The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D
Abstract
:1. Introduction
2. Insulin Resistance
3. Acute Phase Response (APR)
4. Acute Phase Proteins
4.1. Plasminogen Activator Inhibitor-1 (PAI-1)
4.2. Serum Amyloid A (SAA)
4.3. C-Reactive Protein (CRP)
5. Regulation of the Acute Phase Proteins
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, 2011–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harabi, K.; Tavares, C.D.; Rines, A.K.; Puigserver, P. Molecular Phathophysiology of Hepatic Glucose Production. Mol. Asp. Med. 2015, 46, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rines, A.K.; Sharabi, K.; Tavares, C.D.J.; Puigserver, P. Targeting Hepatic Glucose Metabolism in the Treatment of Type 2 Diabetes. Nat. Rev. Drug Discov. 2016, 15, 786–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II Diabetes Mellitus: A Review on Recent Drug Based Therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Grant, I.D.; Ozanne, S.E.; Reynolds, R.M.; Aiken, C.E. Efficacy and Side Effect Profile of Different Formulations of Metformin: A Systematic Review and Meta-Analysis. Diabetes Ther. 2021, 12, 1901–1914. [Google Scholar] [CrossRef]
- Reaven, G.M. Banting Lecture 1988. Role of Insulin Resistance in Human Disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S62–S67. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A. Pathogenesis of Type 2 Diabetes: Metabolic and Molecular Implications for Identifying Diabetes. Diabetes Rev 1997, 5, 177–269. [Google Scholar]
- James, D.E.; Stöckli, J.; Birnbaum, M.J. The Aetiology and Molecular Landscape of Insulin Resistance. Nat. Rev. Mol. Cell Biol. 2021, 22, 751–771. [Google Scholar] [CrossRef]
- Wilcox, G. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.J.; Garvey, W.T. Insulin Action and Insulin Resistance: Diseases Involving Defects in Insulin Receptors, Signal Transduction, and the Glucose Transport Effector System. Am. J. Med. 1998, 105, 331–345. [Google Scholar] [CrossRef]
- Qatanani, M.; Lazar, M. Mechansims of Obesity-Associated Insulin Resistance: Many Choice on the Menu. Genes Dev. 2010, 36, 490–499. [Google Scholar] [CrossRef]
- Van Greevenbroek, M.M.J.; Schalkwijk, C.G.; Stehouwer, C.D.A. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. J. Med. 2013, 71, 174–187. [Google Scholar]
- Tanti, J.F.; Ceppo, F.; Jager, J.; Berthou, F. Implication of Inflammatory Signaling Pathways in Obesity-Induced Insulin Resistance. Front. Endocrinol. (Lausanne). 2013, 3, 181. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Akash, M.S.H.M.S.H. Mechanisms of Inflammatory Responses and Development of Insulin Resistance: How Are They Interlinked? J. Biomed. Sci. 2016, 23, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kunz, H.E.; Hart, C.R.; Gries, K.J.; Parvizi, M.; Laurenti, M.; Man, C.D.; Moore, N.; Zhang, X.; Ryan, Z.; Polley, E.C.; et al. Adipose Tissue Macrophage Populations and Inflammation Are Associated with Systemic Inflammation and Insulin Resistance in Obesity. Am. J. Physiol.-Endocrinol. Metab. 2021, 321, E105–E121. [Google Scholar] [CrossRef]
- Fernandez-Real, J.M.; Ricart, W. Insulin Resistance and Chronic Cardiovascular Inflammatory Syndrome. Endocr. Rev 2003, 24, 278–301. [Google Scholar] [CrossRef] [Green Version]
- Senn, J.J.; Klover, P.J.; Nowak, I.A.; Mooney, R.A. Interleukin-6 Induces Cellular Insulin Resistance in Hepatocytes. Diabetes 2002, 51, 3391–3399. [Google Scholar] [CrossRef] [Green Version]
- Kanety, H.; Feinstein, R.; Papa, M.Z.; Hemi, R.; Karasik, A. Tumor Necrosis Factor α-Induced Phosphorylation of Insulin Receptor Substrate-1 (IRS-1). J. Biol. Chem. 1995, 270, 23780–23784. [Google Scholar] [CrossRef] [Green Version]
- Feinstein, R.; Kanety, H.; Papa, M.Z.; Lunenfeld, B.; Karasik, A. Tumor Necrosis Factor-α Suppresses Insulin-Induced Tyrosine Phosphorylation of Insulin Receptor and Its Substrates. J. Biol. Chem. 1993, 268, 26055–26058. [Google Scholar] [CrossRef]
- Hotamisligil, G. S. k. S.; Peraldi, P.; Budavari, A.; Ellis, R.; Morris, F.; White, M.F.; Spiegelmant, B.M. IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-α- and Obesity-Induced Insulin Resistance. Science 1996, 271, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Oróstica, L.; Poblete, C.; Romero, C.; Vega, M. Pro-Inflammatory Markers Negatively Regulate IRS1 in Endometrial Cells and Endometrium from Women with Obesity and PCOS. Reprod. Sci. 2020, 27, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Madi, M.; Ding, C.; Fok, M.; Steele, T.; Ford, C.; Hunter, L.; Bing, C. Interleukin-1β Mediates Macrophage-Induced Impairment of Insulin Signaling in Human Primary Adipocytes. Am. J. Physiol.-Endocrinol. Metab. 2014, 307, E289–E304. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Hassan-Zadeh, V. IL-6 Signalling Pathways and the Development of Type 2 Diabetes. Inflammopharmacology 2018, 26, 685–698. [Google Scholar] [CrossRef]
- He, J.; Usui, I.; Ishizuka, K.; Kanatani, Y.; Hiratani, K.; Iwata, M.; Bukhari, A.; Haruta, T.; Sasaoka, T.; Kobayashi, M. Interleukin-1α Inhibits Insulin Signaling with Phosphorylating Insulin Receptor Substrate-1 on Serine Residues in 3T3-L1 Adipocytes. Mol. Endocrinol. 2006, 20, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Alipourfard, I.; Datukishvili, N.; Mikeladze, D. TNF-α Downregulation Modifies Insulin Receptor Substrate 1 (IRS-1) in Metabolic Signaling of Diabetic Insulin-Resistant Hepatocytes. Mediators Inflamm. 2019, 2019, 3560819. [Google Scholar] [CrossRef] [Green Version]
- Beaupere, C.; Liboz, A.; Fève, B.; Blondeau, B.; Guillemain, G. Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 623. [Google Scholar] [CrossRef]
- Andrews, R.C.; Walker, B.R. Glucocorticoids and Insulin Resistance: Old Hormones, New Targets. Clin. Sci. 1999, 96, 513–523. [Google Scholar] [CrossRef]
- Ganapathi, M.K.; Rzewnicki, D.; Samols, D.; Jiang, S.L.; Kushner, I. Effect of Combinations of Cytokines and Hormones on Synthesis of Serum Amyloid A and C-Reactive Protein in Hep 3B Cells. J. Immunol. 1991, 147, 1261–1265. [Google Scholar]
- Thorn, C.F.; Whitehead, A.S. Differential Glucocorticoid Enhancement of the Cytokine-Driven Transcriptional Activation of the Human Acute Phase Serum Amyloid A Genes, SAA1 and SAA2. J. Immunol. 2002, 169, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorn, C.F.; Lu, Z.Y.; Whitehead, A.S. Regulation of the Human Acute Phase Serum Amyloid A Genes by Tumour Necrosis Factor-α, Interleukin-6 and Glucocorticoids in Hepatic and Epithelial Cell Lines. Scand. J. Immunol. 2004, 59, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Depraetere, S.; Willems, J.; Joniau, M. Stimulation of CRP Secretion in HepG2 Cells: Cooperative Effect of Dexamethasone and Interleukin 6. Agents Actions 1991, 34, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Sommer, G.; Weise, S.; Kralisch, S.; Scherer, P.E.; Lössner, U.; Blüher, M.; Stumvoll, M.; Fasshauer, M. The Adipokine SAA3 Is Induced by Interleukin-1β in Mouse Adipocytes. J. Cell. Biochem. 2008, 104, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Lu, Z.Y.; Whitehead, A.S. Tissue-Specific Regulation of the Human Acute-Phase Serum Amyloid A Genes, SAA1 and SAA2, by Glucocorticoids in Hepatic and Epithelial Cells. Eur. J. Immunol. 2003, 33, 2630–2639. [Google Scholar] [CrossRef]
- Smith, J.W.; McDonald, T.L. Production of Serum Amyloid A and C-Reactive Protein by HepG2 Cells Stimulated with Combinations of Cytokines or Monocyte Conditioned Media: The Effects of Prednisolone. Clin. Exp. Immunol. 2008, 90, 293–299. [Google Scholar] [CrossRef]
- Kimura, H.; Li, X.; Torii, K.; Okada, T.; Kamiyama, K.; Mikami, D.; Takahashi, N.; Yoshida, H. Dexamethasone Enhances Basal and TNF-α-Stimulated Production of PAI-1 via the Glucocorticoid Receptor Regardless of 11β-Hydroxysteroid Dehydrogenase 2 Status in Human Proximal Renal Tubular Cells. Nephrol. Dial. Transplant. 2009, 24, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Festa, A.; D’Agostino, R.; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Chronic Subclinical Inflammation as Part of the Insulin Resistance Syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Festa, A.; D’Agostino, R.; Tracy, R.P.; Haffner, S.M. Elevated Levels of Acute-Phase Proteins and Plasminogen Activator Inhibitor-1 Predict the Development of Type 2 Diabetes: The Insulin Resistance Atherosclerosis Study. Diabetes 2002, 51, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Festa, A.; Williams, K.; Tracy, R.P.; Wagenknecht, L.E.; Haffner, S.M. Progression of Plasminogen Activator Inhibitor-1 and Fibrinogen Levels in Relation to Incident Type 2 Diabetes. Circulation 2006, 113, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Barzilay, J.I.; Abraham, L.; Heckbert, S.R.; Cushman, M.; Kuller, L.H.; Resnick, H.E.; Tracy, R.P. The Relation of Markers of Inflammation to the Development of Glucose Disorders in the Elderly. Diabetes 2001, 50, 2384–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. J. Am. Med. Assoc. 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Martin, S.; Koenig, W.; Hanifi-Moghaddam, P.; Rathmann, W.; Haastert, B.; Giani, G.; Illig, T.; Thorand, B.; Kolb, H. Impaired Glucose Tolerance Is Associated with Increased Serum Concentrations of Interleukin 6 and Co-Regulated Acute-Phase Proteins but Not TNF-Alpha or Its Receptors. Diabetologia 2002, 45, 805–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzi, C.; Huth, C.; Herder, C.; Baumert, J.; Thorand, B.; Rathmann, W.; Meisigner, C.; Wichmann, H.; Roden, M.; Peters, M.; et al. Acute-Phase Serum Amyloid A Protein and Its Implication in the Development of Type-2 Diabetes in the KORA S4/F4 Study. Diabetes Care 2013, 36, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, K.; Fujisawa, K.; Konstantinides, S.; Loskutoff, D.J. Disruption of the Plasminogen Activator Inhibitor--1 Gene Reduces the Adiposity and Improves the Metabolic Profile of Genetically Obese and Diabetic Ob/Ob Mice. FASEB J. 2001, 15, 1840–1842. [Google Scholar] [CrossRef]
- Ma, L.J.; Mao, S.L.; Taylor, K.L.; Kanjanabuch, T.; Guan, Y.F.; Zhang, Y.H.; Brown, N.J.; Swift, L.L.; McGuinness, O.P.; Wasserman, D.H.; et al. Prevention of Obesity and Insulin Resistance in Mice Lacking Plasminogen Activator Inhibitor 1. Diabetes 2004, 53, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Kawao, N.; Yano, M.; Okada, K.; Matsuo, O.; Kaji, H. Plasminogen Activator Inhibitor-1 Deficiency Ameliorates Insulin Resistance and Hyperlipidemia but Not Bone Loss in Obese Female Mice. Endocrinology 2014, 155, 1708–1717. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Kawao, N.; Yano, M.; Okada, K.; Okumoto, K.; Chiba, Y.; Matsuo, O.; Kaji, H. Role of Plasminogen Activator Inhibitor-1 in Glucocorticoid-Induced Diabetes and Osteopenia in Mice. Diabetes 2015, 64, 2194–2206. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Morita, I.; Ikeda, K.; Miki, T.; Yamori, Y. C-Reactive Protein Suppresses Insulin Signaling in Endothelial Cells: Role of Spleen Tyrosine Kinase. Mol. Endocrinol. 2007, 21, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Alessandris, C.D.; Lauro, R.; Presta, I.; Sesti, G. C-Reactive Protein Induces Phosphorylation of Insulin Receptor Substrate-1 on Ser307 and Ser612 in L6 Myocytes, Thereby Impairing the Insulin Signalling Pathway That Promotes Glucose Transport. Diabetologia 2007, 50, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Xi, L.; Xiao, C.; Bandsma, R.H.J.; Naples, M.; Adeli, K.; Lewis, G.F. C-Reactive Protein Impairs Hepatic Insulin Sensitivity and Insulin Signaling in Rats: Role of Mitogen- Activated Protein Kinases. Hepatology 2011, 53, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Meshkani, R.; Adeli, K. Mechanisms Linking the Metabolic Syndrome and Cardiovascular Disease: Role of Hepatic Insulin Resistance. J. Tehran Univ. Heart Cent. 2009, 4, 77–84. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin Signalling and the Regulation of Glucose and Lipid Metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef]
- Leto, D.; Saltiel, A.R. Regulation of Glucose Transport by Insulin: Traffic Control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012, 13, 383–396. [Google Scholar] [CrossRef]
- Gonzalez, E.; Flier, E.; Molle, D.; Accili, D.; McGraw, T.E. Hyperinsulinemia Leads to Uncoupled Insulin Regulation of the GLUT4 Glucose Transporter and the FoxO1 Transcription Factor. Proc. Natl. Acad. Sci. USA. 2011, 108, 10162–10167. [Google Scholar] [CrossRef] [Green Version]
- Guo, S. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef]
- Mlinar, B.; Marc, J.; Janež, A.; Pfeifer, M. Molecular Mechanisms of Insulin Resistance and Associated Diseases. Clin. Chim. Acta 2007, 375, 20–35. [Google Scholar] [CrossRef]
- Beck-Nielsen, H.; Hother-Nielsen, O.; Staehr, P. Is Hepatic Glucose Production Increased in Type 2 Diabetes Mellitus? Curr. Diab. Rep. 2002, 2, 231–236. [Google Scholar] [CrossRef]
- Mezza, T.; Cinti, F.; Cefalo, C.M.A.; Pontecorvi, A.; Kulkarni, R.N.; Giaccari, A. β-Cell Fate in Human Insulin Resistance and Type 2 Diabetes: A Perspective on Islet Plasticity. Diabetes 2019, 68, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.J.; DeFronzo, R.A.; Califf, R.M.; Guyton, J.R. Metabolic Syndrome: Definition, Pathophysiology, and Mechanisms. Am. Heart J. 2005, 149, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; George, S.Z.; Seay, A.N.; Vincent, K.R.; Hurley, R.W. Resistance Exercise, Disability, and Pain Catastrophizing in Obese Adults with Back Pain. Med. Sci. Sports Exerc. 2014, 46, 1693–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, N.; Kubota, T.; Itoh, S.; Kumagai, H.; Kozono, H.; Takamoto, I.; Mineyama, T.; Ogata, H.; Tokuyama, K.; Ohsugi, M.; et al. Dynamic Functional Relay between Insulin Receptor Substrate 1 and 2 in Hepatic Insulin Signaling during Fasting and Feeding. Cell Metab. 2008, 8, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Kubota, N.; Tobe, K.; Terauchi, Y.; Eto, K.; Yamauchi, T.; Suzuki, R.; Tsubamoto, Y.; Komeda, K.; Nakano, R.; Miki, H.; et al. Disruption of Insulin Receptor Substrate 2 Causes Type 2 Diabetes Because of Liver Insulin Resistance and Lack of Compensatory Beta-Cell Hyperplasia. Diabetes 2000, 49, 1880–1889. [Google Scholar] [CrossRef] [Green Version]
- Withers, D.J.; Gutierrez, J.S.; Towery, H.; Burks, D.; Ren, J.M.; Previs, S.; Zhang, Y.; Bernal, D.; Pons, S.; Shulman, G.I.; et al. Disruption of IRS-2 Causes Type-2 Diabetes in Mice. J. Pharmacol. Exp. Ther 1998, 391, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.D.; Kulkarni, R.N.; Postic, C.; Previs, S.F.; Shulman, G.I.; Magnuson, M.A.; Kahn, C.R. Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Mol. Cell 2000, 6, 87–97. [Google Scholar] [CrossRef]
- Kido, Y.; White, M.F.; Accili, D.; Kido, Y.; Burks, D.J.; Withers, D.; Bruning, J.C.; Kahn, C.R.; White, M.F.; Accili, D. Tissue-Specific Insulin Resistance in Mice with Mutations in the Insulin Receptor, IRS-1 and IRS-2. J. Clin. Investig. 2000, 105, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Pratipanawatr, W.; Pratipanawatr, T.; Cusi, K.; Berria, R.; Adams, J.M.; Jenkinson, C.P.; Maezono, K.; Defronzo, R.A.; Mandarino, L.J. Skeletal Muscle Insulin Resistance in Normoglycemic Subjects With a Strong Family History of Type 2 Diabetes Is Associated With Decreased Insulin-Stimulated Insulin Receptor Substrate-1 Tyrosine Phosphorylation. Diabetes 2001, 50, 2572–2578. [Google Scholar] [CrossRef] [Green Version]
- Uysal, K.T.; Wiesbrock, S.M.; Marino, M.W.; Hotamisligil, G.S. Protection from Obesity-Induced Insulin Resistance in Mice Lacking TNF-Alpha Function. Nature 1997, 389, 610–613. [Google Scholar] [CrossRef]
- Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic MTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c. Cell Metab. 2012, 15, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, K.; Ogawa, W.; Matsumoto, M.; Nakamura, T.; Sakaue, H.; Kasuga, M. Hyperinsulinemia, Glucose Intolerance, and Dyslipidemia Induced by Acute Inhibition of Phosphoinositide 3-Kinase Signaling in the Liver. J. Clin. Investig. 2002, 110, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Lipina, C.; Tronche, F.; Sutherland, C.; Alessi, D.R. Deficiency of PDK1 in Liver Results in Glucose Intolerance, Impairment of Insulin-Regulated Gene Expression and Liver Failure. Biochem. J. 2005, 385, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Copps, K.D.; Dong, X.; Park, S.; Cheng, Z.; Pocai, A.; Rossetti, L.; Sajan, M.; Farese, R.V.; White, M.F. The IRS1 Branch of the Insulin Signaling Cascade Plays a Dominant Role in Hepatic Nutrient Homeostasis. Mol. Cell. Biol. 2009, 29, 5070–5083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Xu, Z.; Zhu, Q.; Thomas, C.; Kumar, R.; Feng, H.; Dostal, D.E.; White, M.F.; Baker, K.M.; Guo, S. Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by P38α MAPK during Insulin Resistance. Diabetes 2013, 62, 3887–3900. [Google Scholar] [CrossRef] [Green Version]
- Bazuine, M.; Carlotti, F.; Jahangir Tafrechi, R.S.; Hoeben, R.C.; Maassen, J.A. Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 and -4 Attenuate P38 MAPK during Dexamethasone-Induced Insulin Resistance in 3T3-L1 Adipocytes. Mol. Endocrinol. 2004, 18, 1697–1707. [Google Scholar] [CrossRef]
- Ruzzin, J.; Wagman, A.S.; Jensen, J. Glucocorticoid-Induced Insulin Resistance in Skeletal Muscles: Defects in Insulin Signalling and the Effects of a Selective Glycogen Synthase Kinase-3 Inhibitor. Diabetologia 2005, 48, 2119–2130. [Google Scholar] [CrossRef] [Green Version]
- Sakoda, H.; Ogihara, T.; Anai, M.; Funaki, M.; Inukai, K.; Katagiri, H.; Fukushima, Y.; Onishi, Y.; Ono, H.; Fujishiro, M.; et al. Dexamethasone-Induced Insulin Resistance in 3T3-L1 Adipocytes Is Due to Inhibition of Glucose Transport Rather than Insulin Signal Transduction. Diabetes 2000, 49, 1700–1708. [Google Scholar] [CrossRef] [Green Version]
- Kroder, G.; Bossenmaier, B.; Kellerer, M.; Capp, E.; Stoyanov, B.; Mühlhöfer, A.; Berti, L.; Horikoshi, H.; Ullrich, A.; Häring, H. Tumor Necrosis Factor-α- and Hyperglycemia-Induced Insulin Resistance: Evidence for Different Mechanisms and Different Effects on Insulin Signaling. J. Clin. Investig. 1996, 97, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Mechanisms of Insulin Resistance in Obesity. Front. Med. 2013, 7, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Stienstra, R.; Duval, C.; Müller, M.; Kersten, S. PPARs, Obesity, and Inflammation. PPAR Res. 2007, 2007, 95974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Tartaglia, L.A.; Chen, H. Chronic Inflammation Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.J.A.; Folli, F.; Kahn, J.; Kahn, C.R. Modulation of Insulin Receptor, Insulin Receptor Substrate-1, and Phosphatidylinositol 3-Kinase in Liver and Muscle of Dexamethasone-Treated Rats. J. Clin. Immunol. 1993, 92, 2065–2072. [Google Scholar] [CrossRef]
- Burén, J.; Lai, Y.C.; Lundgren, M.; Eriksson, J.W.; Jensen, J. Insulin Action and Signalling in Fat and Muscle from Dexamethasone-Treated Rats. Arch. Biochem. Biophys. 2008, 474, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Armandi, A.; Rosso, C.; Caviglia, G.P.; Bugianesi, E. Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites 2021, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Insulin Resistance—StatPearls—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (accessed on 28 June 2022).
- Kohler, H.P. Insulin Resistance Syndrome: Interaction with Coagulation and Fibrinolysis. Swiss Med. Wkly. 2002, 132, 241–252. [Google Scholar] [CrossRef]
- Mejhert, N.; Rydén, M. Understanding the Complexity of Insulin Resistance. Nat. Rev. Endocrinol. 2022, 18, 269–270. [Google Scholar] [CrossRef]
- Batista, T.M.; Haider, N.; Kahn, C.R. Defining the Underlying Defect in Insulin Action in Type 2 Diabetes. Diabetologia 2021, 64, 994–1006. [Google Scholar] [CrossRef]
- Khalid, M.; Alkaabi, J.; Khan, M.A.B.; Adem, A. Insulin Signal Transduction Perturbations in Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 8590. [Google Scholar] [CrossRef]
- Pickup, J.C.; Crook, M.A. Is Type 2 DM a Disease of the Innate Immune System? Diabetologia 1998, 41, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Pickup, J.C.; Mattock, M.B.; Chusney, G.D.; Butt, D. NIDDM as a Disease of the Innate Immune System: Association of Acute-Phase Reactants and Interleukin-6 with Metabolic Syndrome X. Diabetologia 1997, 40, 1286–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janciauskiene, S.; Welte, T.; Mahadeva, R. Acute Phase Proteins: Regulation and Functions of Acute Phase Proteins; IntechOpen: London, UK, 2011; Volume i, pp. 25–60. [Google Scholar]
- Kushner, I. The Phenomenon of the Acute Phase Response. Ann. N. Y. Acad. Sci. 1982, 389, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Moshage, H. Review Article Cytokines and the Hepatic Acute Phase. J. Pathol. 1996, 181, 257–266. [Google Scholar] [CrossRef]
- Suffredini, A.F.; Fantuzzi, G.; Badolato, R.; Oppenheim, J.J.; O’Grady, N.P. New Insights into the Biology of the Acute Phase Response. J. Clin. Immunol. 1999, 19, 203–214. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the Acute Phase Response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Sipe, J.D. The Acute Phase Response in the Pathogenesis of Inflammatory Disease. Clin. Immunother. 1995, 3, 297–307. [Google Scholar] [CrossRef]
- Castell, J.V.; Gómez-lechón, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-phase Response of Human Hepatocytes: Regulation of Acute-phase Protein Synthesis by Interleukin--6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute Phase Reaction and Acute Phase Proteins. J. Zhejiang Univ. Sci. 2005, 6B, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Cray, C.; Zaias, J.; Altman, N.H. Acute Phase Response in Animals: A Review. Comp. Med. 2009, 59, 517–526. [Google Scholar]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Shim, K.; Begum, R.; Yang, C.; Wang, H. Complement Activation in Obesity, Insulin Resistance, and Type 2 Diabetes Mellitus. World J. Diabetes 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Black, P.H. The Inflammatory Response Is an Integral Part of the Stress Response: Implications for Atherosclerosis, Insulin Resistance, Type II Diabetes and Metabolic Syndrome X. Brain. Behav. Immun. 2003, 17, 350–364. [Google Scholar] [CrossRef]
- McMillan, D.E. Increased Levels of Acute-Phase Serum Proteins in Diabetes. Metabolism 1989, 38, 1042–1046. [Google Scholar] [CrossRef]
- Jonsson, A.; Wales, J.K. Blood Glycoprotein Levels in Diabetes Mellitus. Diabetologia 1976, 12, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Cesari, M.; Pahor, M.; Incalzi, R.A. Plasminogen Activator Inhibitor-1 (PAI-1): A Key Factor Linking Fibrinolysis and Age-Related Subclinical and Clinical Conditions. Cardiovasc. Ther. 2010, 28, e72–e91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, R.; Barrenetxe, J.; Orbe, J.; Rodríguez, J.A.; Gallardo, N.; Martínez, C.; Andrés, A.; Páramo, J.A. Tissue-Specific PAI-1 Gene Expression and Glycosylation Pattern in Insulin-Resistant Old Rats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, 1563–1569. [Google Scholar] [CrossRef]
- Binder, B.R.; Christ, G.; Gruber, F.; Grubic, N.; Hufnagl, P.; Krebs, M.; Mihaly, J.; Prager, G.W. Plasminogen Activator Inhibitor 1: Physiological and Pathophysiological Roles. News Physiol. Sci. 2002, 17, 56–61. [Google Scholar] [CrossRef]
- Altalhi, R.; Pechlivani, N.; Ajjan, R.A. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 3170. [Google Scholar] [CrossRef]
- Juhan-Vague, I.; Morange, P.E.; Alessi, M.-C. The Insulin Resistance Syndrome: Implications for Thrombosis and Cardiovascular Disease. Pathophysiol. Haemost. Thromb. 2002, 32, 269–273. [Google Scholar] [CrossRef]
- Gentry, P.; Burgess, H.; Wood, D. Hemostasis. In Clinical Biochemistry of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 2008; pp. 287–330. ISBN 9780123704917. [Google Scholar]
- Morange, P.E.; Aubert, J.; Peiretti, F.; Lijnen, H.R.; Vague, P.; Verdier, M.; Négrel, R.; Juhan-Vague, I.; Alessi, M.C. Glucocorticoids and Insulin Promote Plasminogen Activator Inhibitor 1 Production by Human Adipose Tissue. Diabetes 1999, 48, 890–895. [Google Scholar] [CrossRef]
- Yamamoto, K.; Takeshita, K.; Shimokawa, T.; Yi, H.; Isobe, K.; Loskutoff, D.J.; Saito, H. Plasminogen Activator Inhibitor-1 Is a Major Stress-Regulated Gene: Implications for Stress-Induced Thrombosis in Aged Individuals. Proc. Natl. Acad. Sci. USA 2002, 99, 890–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konkle, B.A.; Schuster, S.J.; Kelly, M.D.; Harjes, K.; Hassett, D.E.; Bohrer, M.; Tavassoli, M. Plasminogen Activator Inhibitor-1 Messenger RNA Expression Is Induced in Rat Hepatocytes in Vivo by Dexamethasone. Blood 1992, 79, 2636–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, P.; Moons, L.; Lijnen, R.; Janssens, S.; Lupu, F.; Collen, D.; Gerard, R.D. Inhibitory Role of Plasminogen Activator Inhibitor-1 in Arterial Wound Healing and Neointima Formation: A Gene Targeting and Gene Transfer Study in Mice. Circulation 1997, 96, 3180–3191. [Google Scholar] [CrossRef] [PubMed]
- Lyon, C.J.; Hsueh, W.A. Effect of Plasminogen Activator Inhibitor-1 in Diabetes Mellitus and Cardiovascular Disease. Am. J. Med. 2003, 115, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Juhan-Vague, I.; Alessi, M.C.; Vague, P. Increased Plasma Plasminogen Activator Inhibitor-1 Levels. A Possible Link between Insulin Resistance and Atherothrombosis. Diabetologia 1991, 34, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Juhan-Vague, I.; Alessi, M.C.; Morange, P.E. Hypofibrinolysis and Increased PAI-1 Are Linked to Atherothrombosis via Insulin Resistance and Obesity. Ann. Med. 2000, 32 (Suppl. 1), 78–84. [Google Scholar]
- Sobel, B.E.; Woodcock-Mitchell, J.; Schneider, D.J.; Holt, R.E.; Marutsuka, K.; Gold, H. Increased Plasminogen Activator Inhibitor Type 1 in Coronary Artery Atherectomy Specimens from Type 2 Diabetic Compared with Nondiabetic Patients: A Potential Factor Predisposing to Thrombosis and Its Persistence. Circulation 1998, 97, 2213–2221. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.J.; Sobel, B.E. PAI-1 and Diabetes: A Journey from the Bench to the Bedside. Diabetes Care 2012, 35, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Bastard, J.P.P.; Piéroni, L.; Hainque, B. Relationship between Plasma Plasminogen Activator Inhibitor 1 and Insulin Resistance. Diabetes. Metab. Res. Rev. 2000, 16, 192–201. [Google Scholar] [CrossRef]
- Morange, P.E.; Bastelica, D.; Bonzi, M.F.; Van Hoef, B.; Collen, D.; Juhan-Vague, I.; Lijnen, H.R. Influence of T-PA and u-PA on Adipose Tissue Development in a Murine Model of Diet-Induced Obesity. Thromb. Haemost. 2002, 87, 306–310. [Google Scholar] [CrossRef]
- Samad, F.; Loskutoff, D.J. Tissue Distribution and Insulin Regulation of Plasminogen Activator Inhibitor-1 in Obese Mice. Fibrinolysis 1996, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Sawdey, M.S.; Loskutoff, D.J. Regulation of Murine Type 1 Plasminogen Activator Inhibitor Gene Expression in Vivo. Tissue Specificity and Induction by Lipopolysaccharide, Tumor Necrosis Factor-α, and Transforming Growth Factor-β. J. Clin. Investig. 1991, 88, 1346–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessi, M.C.; Peiretti, F.; Morange, P.; Henry, M.; Nalbone, G.; Juhan-Vague, I. Production of Plasminogen Activator Inhibitor 1 by Human Adipose Tissue: Possible Link between Visceral Fat Accumulation and Vascular Disease. Diabetes 1997, 46, 860–867. [Google Scholar] [CrossRef] [PubMed]
- De Taeye, B.; Smith, L.H.; Vaughan, D.E. Plasminogen Activator Inhibitor-1: A Common Denominator in Obesity, Diabetes and Cardiovascular Disease. Curr. Opin. Pharmocology 2005, 5, 149–154. [Google Scholar] [CrossRef]
- Lijnen, H.R. Pleiotropic Functions of Plasminogen Activator Inhibitor-1. In J. Thromb. Haemost.; 2005; Volume 3, pp. 35–45. [Google Scholar] [CrossRef]
- Kruszynska, Y.T.; Yu, J.G.; Olefsky, J.M.; Sobel, B.E. Effects of Triglitazone on Blood Concentrations of Plasminogen Activator Inhibitor-1 in Patients with Type-2 Diabetes and in Lean and Obese Normal Subjects. Diabetes 2000, 49, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Crandall, D.L.; Quinet, E.M.; El Ayachi, S.; Hreha, A.L.; Leik, C.E.; Savio, D.A.; Juhan-Vague, I.; Alessi, M.C. Modulation of Adipose Tissue Development by Pharmacological Inhibition of PAI-1. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2209–2215. [Google Scholar] [CrossRef] [Green Version]
- Lijnen, H.R.; Alessi, M.C.; Van Hoef, B.; Collen, D.; Juhan-Vague, I. On the Role of Plasminogen Activator Inhibitor-1 in Adipose Tissue Development and Insulin Resistance in Mice. J. Thromb. Haemost. 2005, 3, 1174–1179. [Google Scholar] [CrossRef]
- Liang, X.; Kanjanabuch, T.; Mao, S.-L.; Hao, C.-M.; Tang, Y.-W.; Declerck, P.J.; Hasty, A.H.; Wasserman, D.H.; Fogo, A.B.; Ma, L.-J. Plasminogen Activator Inhibitor-1 Modulates Adipocyte Differentiation. Am. J. Physiol. Metab. 2006, 290, E103–E113. [Google Scholar] [CrossRef] [Green Version]
- Lijnen, H.R.; Maquoi, E.; Morange, P.; Voros, G.; Van Hoef, B.; Kopp, F.; Collen, D.; Juhan-Vague, I.; Alessi, M.C. Nutritionally Induced Obesity Is Attenuated in Transgenic Mice Overexpressing Plasminogen Activator Inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Morange, P.E.; Lijnen, H.R.; Alessi, M.C.; Kopp, F.; Collen, D.; Juhan-Vague, I. Influence of PAI-1 on Adipose Tissue Growth and Metabolic Parameters in a Murine Model of Diet-Induced Obesity. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1150–1154. [Google Scholar] [CrossRef] [Green Version]
- Balsara, R.D.; Castellino, F.J.; Ploplis, V.A. A Novel Function of Plasminogen Activator Inhibitor-1 in Modulation of the AKT Pathway in Wild-Type and Plasminogen Activator Inhibitor-1-Deficient Endothelial Cells. J. Biol. Chem. 2006, 281, 22527–22536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Alemany, R.; Redondo, J.M.; Nagamine, Y.; Muñoz-Cánoves, P. Plasminogen Activator Inhibitor Type-1 Inhibits Insulin Signaling by Competing with Avβ3 Integrin for Vitronectin Binding. Eur. J. Biochem. 2003, 270, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Eklund, K.K.; Niemi, K.; Kovanen, P.T. Immune Functions of Serum Amyloid A. Crit. Rev. Immunol. 2012, 32, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Malle, E.; De Beer, F. Human Serum Amyloid A (SAA) Protein: A Prominent Acute-Phase Reactant for Clinical Practice. Eur. J. Clin. Investig. 1996, 26, 427–435. [Google Scholar] [CrossRef]
- Markanday, A. Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infect. Dis. 2015, 2, ofv098. [Google Scholar] [CrossRef]
- Uhlar, C.M.; Whitehead, A.S. Serum Amyloid A, the Major Vertebrate Acute-Phase Reactant. Eur. J. Biochem. 1999, 265, 501–523. [Google Scholar] [CrossRef]
- Su, Q.; Weindl, G. Glucocorticoids and Toll-like Receptor 2 Cooperatively Induce Acute-Phase Serum Amyloid A. Pharmacol. Res. 2018, 128, 145–152. [Google Scholar] [CrossRef]
- Getz, G.S.; Krishack, P.A.; Reardon, C.A. Serum Amyloid A and Atherosclerosis. Curr. Opin. Lipidol. 2016, 27, 531–535. [Google Scholar] [CrossRef]
- Buck, M.; Gouwy, M.; Wang, J.; Snick, J.; Opdenakker, G.; Struyf, S.; Damme, J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and Their Concentration-Dependent Functions During Host Insults. Curr. Med. Chem. 2016, 23, 1725–1755. [Google Scholar] [CrossRef] [Green Version]
- Filippin-Monteiro, F.B.; De Oliveira, E.M.; Sandri, S.; Knebel, F.H.; Albuquerque, R.C.; Campa, A.; De Oliveira, E.M.; Sandri, S.; Knebel, F.H.; Albuquerque, R.C.; et al. Serum Amyloid A Is a Growth Factor for 3T3-L1 Adipocytes, Inhibits Differentiation and Promotes Insulin Resistance. Int. J. Obes. 2012, 36, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Kisilevsky, R.; Manley, P.N. Acute-Phase Serum Amyloid A: Perspectives on Its Physiological and Pathological Roles. Amyloid 2012, 19, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Song, C.; Geczy, C.L.; Freedman, S.B.; Witting, P.K. A Role for Acute-Phase Serum Amyloid A and High-Density Lipoprotein in Oxidative Stress, Endothelial Dysfunction and Atherosclerosis. Redox Rep. 2009, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Jijon, H.B.; Madsen, K.L.; Walker, J.W.; Allard, B.; Jobin, C. Serum Amyloid A Activates NF-ΚB and Proinflammatory Gene Expression in Human and Murine Intestinal Epithelial Cells. Eur. J. Immunol. 2005, 35, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Lee, M.; Hu, H.; Pollin, T.I.; Ryan, A.S.; Nicklas, B.J.; Snitker, S.; Horenstein, R.B.; Hull, K.; Goldberg, N.H.; et al. Acute-Phase Serum Amyloid A: An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications. PLoS Med. 2006, 3, e287. [Google Scholar] [CrossRef]
- Poitou, C.; Viguerie, N.; Cancello, R.; De Matteis, R.; Cinti, S.; Stich, V.; Coussieu, C.; Gauthier, E.; Courtine, M.; Zucker, J.D.; et al. Serum Amyloid A: Production by Human White Adipocyte and Regulation by Obesity and Nutrition. Diabetologia 2005, 48, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Sjöholm, K.; Lundgren, M.; Olsson, M.; Eriksson, J.W. Association of Serum Amyloid A Levels with Adipocyte Size and Serum Levels of Adipokines: Differences between Men and Women. Cytokine 2009, 48, 260–266. [Google Scholar] [CrossRef]
- Faty, A.; Ferre, P.; Commans, S. The Acute Phase Protein Serum Amyloid A Induces Lipolysis and Inflammation in Human Adipocytes through Distinct Pathways. PLoS ONE 2012, 7, e34031. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Ascar, T.P.; Silva, J.C.; Sandri, S.; Migliorini, S.; Fock, R.A.; Campa, A. Serum Amyloid A Links Endotoxaemia to Weight Gain and Insulin Resistance in Mice. Diabetologia 2016, 59, 1760–1768. [Google Scholar] [CrossRef] [Green Version]
- Scheja, L.; Heese, B.; Zitzer, H.; Michael, M.D.; Siesky, A.M.; Pospisil, H.; Beisiegel, U.; Seedorf, K. Acute-Phase Serum Amyloid A as a Marker of Insulin Resistance in Mice. Exp. Diabetes Res. 2008, 2008, 230837. [Google Scholar] [CrossRef] [Green Version]
- Kumon, Y.; Suehiro, T.; Itahara, T.; Ikeda, Y.; Hashimoto, K. Serum Amyloid A Protein in Patients with Non-Insulin-Dependent Diabetes Mellitus. Clin. Biochem. 1994, 27, 469–473. [Google Scholar] [CrossRef]
- Ebeling, P.; Teppo, A.M.; Koistinen, H.A.; Viikari, J.; Rönnemaa, T.; Nissén, M.; Bergkulla, S.; Salmela, P.; Saltevo, J.; Koivisto, V.A. Troglitazone Reduces Hyperglycaemia and Selectively Acute-Phase Serum Proteins in Patients with Type II Diabetes. Diabetologia 1999, 42, 1433–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinonen, E.; Hurt-Camejo, E.; Wiklund, O.; Hultén, L.M.; Hiukka, A.; Taskinen, M.R. Insulin Resistance and Adiposity Correlate with Acute-Phase Reaction and Soluble Cell Adhesion Molecules in Type 2 Diabetes. Atherosclerosis 2003, 166, 387–394. [Google Scholar] [CrossRef]
- Lin, Y.; Rajala, M.W.; Berger, J.P.; Moller, D.E.; Barzilai, N.; Scherer, P.E. Hyperglycemia-Induced Production of Acute Phase Reactants in Adipose Tissue. J. Biol. Chem. 2001, 276, 42077–42083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.Y.; Xue, Y.M.; Sha, J.P.; Li, C.Z.; Zhen, Z.J. Serum Amyloid A Attenuates Cellular Insulin Sensitivity by Increasing JNK Activity in 3T3-L1 Adipocytes. J. Endocrinol. Investig. 2009, 32, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Tillett, W.S.; Francis, T. Serological Reactions in Pneumonia with a Nonprotein Somatic Fraction of Pneumococcus. J. Exp. Med. 1930, 52, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Pepys, M.B.; Hirschfield, G.M. C-Reactive Protein: A Critical Update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Li, J.J.; Fang, C.H. C-Reactive Protein Is Not Only an Inflammatory Marker but Also a Direct Cause of Cardiovascular Diseases. Med. Hypotheses 2004, 62, 499–506. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Young, B.; Gleeson, M.; Cripps, A.W. C-Reactive Protein: A Critical Review. Pathology 1991, 23, 118–124. [Google Scholar] [CrossRef]
- Du Clos, T. Function of C-Reactive Protein. Ann. Med. 2000, 32, 274–278. [Google Scholar] [CrossRef]
- Kuller, L.H.; Tracy, R.P.; Shaten, J.; Meilahn, E.N. Relation of C-Reactive Protein and Coronary Heart Disease in the MRFIT Nested Case-Control Study. Am. J. Epidemiol. 1996, 144, 537–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendall, M.A.; Patel, P.; Ballam, L.; Strachan, D.; Northfield, T.C. C Reactive Protein and Its Relation to Cardiovascular Risk Factors: A Population Based Cross Sectional Study. Br. Med. J. 1996, 312, 1061–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. Obesity, Insulin Resistance, and Endothelial Dysfunction. Arteriosclerosis 1999, 19, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hak, A.E.; Stehouwer, C.D.A.; Bots, M.L.; Polderman, K.H.; Schalkwijk, C.G.; Westendorp, I.C.D.; Hofman, A.; Witteman, J.C.M. Associations of C-Reactive Protein With Measures of Obesity, Insulin Resistance, and Subclinical Atherosclerosis in Healthy, Middle-Aged Women. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1986–1991. [Google Scholar] [CrossRef] [Green Version]
- Ndumele, C.E.; Pradhan, A.D.; Ridker, P.M. Interrelationships between Inflammation, C-Reactive Protein, and Insulin Resistance. J. Cardiometab. Syndr. 2006, 1, 107–196. [Google Scholar] [CrossRef]
- Muhammad, I.F.; Borné, Y.; Hedblad, B.; Nilsson, P.M.; Persson, M.; Engström, G. Acute-Phase Proteins and Incidence of Diabetes: A Population-Based Cohort Study. Acta Diabetol. 2016, 53, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-Linked Insulin Resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef]
- Pickup, J.C. Inflammation and Activated Innate Immunity in the Pathogenesis of Type 2 Diabetes. Diabetes Care 2004, 27, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Vazquez, I.; Fernández-Veledo, S.; Krämer, D.K.; Vila-Bedmar, R.; Garcia-Guerra, L.; Lorenzo, M. Insulin Resistance Associated to Obesity: The Link TNF-Alpha. Arch. Physiol. Biochem. 2008, 114, 183–194. [Google Scholar] [CrossRef]
- Swaroop, J.J.; Rajarajeswari, D.; Naidu, J.N. Association of TNF-α with Insulin Resistance in Type 2 Diabetes Mellitus. Indian J. Med. Res. 2012, 135, 127–130. [Google Scholar] [CrossRef]
- Reynolds, R.M.; Walker, B.R. Human Insulin Resistance: The Role of Glucocorticoids. Diabetes Obes. Metab. 2003, 5, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Severino, C.; Brizzi, P.; Solinas, A.; Secchi, G.; Maioli, M.; Tonolo, G. Low-Dose Dexamethasone in the Rat: A Model to Study Insulin Resistance. Am. J. Physiol. Metab. 2002, 283, E367–E373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasieka, A.M.; Rafacho, A. Impact of Glucocorticoid Excess on Glucose Tolerance: Clinical and Preclinical Evidence. Metabolites 2016, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, H.A.; Kahn, C.R. New Mechanisms of Glucocorticoid-Induced Insulin Resistance: Make No Bones about It. J. Clin. Investig. 2012, 122, 3854–3857. [Google Scholar] [CrossRef]
- Qi, D.; Rodrigues, B. Glucocorticoids Produce Whole Body Insulin Resistance with Changes in Cardiac Metabolism. Am. J. Physiol. Metab. 2007, 292, E654–E667. [Google Scholar] [CrossRef] [Green Version]
- Schernthaner-Reiter, M.H.; Siess, C.; Gessl, A.; Scheuba, C.; Wolfsberger, S.; Riss, P.; Knosp, E.; Luger, A.; Vila, G. Factors Predicting Long-Term Comorbidities in Patients with Cushing’s Syndrome in Remission. Endocrine 2019, 64, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2019, 9, 1–58. [Google Scholar] [CrossRef]
- Seki, T.; Gelehrter, T.D. Interleukin-1 Induction of Type-1 Plasminogen Activator Inhibitor (PAI-1) Gene Expression in the Mouse Hepatocyte Line, AML 12. J. Cell. Physiol. 1996, 168, 648–656. [Google Scholar] [CrossRef]
- Healy, A.M.M.; Gelehrter, T.D.D. Induction of Plasminogen Activator Inhibitor-1 in HepG2 Human Hepatoma Cells by Mediators of the Acute Phase Response. J. Biol. Chem. 1994, 269, 19095–19100. [Google Scholar] [CrossRef]
- Swiatkowskia, M.; Szemraj, J.; Al-nedawi, K.; Pawlowska, Z. Reactive Oxygen Species Upregulate Expression of PAI-1 in Endothelial Cells. Cell. Mol. Biol. Lett. 2002, 7, 1065–1071. [Google Scholar]
- Mukai, Y.; Wang, C.; Rikitake, Y.; Liao, J. Phosphatidylinositol 3-Kinase/Protein Kinase Akt Negatively Regulates the Plasminogen Activitor Inhibitor Type-1 Expression in Vascular Endothelial Cells. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1937–H1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samad, F.; Yamamoto, K.; Loskutoff, D.J. Distribution and Regulation of Plasminogen Activator Inhibitor-1 in Murine Adipose Tissue in Vivo: Induction by Tumor Necrosis Factor-α and Lipopolysaccharide. J. Clin. Investig. 1996, 97, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Loskutoff, D.J.; Samad, F. Molecular Mechanisms of Tumor Necrosis Factor-α-Mediated Plasminogen Activator Inhibitor-1 Expression in Adipocytes. FASEB J. 2005, 19, 1317–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, T.; Woodcock-mitchell, J.; Marutsuka, K.; Mitchell, J.J.; Sobel, B.E.; Fujii, S. TNF-a and Insulin, Alone and Synergistically, Induce Plasminogen Activator Inhibitor-1 Expression in Adipocytes. Am. Physiol. Soc. 1999, 276, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.C.; Juhan-Vague, I.; Kooistra, T.; Declerck, P.J.; Collen, D. Insulin Stimulates the Synthesis of Plasminogen Activator Inhibitor-1 by the Human Hepatocellular Cell Line HepG2. Thromb. Haemost. 1988, 60, 491–494. [Google Scholar] [PubMed]
- Banfi, C.; Eriksson, P.; Giandomenico, G.; Mussoni, L.; Sironi, L.; Hamsten, A.; Tremoli, E. Transcriptional Regulation of Plasminogen Activator Inhibitor Type 1 Gene by Insulin. Diabetes 2001, 50, 1522–1530. [Google Scholar] [CrossRef]
- Ganapathi, M.K.; May, L.T.; Schultz, D.; Brabenec, A.; Weinstein, J.; Sehgal, P.B.; Kushner, I. Role of Interleukin-6 in Regulating Synthesis of C-Reactive Protein and Serum Amyloid A in Human Hepatoma Cell Lines. Biochem. Biophys. Res. Commun. 1988, 157, 271–277. [Google Scholar] [CrossRef]
- Kramer, F.; Torzewski, J.; Kamenz, J.; Veit, K.; Hombach, V.; Dedio, J.; Ivashchenko, Y. Interleukin-1β Stimulates Acute Phase Response and C-Reactive Protein Synthesis by Inducing an NFκB- and C/EBPβ-Dependent Autocrine Interleukin-6 Loop. Mol. Immunol. 2008, 45, 2678–2689. [Google Scholar] [CrossRef]
- Raynes, J.G.; Eagling, S.; McAdam, K.P. Acute-Phase Protein Synthesis in Human Hepatoma Cells: Differential Regulation of Serum Amyloid A (SAA) and Haptoglobin by Interleukin-1 and Interleukin-6. Clin. Exp. Immunol. 1991, 83, 448–491. [Google Scholar] [CrossRef]
- Steel, D.M.; Whitehead, A.S. Heterogeneous Modulation of Acute-Phase-Reactant MRNA Levels by Interleukin-Lβ and Interleukin-6 in the Human Hepatoma Cell Line PLC/PRF/5. Biochem. J. 1991, 277, 477–482. [Google Scholar] [CrossRef]
- Uhlar, C.M.; Grehan, S.; Steel, D.M.; Steinkasserer, A.; Whitehead, A.S. Use of the Acute Phase Serum Amyloid A2 (SAA2) Gene Promoter in the Analysis of pro- and Anti-Inflammatory Mediators: Differential Kinetics of SAA2 Promoter Induction by IL-1β and TNF-α Compared to IL-6. J. Immunol. Methods 1997, 203, 123–130. [Google Scholar] [CrossRef]
- Calabro, P.; Chang, D.W.; Willerson, J.T.; Yeh, E.T.H. Release of C-Reactive Protein in Response to Inflammatory Cytokines by Human Adipocytes: Linking Obesity to Vascular Inflammation. J. Am. Coll. Cardiol. 2005, 46, 1112–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frasshauer, M.; Klein, J.; Kralisch, S.; Klier, M.; Lossner, U.; Bluher, M.; Paschke, R. Serum Amyloid A3 Expression Is Stimulated by Dexamethasone and Interleukin-6 in 3T3-L1 Adipocytes. J. Endocrinol. 2004, 183, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Giraud, J.; Davis, R.J.; White, M.F. C-Jun N-Terminal Kinase (JNK) Mediates Feedback Inhibition of the Insulin Signaling Cascade. J. Biol. Chem. 2003, 278, 2896–2902. [Google Scholar] [CrossRef] [Green Version]
- Zick, Y. Role of Ser/Thr Kinases in the Uncoupling of Insulin Signaling. Int. J. Obes. 2003, 27, S56–S60. [Google Scholar] [CrossRef] [Green Version]
- Lucore, C.L.; Fujii, S.; Wun, T.C.; Sobel, B.E.; Billadello, J.J. Regulation of the Expression of Type 1 Plasminogen Activator Inhibitor in Hep G2 Cells by Epidermal Growth Factor. J. Biol. Chem. 1988, 263, 15845–15848. [Google Scholar] [CrossRef]
- Halleux, C.M.; Declerck, P.J.; Tran, S.L.; Detry, R.; Brichard, S.M. Hormonal Control of Plasminogen Activator Inhibitor-1 Gene Expression and Production in Human Adipose Tissue: Stimulation by Glucocorticoids and Inhibition by Catecholamines. J. Clin. Endocrinol. Metab. 1999, 84, 4097–4105. [Google Scholar] [CrossRef]
- Wickert, L.; Chatain, N.; Kruschinsky, K.; Gressner, A.M. Glucocorticoids Activate TGF-β Induced PAI-1 and CTGF Expression in Rat Hepatocytes. Comp. Hepatol. 2007, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hozumi, A.; Osaki, M.; Sakamoto, K.; Goto, H.; Fukushima, T.; Baba, H.; Shindo, H. Dexamethasone-Induced Plasminogen Activator Inhibitor-1 Expression in Human Primary Bone Marrow Adipocytes. Biomed. Res. 2010, 31, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Visser, K.; Smith, C.; Louw, A. Interplay of the Inflammatory and Stress Systems in a Hepatic Cell Line: Interactions between Glucocorticoid Receptor Agonists and Interleukin-6. Endocrinology 2010, 151, 5279–5293. [Google Scholar] [CrossRef] [Green Version]
- Meek, R.L.; Urieli-Shoval, S.; Benditt, E.P. Expression of Apolipoprotein Serum Amyloid A MRNA in Human Atherosclerotic Lesions and Cultured Vascular Cells: Implications for Serum Amyloid A Function. Proc. Natl. Acad. Sci. USA 1994, 91, 3186–3190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Takii, T.; Matsumura, T.; Onozaki, K. Augmentation of Type I IL-1 Receptor Expression and IL-1 Signaling by IL-6 and Glucocorticoid in Murine Hepatocytes. J. Immunol. 1999, 162, 4260–4265. [Google Scholar] [PubMed]
- Barnes, P.J. Anti-Inflammatory Actions of Glucocorticoids: Molecular Mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, L.I.; Cidlowski, J.A. Cross-Talk between Nuclear Factor-Kappa B and the Steroid Hormone Receptors: Mechanisms of Mutual Antagonism. Mol. Endocrinol. 1998, 12, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, R. Molecular Mechanisms of Glucocorticoid Action: What Is Important? Thorax 2002, 83, 1103–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamar, P. A New Role of Acute Phase Proteins: Local Production Is an Ancient, General Stress-Response System of Mammalian Cells. Int. J. Mol. Sci. 2022, 23, 2972. [Google Scholar] [CrossRef] [PubMed]
- Oguntibeju, O.O. Type 2 Diabetes Mellitus, Oxidative Stress and Inflammation: Examining the Links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45. [Google Scholar]
- Ji, A.; Trumbauer, A.C.; Noffsinger, V.P.; Jeon, H.; Patrick, A.C.; De Beer, F.C.; Webb, N.R.; Tannock, L.R.; Shridas, P. Serum Amyloid A Is Not Obligatory for High-Fat, High-Sucrose, Cholesterol-Fed Diet-Induced Obesity and Its Metabolic and Inflammatory Complications. PLoS ONE 2022, 17, e0266688. [Google Scholar] [CrossRef]
- Ahlin, S.; Olsson, M.; Olsson, B.; Svensson, P.A.; Sjöholm, K. No Evidence for a Role of Adipose Tissue-Derived Serum Amyloid A in the Development of Insulin Resistance or Obesity-Related Inflammation in HSAA1+/− Transgenic Mice. PLoS ONE 2013, 8, e72204. [Google Scholar] [CrossRef] [Green Version]
Disease State | Model System | Supporting Data | Reference |
---|---|---|---|
Obesity | In vivo Primary cultured adipocytes from PAI-1-deficient (PAI−/−) mice and overexpressed (PAI+/+) mice | PAI-1 deficiency:
| Liang et al., 2006 [132] |
In vivo High-fat diet-induced obesity in PAI-1 knockout mice | PAI-1 deficiency:
| Ma et al., 2004 [46] | |
In vivo Diet-induced obesity in mice, administered the PAI-1 inhibitor, PAI-039 In vitro Human pre-adipocytes treated with the PAI-1 inhibitor, PAI-039 | PAI-1 inhibition:
| Crandall et al., 2006 [130] | |
In vivo Genetic model of obesity and diabetic mice lacking the PAI-1 gene | PAI-1 deficiency: Murine adiposity reduced | Schäfer et al., 2001 [45] | |
In vivo Diet-induced obesity in PAI-1 deficient mice | PAI-1 deficiency:
| Morange et al., 2000 [134] | |
In vivo Transgenic mice with overexpression of PAI-1 in adipose tissue, administered the PAI-1 inhibitor, PAI-039 | PAI-1 overexpression:
| Lijnen et al., 2005 [131] | |
Insulin Resistance | In vivo PAI-1 knockout mice fed a high-fat diet | PAI-1 deficiency:
| Tamura et al., 2014 [47] |
In vitro HepG2 cells were treated with 20 nM PAI-1 for 24 h | PAI-1 treatment:
| Tamura et al., 2015 [48] | |
In vitro PAI-1 knockout endothelial cells treated with 10 ng/mL PAI-1 for 24 h | PAI-1 deficiency:
| Balsara et al., 2006 [135] | |
In vivo High-fat diet-induced obesity in PAI-1 knockout mice | PAI-1 deficiency:
| Ma et al., 2004 [46] | |
In vivo Genetic model of obesity and diabetic mice lacking the PAI-1 gene | PAI-1 deficiency:
| Schafer et al., 2001 [45] | |
In vitro 3T3 adipocytes treated with 100nM PAI-1 in the presence of insulin and vitronectin | PAI-1 treatment:
| López-Alemany et al., 2003 [136] | |
T2D | Epidemiological study The IRAS—measured PAI-1 levels in non-diabetic patients in relation to incident diabetes within 5 years | Elevated levels of PAI-1 (±24 ng/mL) were associated with incident T2D. | Festa et al., 2002 [39] |
Epidemiological study Follow up study to Festa et al. 2002. | Progression of PAI-1 levels over time, in addition to high baseline levels (23.7 ng/mL), was associated with the onset of T2D | Festa et al., 2006 [40] |
Disease State | Model System | Supporting Data | Reference |
---|---|---|---|
Obesity | In vitro 3T3-L1 adipocytes | SAA treatment:
| Filipin-Monteiro et al., 2012 [144] |
In vivo SAA mRNA inhibition in mice fed a high-fat diet | SAA inhibition:
| De Oliveira et al., 2016 [152] | |
In vivo Serum SAA levels in obese individuals In vitro Human adipocytes treated with SAA (2.34 µg/mL) for 24 h | SAA levels increased in obese individuals. SAA levels decreased after weight loss. SAA treatment:
| Yang et al., 2006 [148] | |
In vitro Human adipocytes treated with SAA for 24 h | SAA treatment: Increased lipolysis
| Faty et al., 2012 [151] | |
In vivo Gene expression in obese individuals | Increased expression of SAA1 and SAA2 mRNA and protein expression in obese individuals. | Poitou et al., 2005 [149] | |
Insulin resistance | In vitro 3T3-L1 adipocytes | SAA treatment:
| Filipin-Monteiro et al., 2012 [144] |
In vitro 3T3-L1 adipocytes | SAA treatment:
| Scheja et al., 2008 [153] | |
In vitro 3T3-L1 adipocytes | SAA treatment:
| Ye et al. 2009 [158] | |
In vivo SAA mRNA inhibition in mice fed a high-fat diet | SAA inhibition:
| De Oliveira et al., 2016 [152] | |
T2D | In vivo Diabetic (ob/ob) mice. Measured SAA3 mRNA in adipose tissue | Isolated adipose tissue of T2D mice showed drastically increased SAA3 mRNA levels. | Lin et al., 2001 [157] |
Epidemiological study Patients with T2D who received daily treatment with troglitazone (anti-diabetic drug) | SAA levels were above the range for healthy subjects (approx. 6.2 µg/mL). Troglitazone reduced SAA levels (by 25% down to 4.0 µg/mL). | Ebeling et al., 1999 [155] | |
Epidemiological study Measured SAA levels in patients with individuals with impaired glucose tolerance in comparison with individuals with and without T2D | Plasma levels of SAA were significantly higher in patients with T2D and impaired glucose tolerance (approx. 6 µg/mL). | Müller et al., 2002 [43] | |
Epidemiological study Measured SAA levels in non-diabetic individuals who participated in a 7-year follow-up | SAA levels were significantly associated with the onset of T2D (approx. 4.0 µg/mL). | Marzi et al., 2013 [44] | |
Epidemiological study Measured SAA levels in T2D patients | Insulin resistance and T2D was significantly correlated with SAA levels (approx. 24 µg/mL). | Leinonen et al., 2003 [156] |
Disease State | Model System | Supporting Data | Reference |
---|---|---|---|
Insulin resistance | In vitro Rat skeletal muscle (L6) cells treated with 10 mg/l CRP | CRP treatment induced insulin resistance in skeletal muscle cells by:
| Alessandris et al., 2007 [50] |
In vitro Mouse endothelial cells treated with recombinant CRP at various doses and times | Overall CRP impaired insulin signaling in endothelial cells by:
| Xu et al., 2007 [49] | |
In vitro Primary cultured rat hepatocytes treated with 30 mg/L CRP In vivo Rats treated with CRP | CRP induced hepatic insulin resistance both in vivo and in vitro by:
| Xi et al., 2011 [51] | |
Type-II diabetes | Epidemiological study The IRAS study—measured CRP levels in non-diabetic patients in relation to incident diabetes within 5 years | Elevated CRP levels (>2.4 mg/L) was associated with incident T2D. | Festa et al., 2002 [39] |
Epidemiological study Measured insulin sensitivity and CRP levels in the non-diabetic population of the IRAS study | Elevated CRP levels (>3.53 mg/L) was strongly associated with components of insulin resistance and T2D. | Festa et al., 2000 [38] | |
Epidemiological study Women’s Health Study | High CRP levels were associated with increased risk for development of T2D. | Pradhan et al., 2001 [42] | |
Epidemiological study Cardiovascular Health Study | High baseline levels (2.8 mg/L) of CRP predicted T2D. | Barzilay et al., 2001 [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speelman, T.; Dale, L.; Louw, A.; Verhoog, N.J.D. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells 2022, 11, 2163. https://doi.org/10.3390/cells11142163
Speelman T, Dale L, Louw A, Verhoog NJD. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells. 2022; 11(14):2163. https://doi.org/10.3390/cells11142163
Chicago/Turabian StyleSpeelman, Tammy, Lieke Dale, Ann Louw, and Nicolette J. D. Verhoog. 2022. "The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D" Cells 11, no. 14: 2163. https://doi.org/10.3390/cells11142163
APA StyleSpeelman, T., Dale, L., Louw, A., & Verhoog, N. J. D. (2022). The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells, 11(14), 2163. https://doi.org/10.3390/cells11142163