Bonds, J.; D’Souza, R. Functional evaluation of a novel tooth agenesis-associated bone morphogenetic protein 4 prodomain mutation. Eur. J. Oral Sci. 2013, 121, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Wang, H.; Fan, Z.; Xie, C.; Liu, H.; Liu, Y.; Han, D.; Wong, S.-W.; Feng, H. BMP4 mutations in tooth agenesis and low bone mass. Arch. Oral Biol. 2019, 103, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Marazita, M.L.; Cooper, M.E.; Miwa, N.; Hing, A.; Jugessur, A.; Natsume, N.; Shimozato, K.; Ohbayashi, N.; Suzuki, Y.; et al. Mutations in BMP4 Are Associated with Subepithelial, Microform, and Overt Cleft Lip. Am. J. Hum. Genet. 2009, 84, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, T.R.W.; Richards, A.; Towns, L.K.; Fuller, G.; Abbs, S.; Alexander, P.; McNinch, A.; Sandford, R.N.; Snead, M.P. Bone morphogenetic protein 4 (BMP4) loss-of-function variant associated with autosomal dominant Stickler syndrome and renal dysplasia. Eur. J. Hum. Genet. 2019, 27, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, S.J.; Pittman, A.; Matijssen, C.; Twiss, P.; Olver, B.; Lloyd, A.; Qureshi, M.; Brown, N.; Nye, E.; Stamp, G.; et al. Evaluation of germline BMP4 mutation as a cause of colorectal cancer. Hum. Mutat. 2011, 32, E1928–E1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, L.M.; Tyler, R.C.; Schilter, K.F.; Abdul-Rahman, O.; Innis, J.W.; Kozel, B.A.; Schneider, A.S.; Bardakjian, T.M.; Lose, E.J.; Martin, D.M.; et al. BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Qual. Life Res. 2011, 130, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Bakrania, P.; Efthymiou, M.; Klein, J.C.; Salt, A.; Bunyan, D.J.; Wyatt, A.; Ponting, C.P.; Martin, A.; Williams, S.; Lindley, V.; et al. Mutations in BMP4 Cause Eye, Brain, and Digit Developmental Anomalies: Overlap between the BMP4 and Hedgehog Signaling Pathways. Am. J. Hum. Genet. 2008, 82, 304–319. [Google Scholar] [CrossRef] [Green Version]
- Breitfeld, J.; Martens, S.; Klammt, J.; Schlicke, M.; Pfäffle, R.; Krause, K.; Weidle, K.; Schleinitz, D.; Stumvoll, M.; Führer, D.; et al. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency. BMC Endocr. Disord. 2013, 13, 56. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Contreras, F.J.; Marbán-Calzón, M.; Vallespín, E.; del Pozo, Á.; Solís-López, M.; Lobato-Vidal, N.; Fernández-Elvira, M.; Rex-Romero, M.D.V.; Heath, K.E.; González-Casado, I.; et al. Loss of function BMP4 mutation supports the implication of the BMP/TGF-β pathway in the etiology of combined pituitary hormone deficiency. Am. J. Med. Genet. Part A 2019, 179, 1591–1597. [Google Scholar] [CrossRef]
- Boehm, U.; Bouloux, P.-M.; Dattani, M.T.; de Roux, N.; Dodé, C.; Dunkel, L.; Dwyer, A.; Giacobini, P.; Hardelin, J.-P.; Juul, A.; et al. European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2015, 11, 547–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y.-M.; de Guillebon, A.; Lang-Muritano, M.; Plummer, L.; Cerrato, F.; Tsiaras, S.; Gaspert, A.; Lavoie, H.B.; Wu, C.-H.; Crowley, W.F.; et al. GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc. Natl. Acad. Sci. USA 2009, 106, 11703–11708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, L.G.L.; Montenegro, L.R.; Lerario, A.M.; Jorge, A.A.L.; Junior, G.G.; Schnoll, C.; Renck, A.C.; Trarbach, E.B.; Costa, E.M.F.; Mendonca, B.B.; et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur. J. Endocrinol. 2019, 181, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Francou, B.; Paul, C.; Amazit, L.; Cartes, A.; Bouvattier, C.; Albarel, F.; Maiter, D.; Chanson, P.; Trabado, S.; Brailly-Tabard, S.; et al. Prevalence of KISS1 Receptor mutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: A single-centre study. Hum. Reprod. 2016, 31, 1363–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brachet, C.; Gernay, C.; Boros, E.; Soblet, J.; Vilain, C.; Heinrichs, C. Homozygous p.R31H GNRH1 mutation and normosmic congenital hypogonadotropic hypogonadism in a patient and self-limited delayed puberty in his relatives. J. Pediatr. Endocrinol. Metab. 2020, 33, 1237–1240. [Google Scholar] [CrossRef]
- Sykiotis, G.P.; Plummer, L.; Hughes, V.A.; Au, M.; Durrani, S.; Nayak-Young, S.; Dwyer, A.A.; Quinton, R.; Hall, J.E.; Gusella, J.F.; et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc. Natl. Acad. Sci. USA 2010, 107, 15140–15144. [Google Scholar] [CrossRef] [Green Version]
- I Stamou, M.; Varnavas, P.; Plummer, L.; Koika, V.; Georgopoulos, N.A. Next-generation sequencing refines the genetic architecture of Greek GnRH-deficient patients. Endocr. Connect. 2019, 8, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Kotan, L.D.; Cooper, C.; Darcan, Ş.; Carr, I.M.; Özen, S.; Yan, Y.; Hamedani, M.K.; Gürbüz, F.; Mengen, E.; Turan, I.; et al. Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 125–134. [Google Scholar] [CrossRef]
- Camats, N.; Fernández-Cancio, M.; Audí, L.; Schaller, A.; Flück, C.E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: An oligogenic origin? Eur. J. Hum. Genet. 2018, 26, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Lanz, R.B.; Razani, B.; Goldberg, A.D.; OMalley, B.W. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc. Natl. Acad. Sci. USA 2002, 99, 16081–16086. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, H.; Takano, H.; Sugita, S.; Takahara, Y.; Sugimura, K.; Nakatani, T. A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: Expression in prostate cancer cells and enhancement of androgen receptor activity. Biochem. J. 2003, 369, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chooniedass-Kothari, S.; Vincett, D.; Yan, Y.; Cooper, C.; Hamedani, M.K.; Myal, Y.; Leygue, E. The protein encoded by the functional steroid receptor RNA activator is a new modulator of ER alpha transcriptional activity. FEBS Lett. 2010, 584, 1174–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Koenig, R.J. An RNA-binding Domain in the Thyroid Hormone Receptor Enhances Transcriptional Activation. J. Biol. Chem. 2004, 279, 33051–33056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wu, H.-T.; Zhu, N.; Shi, Y.-N.; Liu, Z.; Ao, B.; Liao, D.-F.; Zheng, X.-L.; Qin, L. Steroid receptor RNA activator: Biologic function and role in disease. Clin. Chim. Acta 2016, 459, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Yang, W.-H.; Gerin, I.; Hu, C.-D.; Hammer, G.D.; Koenig, R.J. Dax-1 and Steroid Receptor RNA Activator (SRA) Function as Transcriptional Coactivators for Steroidogenic Factor 1 in Steroidogenesis. Mol. Cell. Biol. 2009, 29, 1719–1734. [Google Scholar] [CrossRef] [Green Version]
- Neocleous, V.; Fanis, P.; Toumba, M.; Tanteles, G.A.; Schiza, M.; Cinarli, F.; Nicolaides, N.C.; Oulas, A.; Spyrou, G.M.; Mantzoros, C.S.; et al. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front. Endocrinol. 2020, 11, 626. [Google Scholar] [CrossRef]
- Gach, A.; Pinkier, I.; Szarras-Czapnik, M.; Sakowicz, A.; Jakubowski, L. Expanding the mutational spectrum of monogenic hypogonadotropic hypogonadism: Novel mutations in ANOS1 and FGFR1 genes. Reprod. Biol. Endocrinol. 2020, 18, 8. [Google Scholar] [CrossRef]
- Jo, A.; Denduluri, S.; Zhang, B.; Wang, Z.; Yin, L.; Yan, Z.; Kang, R.; Shi, L.L.; Mok, J.; Lee, M.J.; et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 2014, 1, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Fauquier, T.; Rizzoti, K.; Dattani, M.; Lovell-Badge, R.; Robinson, I.C.A.F. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc. Natl. Acad. Sci. USA 2008, 105, 2907–2912. [Google Scholar] [CrossRef] [Green Version]
- Rizzoti, K.; Akiyama, H.; Lovell-Badge, R. Mobilized Adult Pituitary Stem Cells Contribute to Endocrine Regeneration in Response to Physiological Demand. Cell Stem Cell 2013, 13, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Andoniadou, C.L.; Matsushima, D.; Gharavy, S.N.M.; Signore, M.; Mackintosh, A.I.; Schaeffer, M.; Gaston-Massuet, C.; Mollard, P.; Jacques, T.S.; Le Tissier, P.; et al. Sox2+ Stem/Progenitor Cells in the Adult Mouse Pituitary Support Organ Homeostasis and Have Tumor-Inducing Potential. Cell Stem Cell 2013, 13, 433–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekido, R.; Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008, 453, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.W.; Dominguez-Steglich, M.A.; Guioli, S.; Kwok, C.; Weller, P.A.; Stevanovic, M.; Weissenbach, J.; Mansour, S.; Young, I.D.; Goodfellow, P.N.; et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994, 372, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Cela, P.; Hampl, M.; Shylo, N.; Christopher, K.; Kavkova, M.; Landova, M.; Zikmund, T.; Weatherbee, S.; Kaiser, J.; Buchtova, M. Ciliopathy Protein Tmem107 Plays Multiple Roles in Craniofacial Development. J. Dent. Res. 2018, 97, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-H.; Saint-Jeannet, J.-P. Sox9 function in craniofacial development and disease. Genesis 2011, 49, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zheng, L.; Cheng, S.; Peng, Y.; Fu, L.; Zhang, X.; Linhardt, R. Comparison of the Interactions of Different Growth Factors and Glycosaminoglycans. Molecules 2019, 24, 3360. [Google Scholar] [CrossRef] [Green Version]
- Kreuger, J.; Spillmann, D.; Li, J.-P.; Lindahl, U. Interactions between heparan sulfate and proteins: The concept of specificity. J. Cell Biol. 2006, 174, 323–327. [Google Scholar] [CrossRef]
- Loo, B.-M.; Salmivirta, M. Heparin/Heparan Sulfate Domains in Binding and Signaling of Fibroblast Growth Factor 8b. J. Biol. Chem. 2002, 277, 32616–32623. [Google Scholar] [CrossRef] [Green Version]
- Tornberg, J.; Sykiotis, G.P.; Keefe, K.; Plummer, L.; Hoang, X.; Hall, J.E.; Quinton, R.; Seminara, S.B.; Hughes, V.; Van Vliet, G.; et al. Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proc. Natl. Acad. Sci. USA 2011, 108, 11524–11529. [Google Scholar] [CrossRef] [Green Version]
- Danda, V.S.R.; Paidipelly, S.R.; Verepula, M.; Lodha, P.; Thaduri, K.R.; Konda, C.; Ruhi, A. Exploring the Genetic Diversity of Isolated Hypogonadotropic Hypogonadism and Its Phenotypic Spectrum: A Case Series. J. Reprod. Infertil. 2020, 22, 38–46. [Google Scholar] [CrossRef]
- Zhu, J.; Choa, R.; Guo, M.H.; Plummer, L.; Buck, C.; Palmert, M.R.; Hirschhorn, J.N.; Seminara, S.B.; Chan, Y.-M. A shared genetic basis for self-limited delayed puberty and idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2015, 100, E646–E654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, F.; Hammer, M.; Paul, S.M.; Aouizerat, B.E.; Kober, K.M.; Conley, Y.P.; Cooper, B.A.; Dunn, L.B.; Levine, J.D.; Melkus, G.D.; et al. Inflammatory pathway genes associated with inter-individual variability in the trajectories of morning and evening fatigue in patients receiving chemotherapy. Cytokine 2017, 91, 187–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, L.C.; Dattani, M.T. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J. Clin. Endocrinol. Metab. 2020, 105, e2103–e2120. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.E.; Li, N.; Kim, Y.J.; Lee, J.Y.; Kim, S.-H.; Rapaport, R.; Levine, M. Digenic Inheritance of PROKR2 and WDR11 Mutations in Pituitary Stalk Interruption Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 2501–2507. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Zhang, Y.; Cai, J.; Lu, T.; Hu, J.; Yuan, F.; Chen, P. Identification of novel candidate pathogenic genes in pituitary stalk interruption syndrome by whole-exome sequencing. J. Cell. Mol. Med. 2020, 24, 11703–11717. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, B.; Swee, D.S.; Quinton, R.; Bonomi, M. Genetics of congenital hypogonadotropic hypogonadism: Peculiarities and phenotype of an oligogenic disease. Qual. Life Res. 2021, 140, 77–111. [Google Scholar] [CrossRef]
- Vaaralahti, K.; Raivio, T.; Koivu, R.; Valanne, L.; Laitinen, E.-M.; Tommiska, J. Genetic Overlap between Holoprosencephaly and Kallmann Syndrome. Mol. Syndr. 2012, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
Hormones | Patients | Normal Ranges | |
---|---|---|---|
1 | 2 | ||
TSH | 5.66 | <0.004 | 0.5–5 μUI/mL |
FT4 | 0.784 | 0.776 | 0.8–1.8 ng/dL |
ACTH | <1 | 3.49 | 7–63 pg/mL |
Cortisol | 0.523 | 2.87 | 6.24–18 μg/dL |
D4-Andostenedione | <0.30 | NA | 0.05–0.45 ng/mL |
DHEA-S | <15 | 29.4 | 6–21 μg/dL |
LH | <0.1 | <0.1 | 0–1.3 mIU/mL |
FSH | 0.123 | 0.226 | 0.1–2.4 mIU/mL |
Testosterone | <20 | 22.5 | 75–400 ng/dL |
GH | 4.54 | 1.19 | 5–40 ng/mL |
IGF-1 | <15 | <0.25 | 15–129 ng/mL |
PRL | 291.5 | 27.06 | 5–20 ng/mL |
Aldosterone | 1185 | NA | 50–900 pg/mL |
Renin | 27.6 | NA | <37 ng/mL/h |
Patient | Gene | Transcript ID | Nucleotide Variant | Protein Variant | dbSNP | Inheri Tance | Frequency | ACMG Classification | Prediction Tools | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gnomAD Exomes | 500 Greek Exomes | SIFT | PolyPhen2 | Mutation Taster | CADD | GERP | ||||||||
1 | BMP4 | NM_001202.4 | c.124G > C | p.[Ala42Pro;=] | rs140920120 | M | 0.000283 | HTZ:0.002 | VUS | B | LP | B | 22.6 | 5.19 |
HMZ: 0 | (BP4, PS3) | |||||||||||||
GNRH1 | NM_000825.3 | c.217C > T | p.[Arg73Ter;=] | rs375970738 | P | 0.00000805 | 0 | LP | - | - | - | 14.98 | 4.91 | |
(PVS1, PM2) | ||||||||||||||
SRA1 | NM_001035235.4 | c.94C > G | p.[Gln32Glu;=] | rs35610885 | M | 0.00715 | HTZ: 0.008 | VUS | P | LP | DC | 27.6 | 5.01 | |
HMZ: 0 | (BP4, PP5) | |||||||||||||
2 | SOX9 | NM_000346.4 | c.283G > A | p.[Val95Ile;=] | Novel | M | NA | 0 | VUS | B | LP | DC | 23.3 | 4.24 |
(PM2, BP4) | ||||||||||||||
HS6ST1 | NM_004807.3 | c.917G > A | p.[Arg306Gln;=] | rs201307896 | M | 0.000706 | 0 | P | B | LP | DC | 29.9 | 4.78 | |
(PS3, PM2, PM5, PP5, PP3) | ||||||||||||||
IL17RD | NM_017563.5 | c.1696C > T | p.[Pro566Ser;=] | rs61742267 | M | 0.0144 | HTZ: 0.028 | VUS | B | LP | DC | 22.6 | 5.64 | |
HMZ: 0 | (PM5, BP4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sertedaki, A.; Tatsi, E.B.; Vasilakis, I.A.; Fylaktou, I.; Nikaina, E.; Iacovidou, N.; Siahanidou, T.; Kanaka-Gantenbein, C. Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells 2022, 11, 2088. https://doi.org/10.3390/cells11132088
Sertedaki A, Tatsi EB, Vasilakis IA, Fylaktou I, Nikaina E, Iacovidou N, Siahanidou T, Kanaka-Gantenbein C. Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells. 2022; 11(13):2088. https://doi.org/10.3390/cells11132088
Chicago/Turabian StyleSertedaki, Amalia, Elizabeth Barbara Tatsi, Ioannis Anargyros Vasilakis, Irene Fylaktou, Eirini Nikaina, Nicoletta Iacovidou, Tania Siahanidou, and Christina Kanaka-Gantenbein. 2022. "Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency" Cells 11, no. 13: 2088. https://doi.org/10.3390/cells11132088
APA StyleSertedaki, A., Tatsi, E. B., Vasilakis, I. A., Fylaktou, I., Nikaina, E., Iacovidou, N., Siahanidou, T., & Kanaka-Gantenbein, C. (2022). Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells, 11(13), 2088. https://doi.org/10.3390/cells11132088