Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases
Abstract
:1. Introduction
2. History of BAL-Derived Fibroblast Cultures
3. Cell Culture Protocols
4. Characterization of the BAL-Derived Cultured Cells
5. Utilization of the BAL-Derived Cell Lines
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hunninghake, G.W.; Gadek, J.E.; Kawanami, O.; Ferrans, V.J.; Crystal, R.G. Inflammatory and immune processes in the human lung in health and disease: Evaluation by bronchoalveolar lavage. Am. J. Pathol. 1979, 97, 149–206. [Google Scholar] [PubMed]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; Du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; et al. Diagnosis of hypersensitivity pneumonitis in adults. An official ATS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020, 202, e36–e69. [Google Scholar] [CrossRef]
- Crouser, E.D.; Maier, L.A.; Wilson, K.C.; Bonham, C.A.; Morgenthau, A.S.; Patterson, K.C.; Abston, E.; Bernstein, R.C.; Blankstein, R.; Chen, E.S.; et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 201, e26–e51. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef]
- Bergantini, L.; D’Alessandro, M.; Gangi, S.; Cavallaro, D.; Campiani, G.; Butini, S.; Landi, C.; Bini, L.; Cameli, P.; Bargagli, E. Bronchoalveolar-Lavage-Derived Fibroblast Cell Line (B-LSDM7) as a New Protocol for Investigating the Mechanisms of Idiopathic Pulmonary Fibrosis. Cells 2022, 11, 1441. [Google Scholar] [CrossRef]
- Quesnel, C.; Nardelli, L.; Piednoir, P.; Lecon, V.; Marchal-Sommé, J.; Lasocki, S.; Bouadma, L.; Philip, I.; Soler, P.; Crestani, B.; et al. Alveolar fibroblasts in acute lung injury: Biological behaviour and clinical relevance. Eur. Respir. J. 2009, 35, 1312–1321. [Google Scholar] [CrossRef] [Green Version]
- Larson-Casey, J.L.; Carter, A.B. Assay to Evaluate BAL Fluid Regulation of Fibroblast α-SMA Expression. Bio-Protocol 2016, 6, e2009. [Google Scholar] [CrossRef] [Green Version]
- Fireman, E.; Ben Efraim, S.; Messer, G.; Dabush, S.; Greif, J.; Topilsky, M. Cell-free supernatants of sarcoid alveolar macrophages suppress proliferation of sarcoid alveolar fibroblasts. Clin. Immunol. Immunopathol. 1991, 59, 368–378. [Google Scholar] [CrossRef]
- Fireman, E.; Ben Efraim, S.; Greif, J.; Peretz, H.; Kivity, S.; Topilsky, M.; Rodrig, Y.; Yellin, A.; Apte, R.N. Differential Proliferative Characteristics of Alveolar Fibroblasts in Interstitial Lung Diseases: Regulative Role of IL-1 and PGE2. Mediat. Inflamm. 1994, 3, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Fireman, E.; Shahar, I.; Shoval, S.; Messer, G.; Dvash, S.; Grief, J. Morphological and Biochemical Properties of Alveolar Fibroblasts in Interstitial Lung Diseases. Lung 2001, 179, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Tufvesson, E.; Malmström, J.; Mörgelin, M.; Wildt, M.; Andersson, A.; Lindström, A.; Malmström, A.; Löfdahl, C.-G.; Marko-Varga, G.; et al. Presence of Activated Mobile Fibroblasts in Bronchoalveolar Lavage from Patients with Mild Asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 1049–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, K.; Malmström, J.; Wildt, M.; Dahlqvist, C.; Hansson, L.; Marko-Varga, G.; Bjermer, L.; Scheja, A.; Westergren-Thorsson, G. Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma. Respir. Res. 2006, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nihlberg, K.; Larsen, K.; Hultgårdh-Nilsson, A.; Malmström, A.; Bjermer, L.; Westergren-Thorsson, G. Tissue fibrocytes in patients with mild asthma: A possible link to thickness of reticular basement membrane? Respir. Res. 2006, 7, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lama, V.N.; Smith, L.; Badri, L.; Flint, A.; Andrei, A.-C.; Murray, S.; Wang, Z.; Liao, H.; Toews, G.B.; Krebsbach, P.H.; et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J. Clin. Investig. 2007, 117, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Borie, R.; Quesnel, C.; Phin, S.; Debray, M.-P.; Marchal-Somme, J.; Tiev, K.; Bonay, M.; Fabre, A.; Soler, P.; Dehoux, M.; et al. Detection of Alveolar Fibrocytes in Idiopathic Pulmonary Fibrosis and Systemic Sclerosis. PLoS ONE 2013, 8, e53736. [Google Scholar] [CrossRef]
- Sato, S.; Chong, S.G.; Upagupta, C.; Yanagihara, T.; Saito, T.; Shimbori, C.; Bellaye, P.-S.; Nishioka, Y.; Kolb, M.R. Fibrotic extracellular matrix induces release of extracellular vesicles with pro-fibrotic miRNA from fibrocytes. Thorax 2021, 76, 895–906. [Google Scholar] [CrossRef]
- Codullo, V.; Cova, E.; Pandolfi, L.; Breda, S.; Morosini, M.; Frangipane, V.; Malatesta, M.; Calderan, L.; Cagnone, M.; Pacini, C.; et al. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J. Control. Release 2019, 310, 198–208. [Google Scholar] [CrossRef]
- Karvonen, H.M.; Lehtonen, S.; Sormunen, R.T.; Harju, T.H.; Lappi-Blanco, E.; Bloigu, R.S.; Kaarteenaho, R.L. Myofibroblasts in interstitial lung diseases show diverse electron microscopic and invasive features. Lab. Investig. 2012, 92, 1270–1284. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, S.T.; Karvonen, H.M.; Harju, T.; Sormunen, R.; Lappi-Blanco, E.; Hilli, M.; Risteli, J.; Merikallio, H.; Kaarteenaho, R. Stromal cells can be cultured and characterized from diagnostic bronchoalveolar fluid samples obtained from patients with various types of interstitial lung diseases. APMIS 2013, 122, 301–316. [Google Scholar] [CrossRef]
- Lehtonen, S.T.; Veijola, A.; Karvonen, H.; Lappi-Blanco, E.; Sormunen, R.; Korpela, S.; Zagai, U.; Sköld, M.C.; Kaarteenaho, R. Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis. Respir. Res. 2016, 17, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Rowan, S.C.; Liang, J.; Yao, C.; Huang, G.; Deng, N.; Xie, T.; Wu, D.; Wang, Y.; Burman, A.; et al. Categorization of lung mesenchymal cells in development and fibrosis. iScience 2021, 24, 102551. [Google Scholar] [CrossRef] [PubMed]
- Basset, F.; Ferrans, V.J.; Soler, P.; Takemura, T.; Fukuda, Y.; Crystal, R.G. Intraluminal fibrosis in interstitial lung disorders. Am. J. Pathol. 1986, 122, 443–461. [Google Scholar]
Study | Patient Diagnosis (n) | Purpose of BAL | Cell Culture Medium | Length of Primary Culture Period | Aim of the Cell Culture |
---|---|---|---|---|---|
Volume of BALF for Cell Culture | Concentration of FBS | Passages | Success of the Cell Culture (%) | ||
Fireman [9] | Sarcoidosis (5) | Research | RPMI-1640, after passaging DMEM | 5–6 weeks | Fibroblasts |
* | 10% FBS | p. 4–12 | (20% *) | ||
Fireman [10] | 6 Sarcoidosis (6), Diffuse interstitial fibrosis (3), HP (3), Controls (6) | Research | RPMI-1640, after passaging DMEM | 5–6 weeks | Fibroblasts |
* | 10% FBS | p. 4–7 | (100% *) | ||
Fireman [11] | IPF (8), Sarcoidosis (7) | Research | RPMI-1640, after passaging DMEM | 3–4 weeks | Fibroblasts and myofibroblasts |
87–116 mL * | 10%, after passaging 20% FBS | p. 2–4 | (100% *) | ||
Larsen [12] | Mild asthma (12), Controls (17) | Research | DMEM | 5–6 days | Fibroblasts |
* | 10% FBS | p. 5–7 | 17% | ||
Larsen [13] | SSc-ILD (10) | Research | DMEM | 5–6 days | Myofibroblasts |
* | 10 % FBS | p. 5–7 | 50% | ||
Nihlberg [14] | Mild asthma (9) | Research | DMEM | 20–30 days | Fibroblasts and fibrocytes |
* | 10% FBS | p. 4–7 | 56% | ||
Lama [15] | 172 BAL from 76 lung transplant recipients: Emphysema (39), IPF (16), cystic fibrosis (10), other (11), controls (15) | Diagnostic | DMEM | 3 weeks | Mesenchymal stem cells |
10–50 mL | 10% FBS | p. 2–6 | 62% | ||
Quesnel [7] | Acute lung injury (17), Acute respiratory distress syndrome (31), Other ventilated patients (20) | Diagnostic | RPMI-1640 | 4 weeks | Fibroblasts |
* | 10% FBS | p. 0–3 | 18% | ||
Karvonen [19] Lehtonen [20] | Sarcoidosis (17), IPF (14), NSIP (10), CTD-ILD (9), Asbestosis (8), Other (28), Controls (12) | Diagnostic | αMEM | 3 weeks | Fibroblasts and myofibroblasts |
15 mL | 13% FBS | p. 1–5 | 62% | ||
Borie [16] | IPF (26), SSc-ILD (9), Controls (11) | Diagnostic | RPMI-1640 | At least 4 weeks | Fibrocytes |
* | 10% FBS | p. 0–3 | 37% | ||
Codullo [18] | SSc-ILD (4) | Research | DMEM | 1–3 weeks | Fibroblasts |
* | 10% FBS | p. 2–6 | * | ||
Sato [17] | 10 IPF, 13 other UIP/fNSIP, 15 sarcoidosis, 21 other | Diagnostic | DMEM | 7 days | Fibrocytes |
10 mL | 20% FBS | p. 0 | * | ||
Bergantini [6] | IPF (1) | Diagnostic | RPMI-1640, after 1st day FGBM, after passaging variable | 3 weeks | Fibroblasts |
60 mL | 10% FBS, after 1st day * | * | (100% *) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehtonen, S.; Kaarteenaho, R. Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases. Cells 2022, 11, 2226. https://doi.org/10.3390/cells11142226
Lehtonen S, Kaarteenaho R. Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases. Cells. 2022; 11(14):2226. https://doi.org/10.3390/cells11142226
Chicago/Turabian StyleLehtonen, Siri, and Riitta Kaarteenaho. 2022. "Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases" Cells 11, no. 14: 2226. https://doi.org/10.3390/cells11142226
APA StyleLehtonen, S., & Kaarteenaho, R. (2022). Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases. Cells, 11(14), 2226. https://doi.org/10.3390/cells11142226