Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow
Abstract
:1. Introduction
2. The Female Advantage in Myocardial Infarction
3. Stem Cell Crosstalk between Organs
4. Utero-Cardiac Axis Involves a 3-Way Relationship between Heart, Uterus and Bone Marrow
4.1. Uterine Cells Traffic to the Injured Heart to Promote Healing: The Utero-Cardiac Axis
4.2. The BM-Cardiac Axis
4.3. Utero-BM Axis
5. The Implications of the Utero-Cardiac Axis with Respect to Preventive Hysterectomy
6. The Effects of the Utero-Cardiac Axis for Developing Uterine Cell Therapies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shlipak, M.G.; Simon, J.A.; Vittinghoff, E.; Lin, F.; Barrett-Connor, E.; Knopp, R.H.; Levy, R.I.; Hulley, S.B. Estrogen and progestin, lipoprotein(a), and the risk of recurrent coronary heart disease events after menopause. JAMA 2000, 283, 1845–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honigberg, M.C.; Zekavat, S.M.; Aragam, K.; Finneran, P.; Klarin, D.; Bhatt, D.L.; Januzzi, J.L., Jr.; Scott, N.S.; Natarajan, P. Association of Premature Natural and Surgical Menopause with Incident Cardiovascular Disease. JAMA 2019, 322, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, J.E.; Hsia, J.; Johnson, K.C.; Rossouw, J.E.; Assaf, A.R.; Lasser, N.L.; Trevisan, M.; Black, H.R.; Heckbert, S.R.; Detrano, R.; et al. Estrogen plus progestin and the risk of coronary heart disease. N. Engl. J. Med. 2003, 349, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.L.; Limacher, M.; Assaf, A.R.; Bassford, T.; Beresford, S.A.; Black, H.; Bonds, D.; Brunner, R.; Brzyski, R.; Caan, B.; et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA 2004, 291, 1701–1712. [Google Scholar] [CrossRef]
- Xaymardan, M.; Sun, Z.; Hatta, K.; Tsukashita, M.; Konecny, F.; Weisel, R.D.; Li, R.K. Uterine cells are recruited to the infarcted heart and improve cardiac outcomes in female rats. J. Mol. Cell Cardiol. 2012, 52, 1265–1273. [Google Scholar] [CrossRef]
- Prianishnikov, V.A. A functional model of the structure of the epithelium of normal, hyperplastic and malignant human endometrium: A review. Gynecol. Oncol. 1978, 6, 420–428. [Google Scholar] [CrossRef]
- De Miguel-Gomez, L.; Lopez-Martinez, S.; Frances-Herrero, E.; Rodriguez-Eguren, A.; Pellicer, A.; Cervello, I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021, 10, 595. [Google Scholar] [CrossRef]
- Padykula, H.A. Regeneration in the primate uterus: The role of stem cells. Ann. N. Y. Acad. Sci. 1991, 622, 47–56. [Google Scholar] [CrossRef]
- Santamaria, X.; Mas, A.; Cervello, I.; Taylor, H.; Simon, C. Uterine stem cells: From basic research to advanced cell therapies. Hum. Reprod. Update 2018, 24, 673–693. [Google Scholar] [CrossRef]
- Cervello, I.; Martinez-Conejero, J.A.; Horcajadas, J.A.; Pellicer, A.; Simon, C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum. Reprod. 2007, 22, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, R.W.; Gargett, C.E. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006, 24, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Chan, R.W.; Yeung, W.S. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev. 2015, 24, 768–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, R.W.; Kaitu’u-Lino, T.; Gargett, C.E. Role of label-retaining cells in estrogen-induced endometrial regeneration. Reprod. Sci. 2012, 19, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Kaitu’u-Lino, T.J.; Ye, L.; Salamonsen, L.A.; Girling, J.E.; Gargett, C.E. Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. Biol. Reprod. 2012, 86, 184. [Google Scholar] [CrossRef] [Green Version]
- Deane, J.A.; Ong, Y.R.; Cain, J.E.; Jayasekara, W.S.; Tiwari, A.; Carlone, D.L.; Watkins, D.N.; Breault, D.T.; Gargett, C.E. The mouse endometrium contains epithelial, endothelial and leucocyte populations expressing the stem cell marker telomerase reverse transcriptase. Mol. Hum. Reprod. 2016, 22, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sacchetti, A.; van Dijk, M.R.; van der Zee, M.; van der Horst, P.H.; Joosten, R.; Burger, C.W.; Grootegoed, J.A.; Blok, L.J.; Fodde, R. Identification of quiescent, stem-like cells in the distal female reproductive tract. PLoS ONE 2012, 7, e40691. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L.; Pru, J.K. Long-term label retaining cells localize to distinct regions within the female reproductive epithelium. Cell Cycle 2013, 12, 2888–2898. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Orvis, G.D.; Wang, Y.; Behringer, R.R. Stromal-to-epithelial transition during postpartum endometrial regeneration. PLoS ONE 2012, 7, e44285. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.F.; Jing, X.; Cui, Y.G.; Qian, X.Q.; Mao, Y.D.; Liao, L.M.; Liu, J.Y. Isolation and characterization of side population cells in the postpartum murine endometrium. Reprod. Sci. 2010, 17, 629–642. [Google Scholar] [CrossRef]
- Chan, R.W.; Schwab, K.E.; Gargett, C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004, 70, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.W.; Corselli, M.; Park, T.S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3, 301–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Betsholtz, C.; Lindblom, P.; Gerhardt, H. Role of pericytes in vascular morphogenesis. In EXS; Springer: Berlin/Heidelberg, Germany, 2005; pp. 115–125. [Google Scholar] [CrossRef]
- Spitzer, T.L.; Rojas, A.; Zelenko, Z.; Aghajanova, L.; Erikson, D.W.; Barragan, F.; Meyer, M.; Tamaresis, J.S.; Hamilton, A.E.; Irwin, J.C.; et al. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol. Reprod. 2012, 86, 58. [Google Scholar] [CrossRef]
- Li, S.; Ding, L. Endometrial Perivascular Progenitor Cells and Uterus Regeneration. J. Pers. Med. 2021, 11, 477. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, F.; Yan, G.; Hu, Y.; Sun, H.; Ding, L. Human endometrial perivascular stem cells exhibit a limited potential to regenerate endometrium after xenotransplantation. Hum. Reprod. 2021, 36, 145–159. [Google Scholar] [CrossRef]
- Masuda, H.; Anwar, S.S.; Buhring, H.J.; Rao, J.R.; Gargett, C.E. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012, 21, 2201–2214. [Google Scholar] [CrossRef]
- Cervello, I.; Gil-Sanchis, C.; Mas, A.; Delgado-Rosas, F.; Martinez-Conejero, J.A.; Galan, A.; Martinez-Romero, A.; Martinez, S.; Navarro, I.; Ferro, J.; et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS ONE 2010, 5, e10964. [Google Scholar] [CrossRef] [Green Version]
- Cervello, I.; Mas, A.; Gil-Sanchis, C.; Peris, L.; Faus, A.; Saunders, P.T.; Critchley, H.O.; Simon, C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS ONE 2011, 6, e21221. [Google Scholar] [CrossRef]
- Valentijn, A.J.; Palial, K.; Al-Lamee, H.; Tempest, N.; Drury, J.; Von Zglinicki, T.; Saretzki, G.; Murray, P.; Gargett, C.E.; Hapangama, D.K. SSEA-1 isolates human endometrial basal glandular epithelial cells: Phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum. Reprod. 2013, 28, 2695–2708. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.P.T.; Xiao, L.; Deane, J.A.; Tan, K.S.; Cousins, F.L.; Masuda, H.; Sprung, C.N.; Rosamilia, A.; Gargett, C.E. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum. Reprod. 2017, 32, 2254–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempest, N.; Jansen, M.; Baker, A.M.; Hill, C.J.; Hale, M.; Magee, D.; Treanor, D.; Wright, N.A.; Hapangama, D.K. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. J. Pathol. 2020, 251, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.M.; Kumar, M.; Ghosh, A.; Tomasetig, F.; Ali, A.; Whan, R.M.; Alterman, D.; Tanwar, P.S. Endometrial Axin2(+) Cells Drive Epithelial Homeostasis, Regeneration, and Cancer following Oncogenic Transformation. Cell Stem Cell 2020, 26, 64–80.e13. [Google Scholar] [CrossRef] [PubMed]
- Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
- Kong, Y.; Shao, Y.; Ren, C.; Yang, G. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res. Ther. 2021, 12, 474. [Google Scholar] [CrossRef]
- Masuda, H.; Matsuzaki, Y.; Hiratsu, E.; Ono, M.; Nagashima, T.; Kajitani, T.; Arase, T.; Oda, H.; Uchida, H.; Asada, H.; et al. Stem cell-like properties of the endometrial side population: Implication in endometrial regeneration. PLoS ONE 2010, 5, e10387. [Google Scholar] [CrossRef]
- Tsuji, S.; Yoshimoto, M.; Takahashi, K.; Noda, Y.; Nakahata, T.; Heike, T. Side population cells contribute to the genesis of human endometrium. Fertil. Steril. 2008, 90, 1528–1537. [Google Scholar] [CrossRef]
- Miyazaki, K.; Maruyama, T.; Masuda, H.; Yamasaki, A.; Uchida, S.; Oda, H.; Uchida, H.; Yoshimura, Y. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PLoS ONE 2012, 7, e50749. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Perez, N.; Gil-Sanchis, C.; Ferrero, H.; Faus, A.; Diaz, A.; Pellicer, A.; Cervello, I.; Simon, C. Human Endometrial Reconstitution from Somatic Stem Cells: The Importance of Niche-Like Cells. Reprod. Sci. 2019, 26, 77–87. [Google Scholar] [CrossRef]
- Taylor, H.S. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004, 292, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Cervello, I.; Gil-Sanchis, C.; Mas, A.; Faus, A.; Sanz, J.; Moscardo, F.; Higueras, G.; Sanz, M.A.; Pellicer, A.; Simon, C. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS ONE 2012, 7, e30260. [Google Scholar] [CrossRef] [PubMed]
- Tal, R.; Shaikh, S.; Pallavi, P.; Tal, A.; Lopez-Giraldez, F.; Lyu, F.; Fang, Y.Y.; Chinchanikar, S.; Liu, Y.; Kliman, H.J.; et al. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol. 2019, 17, e3000421. [Google Scholar] [CrossRef]
- Ong, Y.R.; Cousins, F.L.; Yang, X.; Mushafi, A.; Breault, D.T.; Gargett, C.E.; Deane, J.A. Bone Marrow Stem Cells Do Not Contribute to Endometrial Cell Lineages in Chimeric Mouse Models. Stem Cells 2018, 36, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Kannel, W.B.; Hjortland, M.C.; McNamara, P.M. Menopause and coronary heart disease. The Framingham Study. Ann. Intern. Med. 1978, 89, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Kalin, M.F.; Zumoff, B. Sex hormones and coronary disease: A review of the clinical studies. Steroids 1990, 55, 330–352. [Google Scholar] [CrossRef]
- Kannel, W.B.; Hjortland, M.C.; McNamara, P.M.; Gordon, T. Menopause and risk of cardiovascular disease: The Framingham study. Ann. Intern. Med. 1976, 85, 447–452. [Google Scholar] [CrossRef]
- Palmer, J.R.; Rosenberg, L.; Shapiro, S. Reproductive factors and risk of myocardial infarction. Am. J. Epidemiol. 1992, 136, 408–416. [Google Scholar] [CrossRef]
- Katz, L.N.; Pick, R.; Stamler, J. Experiences in assessing estrogen anti-atherogenesis in the chick, the rabbit, and man. Ann. N. Y. Acad. Sci. 1956, 64, 596–619. [Google Scholar]
- Stamler, J.; Pick, R.; Katz, L.N.; Pick, A.; Kaplan, B.M.; Berkson, D.M.; Century, D. Effectiveness of estrogens for therapy of myocardial infarction in middle-age men. JAMA 1963, 183, 632–638. [Google Scholar] [CrossRef]
- The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. The coronary Drug Project Research Group. JAMA 1973, 226, 652–657. [Google Scholar] [CrossRef]
- Meriggiola, M.C.; Berra, M. Long-term cross-sex hormone treatment is safe in transsexual subjects. Asian J. Androl. 2012, 14, 813–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, T.L.; Barrett-Connor, E.; Cowan, L.D.; Criqui, M.H.; Wallace, R.B.; Suchindran, C.M.; Tyroler, H.A.; Rifkind, B.M. Cardiovascular mortality and noncontraceptive use of estrogen in women: Results from the Lipid Research Clinics Program Follow-up Study. Circulation 1987, 75, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Colditz, G.A.; Willett, W.C.; Stampfer, M.J.; Rosner, B.; Speizer, F.E.; Hennekens, C.H. Menopause and the risk of coronary heart disease in women. N. Engl. J. Med. 1987, 316, 1105–1110. [Google Scholar] [CrossRef]
- Falkeborn, M.; Persson, I.; Adami, H.O.; Bergstrom, R.; Eaker, E.; Lithell, H.; Mohsen, R.; Naessen, T. The risk of acute myocardial infarction after oestrogen and oestrogen-progestogen replacement. Br. J. Obstet. Gynaecol. 1992, 99, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, E.; Lip, G.Y. Cardiovascular risk in women: The cardiologist’s perspective. QJM 2000, 93, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.; Garrison, R.J.; Castelli, W.P. Postmenopausal estrogen use, cigarette smoking, and cardiovascular morbidity in women over 50. The Framingham Study. N. Engl. J. Med. 1985, 313, 1038–1043. [Google Scholar] [CrossRef]
- Siddle, N.; Sarrel, P.; Whitehead, M. The effect of hysterectomy on the age at ovarian failure: Identification of a subgroup of women with premature loss of ovarian function and literature review. Fertil. Steril. 1987, 47, 94–100. [Google Scholar] [CrossRef]
- Khalil, R.A. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease. Biochem. Pharmacol. 2013, 86, 1627–1642. [Google Scholar] [CrossRef] [Green Version]
- Centerwall, B.S. Premenopausal hysterectomy and cardiovascular disease. Am. J. Obstet. Gynecol. 1981, 139, 58–61. [Google Scholar] [CrossRef]
- Falkeborn, M.; Schairer, C.; Naessen, T.; Persson, I. Risk of myocardial infarction after oophorectomy and hysterectomy. J. Clin. Epidemiol. 2000, 53, 832–837. [Google Scholar] [CrossRef]
- Yi, C.X.; Tschop, M.H. Brain-gut-adipose-tissue communication pathways at a glance. Dis. Model. Mech. 2012, 5, 583–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, S.J. Mechanisms of soluble cytokine receptor generation. J. Immunol. 2004, 173, 5343–5348. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, J.; Miekus, K.; Kucia, M.; Zhang, J.; Reca, R.; Dvorak, P.; Ratajczak, M.Z. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006, 20, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, M.Z. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 2015, 29, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Prianishnikov, V.A. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 1978, 18, 213–223. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Brunt, K.R.; Wu, J.; Li, S.H.; Fazel, S.; Weisel, R.D.; Keating, A.; Li, R.K. An adult uterine hemangioblast: Evidence for extramedullary self-renewal and clonal bilineage potential. Blood 2010, 116, 2932–2941. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wu, J.; Li, S.H.; Zhang, Y.; Xaymardan, M.; Wen, X.Y.; Weisel, R.D.; Keating, A.; Li, R.K. Uterine-derived stem cells reconstitute the bone marrow of irradiated mice. Stem Cells Dev. 2015, 24, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Fazel, S.; Cimini, M.; Chen, L.; Li, S.; Angoulvant, D.; Fedak, P.; Verma, S.; Weisel, R.D.; Keating, A.; Li, R.K. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Investig. 2006, 116, 1865–1877. [Google Scholar] [CrossRef]
- Cimini, M.; Fazel, S.; Zhuo, S.; Xaymardan, M.; Fujii, H.; Weisel, R.D.; Li, R.K. c-kit dysfunction impairs myocardial healing after infarction. Circulation 2007, 116, I-77–I-82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.H.; Sun, Z.; Brunt, K.R.; Shi, X.; Chen, M.S.; Weisel, R.D.; Li, R.K. Reconstitution of aged bone marrow with young cells repopulates cardiac-resident bone marrow-derived progenitor cells and prevents cardiac dysfunction after a myocardial infarction. Eur. Heart J. 2013, 34, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Li, S.H.; Sun, L.; Yang, L.; Li, J.; Shao, Z.; Du, G.Q.; Wu, J.; Weisel, R.D.; Li, R.K. Young Bone-Marrow Sca-1(+) Stem Cells Rejuvenate the Aged Heart and Improve Function after Injury through PDGFRbeta-Akt pathway. Sci. Rep. 2017, 7, 41756. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S.H.; Dong, J.; Alibhai, F.J.; Zhang, C.; Shao, Z.B.; Song, H.F.; He, S.; Yin, W.J.; Wu, J.; et al. Long-term repopulation of aged bone marrow stem cells using young Sca-1 cells promotes aged heart rejuvenation. Aging Cell 2019, 18, e13026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Taylor, H.S. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 2007, 25, 2082–2086. [Google Scholar] [CrossRef]
- Ayach, B.B.; Yoshimitsu, M.; Dawood, F.; Sun, M.; Arab, S.; Chen, M.; Higuchi, K.; Siatskas, C.; Lee, P.; Lim, H.; et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc. Natl. Acad. Sci. USA 2006, 103, 2304–2309. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wei, L.; Taylor, T.M.; Wei, J.; Zhou, X.; Wang, J.A.; Yu, S.P. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am. J. Physiol. Cell Physiol. 2011, 301, C362–C372. [Google Scholar] [CrossRef]
- Simoes, F.C.; Riley, P.R. Immune cells in cardiac repair and regeneration. Development 2022, 149. [Google Scholar] [CrossRef]
- Cheng, M.; Huang, K.; Zhou, J.; Yan, D.; Tang, Y.L.; Zhao, T.C.; Miller, R.J.; Kishore, R.; Losordo, D.W.; Qin, G. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. J. Mol. Cell Cardiol. 2015, 81, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Finan, A.; Sopko, N.; Dong, F.; Turturice, B.; Kiedrowski, M.; Penn, M.S. Bone marrow SSEA1+ cells support the myocardium in cardiac pressure overload. PLoS ONE 2013, 8, e68528. [Google Scholar] [CrossRef]
- Ludke, A.; Wu, J.; Nazari, M.; Hatta, K.; Shao, Z.; Li, S.H.; Song, H.; Ni, N.C.; Weisel, R.D.; Li, R.K. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy. J. Mol. Cell Cardiol. 2015, 84, 116–128. [Google Scholar] [CrossRef]
- Hatta, K.; Zhang, Y.; Wu, J.; Sun, Z.; Weisel, R.D.; Li, R.K. Uterine-Derived CD11b Cells Significantly Increase Vasculogenesis and Promote Myocardial Healing in Ischemic Cardiomyopathy. Cell Transplant. 2016, 25, 1665–1674. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; He, S.; Song, H.; Yin, W.; Zhang, J.; Peng, Z.; Yang, K.; Zhai, X.; Zhao, L.; Gong, H.; et al. Human endometrium-derived stem cell improves cardiac function after myocardial ischemic injury by enhancing angiogenesis and myocardial metabolism. Stem. Cell Res. Ther. 2021, 12, 344. [Google Scholar] [CrossRef]
- Meng, X.; Ichim, T.E.; Zhong, J.; Rogers, A.; Yin, Z.; Jackson, J.; Wang, H.; Ge, W.; Bogin, V.; Chan, K.W.; et al. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med. 2007, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Niu, R.; Li, W.; Lin, J.; Stamm, C.; Steinhoff, G.; Ma, N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol. Life Sci. 2019, 76, 1681–1695. [Google Scholar] [CrossRef]
- Huang, M.L.; Tian, H.; Wu, J.; Matsubayashi, K.; Weisel, R.D.; Li, R.K. Myometrial cells induce angiogenesis and salvage damaged myocardium. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2057–H2066. [Google Scholar] [CrossRef] [Green Version]
- Bockeria, L.; Bogin, V.; Bockeria, O.; Le, T.; Alekyan, B.; Woods, E.J.; Brown, A.A.; Ichim, T.E.; Patel, A.N. Endometrial regenerative cells for treatment of heart failure: A new stem cell enters the clinic. J. Transl. Med. 2013, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, J.A.; Xu, Y.; Jiang, Z.; Wu, R.; Wang, L.; Chen, P.; Hu, X.; Yu, H. Menstrual blood derived mesenchymal cells ameliorate cardiac fibrosis via inhibition of endothelial to mesenchymal transition in myocardial infarction. Int. J. Cardiol. 2013, 168, 1711–1714. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, Z.; Webster, K.A.; Chen, J.; Hu, H.; Zhou, Y.; Zhao, J.; Wang, L.; Wang, Y.; Zhong, Z.; et al. Enhanced Cardioprotection by Human Endometrium Mesenchymal Stem Cells Driven by Exosomal MicroRNA-21. Stem Cells Transl. Med. 2017, 6, 209–222. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Gu, X.; Zhang, B.; Tian, W.; Han, H.; Sun, P.; Du, C.; Wang, H. Prolongation of Cardiac Allograft Survival by Endometrial Regenerative Cells: Focusing on B-Cell Responses. Stem Cells Transl. Med. 2017, 6, 778–787. [Google Scholar] [CrossRef]
- Lan, X.; Wang, G.; Xu, X.; Lu, S.; Li, X.; Zhang, B.; Shi, G.; Zhao, Y.; Du, C.; Wang, H. Stromal Cell-Derived Factor-1 Mediates Cardiac Allograft Tolerance Induced by Human Endometrial Regenerative Cell-Based Therapy. Stem Cells Transl. Med. 2017, 6, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, R.B.; Shivakumar, S.B.; Choe, Y.H.; Son, Y.B.; Lee, H.J.; Ullah, I.; Jang, S.J.; Ock, S.A.; Lee, S.L.; Rho, G.J. CD105(+) Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing beta Cell-Like Cells In Vitro. Reprod. Sci. 2019, 26, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Sun, L.; Chen, W.; Liu, K.Y.; Zhang, C.F.; Wang, F.; Zhang, G.H.; Huang, Y.; Li, J.X.; Gao, Y.; et al. Evidence for the existence of CD34(+) angiogenic stem cells in human first-trimester decidua and their therapeutic for ischaemic heart disease. J. Cell Mol. Med. 2020, 24, 11837–11848. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.; Yu, D.; Hu, Y.; Jin, W.; Qin, Y.; Kong, D.; Wang, H.; Li, G.; Alessandrini, A.; et al. Galectin-9 is required for endometrial regenerative cells to induce long-term cardiac allograft survival in mice. Stem Cell Res. Ther. 2020, 11, 471. [Google Scholar] [CrossRef]
- Hu, Y.; Kong, D.; Qin, Y.; Yu, D.; Jin, W.; Li, X.; Zhao, Y.; Wang, H.; Li, G.; Hao, J.; et al. CD73 expression is critical to therapeutic effects of human endometrial regenerative cells in inhibition of cardiac allograft rejection in mice. Stem Cells Transl. Med. 2021, 10, 465–478. [Google Scholar] [CrossRef]
- Wojakowski, W.; Landmesser, U.; Bachowski, R.; Jadczyk, T.; Tendera, M. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 2012, 26, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Forcillo, J.; Stevens, L.M.; Mansour, S.; Prieto, I.; Salem, R.; Baron, C.; Roy, D.C.; Larose, E.; Masckauchan, D.; Noiseux, N. Implantation of CD133+ stem cells in patients undergoing coronary bypass surgery: IMPACT-CABG pilot trial. Can. J. Cardiol. 2013, 29, 441–447. [Google Scholar] [CrossRef]
- Gargett, C.E. Uterine stem cells: What is the evidence? Hum. Reprod. Update 2007, 13, 87–101. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Lyu, F.; Abuwala, N.; Tal, A.; Chen, A.Y.; Taylor, H.S.; Tal, R. Chemokine C-X-C receptor 4 (CXCR4) mediates recruitment of bone marrow-derived nonhematopoietic and immune cells to the pregnant uterus. Biol. Reprod. 2022, 106, 1083–1097. [Google Scholar] [CrossRef]
- Mamillapalli, R.; Mutlu, L.; Taylor, H.S. Characterization of Bone Marrow Progenitor Cell Uterine Engraftment and Transdifferentiation. Reprod. Sci. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yi, K.W. Bone marrow-derived stem cells contribute to regeneration of the endometrium. Clin. Exp. Reprod. Med. 2018, 45, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tal, R.; Kisa, J.; Abuwala, N.; Kliman, H.J.; Shaikh, S.; Chen, A.Y.; Lyu, F.; Taylor, H.S. Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells 2021, 39, 1489–1505. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ren, C.; Jiang, J. Effects of bone marrow mesenchymal stem cells on repair and receptivity of damaged endometrium in rats. J. Obstet. Gynaecol. Res. 2021, 47, 3223–3231. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, A.I.; Einstein, E.; Morelli, S.S. Bone Marrow-Derived Cells in Endometrial Cancer Pathogenesis: Insights from Breast Cancer. Cells 2022, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Borzekowski, D.L.; Guan, Y.; Smith, K.C.; Erby, L.H.; Roter, D.L. The Angelina effect: Immediate reach, grasp, and impact of going public. Genet. Med. 2014, 16, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Boyle, A.J.; Schulman, S.P.; Hare, J.M.; Oettgen, P. Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation 2006, 114, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Sanganalmath, S.K.; Bolli, R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 2013, 113, 810–834. [Google Scholar] [CrossRef]
- Fazel, S.S.; Chen, L.; Angoulvant, D.; Li, S.H.; Weisel, R.D.; Keating, A.; Li, R.K. Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB J. 2008, 22, 930–940. [Google Scholar] [CrossRef]
- Ulrich, D.; Muralitharan, R.; Gargett, C.E. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin. Biol. Ther. 2013, 13, 1387–1400. [Google Scholar] [CrossRef]
- Hida, N.; Nishiyama, N.; Miyoshi, S.; Kira, S.; Segawa, K.; Uyama, T.; Mori, T.; Miyado, K.; Ikegami, Y.; Cui, C.; et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008, 26, 1695–1704. [Google Scholar] [CrossRef]
- Khatun, M.; Sorjamaa, A.; Kangasniemi, M.; Sutinen, M.; Salo, T.; Liakka, A.; Lehenkari, P.; Tapanainen, J.S.; Vuolteenaho, O.; Chen, J.C.; et al. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus. PLoS ONE 2017, 12, e0175986. [Google Scholar] [CrossRef] [PubMed]
- Ankrum, J.; Karp, J.M. Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol. Med. 2010, 16, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnecchi, M.; He, H.; Noiseux, N.; Liang, O.D.; Zhang, L.; Morello, F.; Mu, H.; Melo, L.G.; Pratt, R.E.; Ingwall, J.S.; et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006, 20, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.F.; Gao, X.B.; Yao, K.V.; Andrews, Z.B.; Du, H.; Elsworth, J.D.; Taylor, H.S. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J. Cell Mol. Med. 2011, 15, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, X.; Massasa, E.E.; Feng, Y.; Wolff, E.; Taylor, H.S. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol. Ther. 2011, 19, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P.; Wang, H.; Patel, A.N.; Kambhampati, S.; Angle, N.; Chan, K.; Marleau, A.M.; Pyszniak, A.; Carrier, E.; Ichim, T.E.; et al. Allogeneic endometrial regenerative cells: An “Off the shelf solution” for critical limb ischemia? J. Transl. Med. 2008, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.S.; Ling, T.Y.; Tseng, W.F.; Huang, Y.H.; Tang, F.M.; Leal, S.M.; Huang, J.S. Cellular growth inhibition by IGFBP-3 and TGF-beta1 requires LRP-1. FASEB J. 2003, 17, 2068–2081. [Google Scholar] [CrossRef] [Green Version]
- Vassilieva, I.; Kosheverova, V.; Vitte, M.; Kamentseva, R.; Shatrova, A.; Tsupkina, N.; Skvortsova, E.; Borodkina, A.; Tolkunova, E.; Nikolsky, N.; et al. Paracrine senescence of human endometrial mesenchymal stem cells: A role for the insulin-like growth factor binding protein 3. Aging 2020, 12, 1987–2004. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, G.; Xu, Y.; Zhao, D.; Zheng, L. Stem Cell-Based Therapy for Asherman Syndrome: Promises and Challenges. Cell Transplant. 2021, 30, 9636897211020734. [Google Scholar] [CrossRef]
- Bergmann, O.; Zdunek, S.; Felker, A.; Salehpour, M.; Alkass, K.; Bernard, S.; Sjostrom, S.L.; Szewczykowska, M.; Jackowska, T.; Dos Remedios, C.; et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell 2015, 161, 1566–1575. [Google Scholar] [CrossRef] [Green Version]
- Alkass, K.; Panula, J.; Westman, M.; Wu, T.D.; Guerquin-Kern, J.L.; Bergmann, O. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell 2015, 163, 1026–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillet, M.; van Berlo, J.H.; Molkentin, J.D. Molecular basis of physiological heart growth: Fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meckert, P.C.; Rivello, H.G.; Vigliano, C.; Gonzalez, P.; Favaloro, R.; Laguens, R. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc. Res. 2005, 67, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Derks, W.; Bergmann, O. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration? Circ. Res. 2020, 126, 552–565. [Google Scholar] [CrossRef]
- Das, S.K. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 2009, 137, 889–899. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Li, M.; Li, P.; Wang, H.; Dey, S.K.; Das, S.K. Hoxa-10 deficiency alters region-specific gene expression and perturbs differentiation of natural killer cells during decidualization. Dev. Biol. 2006, 290, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Raja, S.; Davis, M.K.; Tawfik, O.; Dey, S.K.; Das, S.K. Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech. Dev. 2002, 111, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Paria, B.C.; Zhao, X.; Das, S.K.; Dey, S.K.; Yoshinaga, K. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev. Biol. 1999, 208, 488–501. [Google Scholar] [CrossRef] [Green Version]
- Sroga, J.M.; Ma, X.; Das, S.K. Developmental regulation of decidual cell polyploidy at the site of implantation. Front. Biosci. 2012, 4, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Marinaro, F.; Gomez-Serrano, M.; Jorge, I.; Silla-Castro, J.C.; Vazquez, J.; Sanchez-Margallo, F.M.; Blazquez, R.; Lopez, E.; Alvarez, V.; Casado, J.G. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front. Bioeng. Biotechnol. 2019, 7, 431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chang, Q.; Li, P.; Tong, X.; Feng, Y.; Hao, X.; Zhang, X.; Yuan, Z.; Tan, J. Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model. Nanoscale 2021, 13, 7334–7347. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhu, M.; Feng, W.; Lin, Y.; Yin, J.; Jin, J.; Wang, Y. Exosomal miRNA Let-7 from Menstrual Blood-Derived Endometrial Stem Cells Alleviates Pulmonary Fibrosis through Regulating Mitochondrial DNA Damage. Oxid. Med. Cell Longev. 2019, 2019, 4506303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Result | Reference | |
---|---|---|---|
Rats who undergone hysterectomy, followed by heterotropic GFP+ uterine transplant and MI | GFP+ uteruses were removed from GFP rats and heterotropically-transplanted into non-GFP recipients who have undergone hysterectomy; MI was then induced | Heterotropic-transplanted uterine GFP+ cells were found in recipient hearts 7 days after MI and persisted for 6 months, in which they were localized around blood vessels, and improved cardiac functioning | [6] |
Commercially-obtained menstrual blood-derived mesenchymal stem cells and a rat MI model | 2 × 106 menstrual blood-derived mesenchymal stem cells were intramyocardially-injected into a Sprague-Dawley rat MI model | Menstrual blood-derived mesenchymal stem cells improved cardiac functioning through inhibition of the TGF-β/Smad-induced endothelial to mesenchymal transition, in turn reducing cardiac fibrosis | [89] |
Murine uterine MHC I− and MHC I+ cells, along with a murine MI model | Murine uterine MHC I− and MHC I+ cells were isolated from C57BL/6N mice, characterized in vitro for their immuno-modulatory properties, followed by allogenic injection of 0.5 × 106 cells into a FVB mouse MI model | MHC I− cells were immuno-privileged, with lower cell death and leukocyte proliferation, as well as yielding comparable benefits to syngeneic bone marrow cell transplantation after intra-myocardial injection, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells | [82] |
Rat uterine-derived CD11b cells and a rat ischemia/reperfusion model | 9 × 105 CD11b+ cells were intramyocardially injected into ischemic/re-perfused rat hearts 5 days post-injury | CD11b cells increased vasculogenesis, leading to reduced infarct size, as well as restoring myocardial functioning and perfusion | [83] |
Human endometrium-derived, bone marrow, and adipose-derived mesenchymal stem cells in a rat MI model | Human endometrium-derived, bone marrow, and adipose-derived mesenchymal stem cells were injected intra-myocardially to compare their cardio-protective capabilities | Endometrium-derived mesenchymal stem cells had greater cardioprotective capabilities and increased angiogenesis via secreting miR-21 in exosomes, which in turn activates the PTEN/Akt pathway | [90] |
Murine heart transplant model and human menstrual blood-derived ERC | Heterotropic cardiac transplantation was conducted from C57BL/6 to BALB/c mice, followed by intravenous injection of 1 × 106 human ERCs | ERC treatment prolonged cardiac allograft survival in mice by reducing CD19+ B cell numbers and activity | [91] |
Murine heart transplant model and human ERCs | Heterotropic cardiac transplantation was conducted from BALB/c to C57BL/6 mice, followed by intravenous injection of 1 × 106 human ERCs | Inhibition of ERC-produced SDF-1by the antagonist AMD3100, resulted in cardiac allograft rejection in recipient mice, as it was associated with increased antibodies and infiltrating immune cells | [92] |
Porcine adipose-derived and endometrial stromal mesenchymal stem cells | Endometrial stromal and adipose-derived mesenchymal stem cells were obtained from pigs, and their markers, growth, and differentiation potential were compared to each other in vitro. | Endometrial stromal mesenchymal stem cells had higher growth rates compared to adipose-derived mesenchymal stem cells, as well as being able to differentiate into cardiomyocyte-like like cells | [93] |
Human decidual stem cells from the first trimester of pregnancy and bone marrow stem cells in a rat MI model | Human CD34+ decidual stem cells were obtained from women who terminated during the first trimester, and compared to bone marrow stem cells obtained from cardiac surgery patients | Human CD34+ decidual stem cells had greater angiogenic capabilities, compared to bone marrow stem cells, as well as being able to increase cardiomyocyte survival and increase neo-vasculature post-MI | [94] |
Murine heart transplant model and human ERCs | Heterotropic cardiac transplantation was conducted from BALB/c to C57BL/6 mice, followed by intravenous injection of 5 × 106 human ERCs | Human ERCs expressed Galectin-9, which suppressed immune responses, in the form of lowered Th1, Th17, CD8+ T, and B cell activity, decreased donor-specific antibody levels, and enhanced Treg, all of which contributed to prolonged cardiac allograft survival | [95] |
Murine heart transplant model and human ERCs | Cardiac allograft transplantation was conducted from BALB/c donors to C57BL/6 mice, followed by implantation of human endometrial stem cells, either untreated or pre-treated with CD73 monoclonal antibodies | CD73 on ERCs led to decreased pro-inflammatory cytokines IFN-γ and TNF-α, increased anti-inflammatory cytokine IL-10, as well as increasing expression of protective cardiac allograft receptor A2B. By contrast, blocking CD73 led to reduced Tol-DC, M2, and Treg activity | [96] |
Human endometrial and bone marrow stem cells in a rat MI model | Human endometrial stem cells were isolated from 22 premenopausal women, and compared to human bone marrow mesenchymal stem cells derived from 25 age-matched patients | Human endometrial stem cells had greater proliferative, migratory, and pro-angiogenic capabilities, as well as being able to preserve viable cardiomyocytes and improve cardiac functioning post-ischemic injury, compared to bone marrow stem cells | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludke, A.; Hatta, K.; Yao, A.; Li, R.-K. Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells 2022, 11, 2182. https://doi.org/10.3390/cells11142182
Ludke A, Hatta K, Yao A, Li R-K. Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells. 2022; 11(14):2182. https://doi.org/10.3390/cells11142182
Chicago/Turabian StyleLudke, Ana, Kota Hatta, Alina Yao, and Ren-Ke Li. 2022. "Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow" Cells 11, no. 14: 2182. https://doi.org/10.3390/cells11142182
APA StyleLudke, A., Hatta, K., Yao, A., & Li, R. -K. (2022). Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells, 11(14), 2182. https://doi.org/10.3390/cells11142182