Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preliminary Treatment
2.2. Enzymatic Hydrolysis, N-Glycopeptides Enrichment and Deglycosylation
2.3. Label-Free LC-MS/MS Analysis and Procession of Identification Data
2.4. Bioinformatics Analysis
3. Result
3.1. Basic N-Glycoproteomics Identification Data of N, OA, and KBD Knee Cartilages
3.2. Heatmap, Volcanic Plot, and Motif Analysis Results of N-Glycopeptides
3.3. Bioinformatics Analysis Results of Differentially Expressed N-Glycoproteins between Every Two Groups
3.3.1. GO Analysis Results of Differentially Expressed N-Glycoproteins between Every Two Groups
3.3.2. KEGG Pathways of Differentially Expressed N-Glycoproteins between Every Two Groups
3.3.3. PPI Networks of Differentially Expressed N-Glycoproteins between Every Two Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, D.; Ramos, E.; Branco, J. Osteoarthritis. Acta Med. Port. 2015, 28, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Guo, X.; Zhang, X.D.; Yu, H.J.; Yan, H.; Gao, Y.; Ma, W.-J.; Gao, Z.-Q.; Xu, P.; Lammi, M. Comparative analysis of gene expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck disease. Arthritis. Rheum. 2010, 62, 771–780. [Google Scholar] [CrossRef]
- Guo, X.; Ma, W.J.; Zhang, F.; Ren, F.L.; Qu, C.J.; Lammi, M.J. Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. Osteoarthr. Cartil. 2014, 22, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Z.; Guo, X.; Duan, C.; Ma, W.J.; Zhang, Y.G.; Xu, P.; Gao, Z.Q.; Wang, Z.F.; Yan, H.; Zhang, Y.F.; et al. Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis. Osteoarthr. Cartil. 2009, 17, 83–90. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, A.; Zhang, J.; Yuan, P.; Shi, C.; Xiong, Y. Key genes and pathways common to both OA and KBD. Osteoarthr. Cartil. 2018, 26, S189–S190. [Google Scholar] [CrossRef]
- Matthies, I.; Abrahams, J.L.; Jensen, P.; Oliveira, T.; Kolarich, D.; Larsen, M.R. N-Glycosylation in isolated rat nerve terminals. Mol. Omics. 2021, 17, 517–532. [Google Scholar] [CrossRef]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Štambuk, T.; Klasić, M.; Zoldoš, V.; Lauc, G. N-glycans as functional effectors of genetic and epigenetic disease risk. Mol. Aspects. Med. 2021, 79, 100891. [Google Scholar] [CrossRef]
- Sun, D.; Hu, F.; Gao, H.; Song, Z.; Xie, W.; Wang, P.; Shi, L.; Wang, K.; Li, Y.; Huang, C.; et al. Distribution of abnormal IgG glycosylation patterns from rheumatoid arthritis and osteoarthritis patients by MALDI-TOF-MSn. Analyst 2019, 144, 2042–2051. [Google Scholar] [CrossRef]
- Xue, H.; Tao, D.; Weng, Y.; Fan, Q.; Zhou, S.; Zhang, R.; Zhang, H.; Yue, R.; Wang, X.; Wang, Z.; et al. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis. Front. Med. 2019, 13, 575–589. [Google Scholar] [CrossRef]
- Fick, J.M.; Huttu, M.R.; Lammi, M.J.; Korhonen, R.K. In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner. Osteoarthr. Cartil. 2014, 22, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Urita, A.; Matsuhashi, T.; Onodera, T.; Nakagawa, H.; Hato, M.; Amano, M.; Seito, N.; Minami, A.; Nishimura, S.-I.; Iwasaki, N. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. Arthritis. Rheum. 2011, 63, 3428–3438. [Google Scholar] [CrossRef] [PubMed]
- Szychlinska, M.A.; Trovato, F.M.; Di, R.M.; Malaguarnera, L.; Puzzo, L.; Leonardi, R.; Castrogiovanni, P.; Musumeci, G. Co-expression and co-localization of cartilage glycoproteins CHI3L1 and Lubricin in osteoarthritic cartilage: Morphological, immunohistochemical and gene expression profiles. Int. J. Mol. Sci. 2016, 17, 359. [Google Scholar] [CrossRef]
- Tomoya, M.; Norimasa, I.; Naoki, S.; Naomi, O.Z. Alterations in Human Articular Cartilage N-glycan profiles with cuff tear arthropathy. Katakansetsu 2011, 35, 911–914. [Google Scholar]
- Carpintero, F.P.; Varela, E.M.; Lacetera, A.; Gago, F.R.; Fonseca, E.; Martin, S.S.; Mayan, M.D. New therapeutic strategies for osteoarthritis by targeting sialic acid receptors. Biomolecules 2020, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Juneja, S.C.; Veillette, C. Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: A review. Arthritis 2013, 2013, 154812. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R.; Watson, R.R. (Eds.) Western Ontario and McMaster Universities Osteoarthritis Index. In Handbook of Disease Burdens and Quality of Life Measures; Springer: New York, NY, USA, 2010. [Google Scholar]
- Xiong, G. Diagnostic, clinical and radiological characteristics of Kashin-Beck disease in Shaanxi Province, PR. ChinaInt. Orthop. 2001, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Cao, J.; Renner, J.B.; Jordan, J.M.; Caterson, B.; Duance, V.; Luo, M.; Kraus, V.B. Radiographic features of hand osteoarthritis in adult Kashin-Beck Disease (KBD): The Yongshou KBD study. Osteoarthr. Cartil. 2015, 23, 868–873. [Google Scholar] [CrossRef]
- Lu, X.; Wu, J.; Qin, Y.; Liang, J.; Qian, H.; Song, J.; Qu, C.; Liu, R. Identification of N-glycoproteins of hip cartilage in patients with osteonecrosis of femoral head using quantitative glycoproteomics. Int. J. Biol. Macromol. 2021, 187, 892–902. [Google Scholar] [CrossRef]
- Lyu, Y.; Deng, H.; Qu, C.; Qiao, L.; Liu, X.; Xiao, X.; Liu, J.; Guo, Z.; Zhao, Y.; Han, J.; et al. Identification of proteins and N-glycosylation sites of knee cartilage in Kashin-Beck disease compared with osteoarthritis. Int. J. Biol. Macromol. 2022, 210, 128–138. [Google Scholar] [CrossRef]
- Zielinska, D.F.; Gnad, F.; Wiśniewski, J.R.; Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010, 141, 897–907. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.P.; Chou, M.F.; Quader, S.A.; Ryan, J.K.; Church, G.M.; Schwartz, D. pLogo: A probabilistic approach to visualizing sequence motifs. Nat. Methods 2013, 10, 1211–1212. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, X.; Cheng, J.; Zhang, X.; Zhao, F.; Shi, W.; Ren, B.; Yu, H.; Yang, P.; Li, Z.; et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat. Commun. 2019, 10, 1914. [Google Scholar] [CrossRef]
- Loeser, R.F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014, 39, 11–16. [Google Scholar] [CrossRef]
- Cao, L.; Lee, V.; Adams, M.E.; Kiani, C.; Zhang, Y.; Hu, W.; Yang, B.B. Beta-Integrin-collagen interaction reduces chondrocyte apoptosis. Matrix Biol. 1999, 18, 343–355. [Google Scholar] [CrossRef]
- Wang, W.; Guo, X.; Chen, J.; Xu, P.; Lammi, M.J. Morphology and phenotype expression of types I, II, III, and X collagen and MMP-13 of chondrocytes cultured from articular cartilage of Kashin-Beck Disease. J. Rheumatol. 2008, 35, 696–702. [Google Scholar]
- Gao, Z.Q.; Guo, X.; Duan, C.; Ma, W.; Xu, P.; Wang, W.; Chen, J.C. Altered aggrecan synthesis and collagen expression profiles in chondrocytes from patients with Kashin-Beck disease and osteoarthritis. J. Int. Med. Res. 2012, 40, 1325–1334. [Google Scholar] [CrossRef]
- Han, J.; Li, D.; Qu, C.; Wang, D.; Guo, X.; Lammi, M.J. Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease. Osteoarthr. Cartil. 2017, 25, 1372–1375. [Google Scholar] [CrossRef]
- Aszodi, A.; Hunziker, E.B.; Brakebusch, C.; Fässler, R. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes. Dev. 2003, 17, 2465–2479. [Google Scholar] [CrossRef]
- Valdes, A.M.; Loughlin, J.; Oene, M.V.; Chapman, K.; Surdulescu, G.L.; Doherty, M.; Spector, T.D. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 137–146. [Google Scholar] [CrossRef]
- Aigner, T.; Dudhia, J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: A hypothesis. Ann. Rheum. Dis. 1997, 56, 287–291. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, C.; Tang, Q.; Yang, F.; Xu, Y. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae. Toxicol Lett. 2018, 289, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Amhare, A.F.; Deng, H.; Lv, Y.; Zhao, Y.; Liu, J.; Lei, J.; Wang, L.; Chilufya, M.M.; Han, J. Protective effect of chondroitin sulfate nano-selenium on chondrocyte of patients with Kashin-Beck disease. J. Biomater. Appl. 2021, 35, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, M.; Kobayashi, Y.; Uchimura, K.; Kimata, K.; Habuchi, O. Molecular cloning and expression of human chondroitin 6-sulfotransferase. Biochim. Biophys. Acta 1998, 1399, 57–61. [Google Scholar] [CrossRef]
- Pablos, J.L.; Santiago, B.; Tsay, D.; Singer, M.S.; Palao, G.; Galindo, M.; Rosen, S.D. A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-alpha/beta and TNF-alpha in cultured endothelial cells. BMC Immunol. 2005, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- LaBell, T.L.; Milewicz, D.J.; Disteche, C.M.; Byers, P.H. Thrombospondin II: Partial cDNA sequence, chromosome location, and expression of a second member of the thrombospondin gene family in humans. Genomics 1992, 12, 421–429. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Zhu, Y.H.; Smith, L.T.; Bain, S.D.; Yang, Z.; Lin, M.T.; Danielson, K.G.; Iozzo, R.V.; LaMarca, M.; McKinney, C.E.; et al. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J. Cell. Biol. 1998, 140, 419–430. [Google Scholar] [CrossRef]
- Alford, A.I.; Terkhorn, S.P.; Reddy, A.B.; Hankenson, K.D. Thrombospondin-2 regulates matrix mineralization in MC3T3-E1 pre-osteoblasts. Bone 2010, 46, 464–471. [Google Scholar] [CrossRef]
- Rahman, M.S.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 2015, 3, 15005. [Google Scholar] [CrossRef]
- Okamura, N.; Hasegawa, M.; Nakoshi, Y.; Iino, T.; Sudo, A.; Imanaka-Yoshida, K.; Yoshida, T.; Uchida, A. Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthr. Cartil. 2010, 18, 839–848. [Google Scholar] [CrossRef]
- Hua, C.T.; Hopwood, J.J.; Carlsson, S.R.; Harrisk, R.J.; Meiklek, P.J. Evaluation of the lysosome-associated membrane protein LAMP-2 as a marker for lysosomal storage disorders. Clin. Chem. 1998, 44, 2094–2102. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, K.K.; Ma, Y.; Weis, J.H.; Chen, X.; Zachary, J.F.; Teuscher, C.; Weis, J.J. Lysosomal β-glucuronidase regulates Lyme and rheumatoid arthritis severity. J. Clin. Investig. 2014, 124, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wen, Y.; Zhang, M.; Liu, Q.; Zhang, H.; Zhang, J.; Lu, L.; Ye, T.; Bai, X.; Xiao, G.; et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy 2020, 16, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Saftig, P.; Beertsen, W.; Eskelinen, E.L. LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy 2008, 4, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.Y.; Ball, H.C.; Wase, S.J.; Novak, K.; Haqqi, T.M. Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of Cytochrome c. Osteoarthr. Cartil. 2021, 29, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, A.; Ranganath, P.; Pasumarthi, D.; Dalal, A.B. Identification and in-silico analysis of a novel disease-causing variant in the GUSB gene for Mucopolysaccharidosis VII presenting as non-immune fetal hydrops. Gene Rep. 2019, 16, 100437. [Google Scholar] [CrossRef]
- Mobasheri, A.; Rayman, M.P.; Gualillo, O.; Sellam, J.; van der Kraan, P.; Fearon, U. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheum. 2017, 13, 302–311. [Google Scholar] [CrossRef]
- Arntz, O.J.; Pieters, B.C.; Oliveira, M.C.; Broeren, M.G.; Bennink, M.B.; de Vries, M.; van Lent, P.L.E.M.; Koenders, M.I.; van den Berg, W.B.; van der Kraan, P.M.; et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res. 2015, 59, 1701–1712. [Google Scholar] [CrossRef]
- Miyaki, S.; Lotz, M.K. Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr. Opin. Rheumatol. 2018, 30, 129–135. [Google Scholar] [CrossRef]
- Ni, Z.; Zhou, S.; Li, S.; Kuang, L.; Chen, H.; Luo, X.; Ouyang, J.; He, M.; Du, X.; Chen, L. Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 2020, 8, 25. [Google Scholar] [CrossRef]
- Buzas, E.I.; György, B.; Nagy, G.; Falus, A.; Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 2014, 10, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Amhare, A.F.; Wang, L.; Lv, Y.; Deng, H.; Gao, H.; Guo, X.; Han, J.; Lammi, M.J. Proteomic analysis of knee cartilage reveals potential signaling pathways in pathological mechanism of Kashin-Beck disease compared with osteoarthritis. Sci. Rep. 2020, 10, 6824. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, W.; Qu, C.; Liu, R.; Li, W.; Gao, Z.; Guo, X. Role of inflammation in the process of clinical Kashin-Beck disease: Latest findings and interpretations. Inflamm. Res. 2015, 64, 853–860. [Google Scholar]
- Lei, J.; Deng, H.; Ran, Y.; Lv, Y.; Amhare, A.F.; Wang, L.; Guo, X.; Han, J.; Lammi, M.J. Altered Expression of Aggrecan, FAM20B, B3GALT6, and EXTL2 in Patients with Osteoarthritis and Kashin-Beck Disease. Cartilage 2021, 13 (Suppl. 1), 818S–828S. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Deng, H.; Lyu, Y.; Xiao, X.; Zhao, Y.; Liu, J.; Guo, Z.; Liu, X.; Qiao, L.; Gao, H.; et al. Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage. Cells 2022, 11, 2513. https://doi.org/10.3390/cells11162513
Han J, Deng H, Lyu Y, Xiao X, Zhao Y, Liu J, Guo Z, Liu X, Qiao L, Gao H, et al. Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage. Cells. 2022; 11(16):2513. https://doi.org/10.3390/cells11162513
Chicago/Turabian StyleHan, Jing, Huan Deng, Yizhen Lyu, Xiang Xiao, Yan Zhao, Jiaxin Liu, Ziwei Guo, Xuan Liu, Lichun Qiao, Hang Gao, and et al. 2022. "Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage" Cells 11, no. 16: 2513. https://doi.org/10.3390/cells11162513
APA StyleHan, J., Deng, H., Lyu, Y., Xiao, X., Zhao, Y., Liu, J., Guo, Z., Liu, X., Qiao, L., Gao, H., & Lammi, M. J. (2022). Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage. Cells, 11(16), 2513. https://doi.org/10.3390/cells11162513