Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products
Abstract
:1. Introduction
2. Cryoprotectors and the Cryoprotecting Environment
- To create strong bonds with water molecules both outside and inside the cell, with these bonds being stronger than the bonds between water molecules;
- To decrease salt concentrations, thus minimizing the risk of damaging the cells’ protein structures;
- To bond with the structural components of the membrane, protecting them from being destructed by ice crystals [35].
2.1. Classification of Cryoprotectors
2.2. Dimethyl Sulfoxide (DMSO)
2.3. Reduction of the Cytotoxic Effect of Cryoprotective Media Containing DMSO
2.4. Commercially Available Cryoprotective Media
3. Cryopreservation of MSC Suspensions
3.1. Preparatory Phase
3.2. Freezing Rate
3.3. Temperature Conditions
3.4. Thawing
3.5. Acclimatization
3.6. Repeated Cryopreservation
4. Features of Cryopreservation of Pluripotent Embryonic Stem Cells and Induced Pluripotent Stem Cells
5. Cryopreservation of Tissue Specimen of MSC Sources
5.1. Preparatory Phase
5.2. Freezing Rate
5.3. Temperature Regimes
5.4. Thawing
6. Cryopreservation of Three-Dimensional Biomedical Cell-Based Products
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntege, E.H.; Sunami, H.; Shimizu, Y. Advances in Regenerative Therapy: A Review of the Literature and Future Directions. Regen. Ther. 2020, 14, 136–153. [Google Scholar] [CrossRef]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human Mesenchymal Stem Cells—Current Trends and Future Prospective. Biosci. Rep. 2015, 3, e00191. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hoogduijn, M.J.; Baan, C.C.; Korevaar, S.S.; De Kuiper, R.; Yan, L.; Wang, L.; Besouw, N.M.V. Adipose Tissue-Derived Mesenchymal Stem Cells Have a Heterogenic Cytokine Secretion Profile. Stem Cells Int. 2017, 2017, 4960831. [Google Scholar] [CrossRef] [PubMed]
- Luk, F.; Carreras-Planella, L.; Korevaar, S.S.; de Witte, S.F.H.; Borràs, F.E.; Betjes, M.G.H.; Baan, C.C.; Hoogduijn, M.J.; Franquesa, M. Inflammatory Conditions Dictate the Effect of Mesenchymal Stem or Stromal Cells on B Cell Function. Front. Immunol. 2017, 8, 1042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X.; Cao, W.; Shi, Y. Plasticity of Mesenchymal Stem Cells in Immunomodulation: Pathological and Therapeutic Implications. Nat. Immunol. 2014, 15, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Pittenger, M.F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017, 35, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.K.; Shih, H.H.; Parveen, F.; Lenzen, D.; Ito, E.; Chan, T.F.; Ke, L.Y. Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020, 9, 1145. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, L.; Scott, P.G.; Tredget, E.E. Mesenchymal Stem Cells Enhance Wound Healing Through Differentiation and Angiogenesis. Stem Cells 2007, 25, 2648–2659. [Google Scholar] [CrossRef]
- Regmi, S.; Pathak, S.; Kim, J.O.; Yong, C.S.; Jeong, J.-H. Mesenchymal Stem Cell Therapy for the Treatment of Inflammatory Diseases: Challenges, Opportunities, and Future Perspectives. Eur. J. Cell Biol. 2019, 98, 151041. [Google Scholar] [CrossRef]
- Roato, I.; Alotto, D.; Belisario, D.C.; Casarin, S.; Fumagalli, M.; Cambieri, I.; Piana, R.; Stella, M.; Ferracini, R.; Castagnoli, C. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int. 2016, 2016, 4968724. [Google Scholar] [CrossRef] [Green Version]
- Sabol, R.A.; Bowles, A.C.; Côté, A.; Wise, R.; Pashos, N.; Bunnell, B.A. Therapeutic Potential of Adipose Stem Cells. Adv. Exp. Med. Biol. 2021, 134, 15–25. [Google Scholar] [CrossRef]
- Guan, L.X.; Guan, H.; Li, H.B.; Ren, C.A.; Liu, L.; Chu, J.J.; Dai, L.J. Therapeutic Efficacy of Umbilical Cord-Derived Mesenchymal Stem Cells in Patients with Type 2 Diabetes. Exp. Ther. Med. 2015, 9, 1623–1630. [Google Scholar] [CrossRef]
- Golchin, A.; Seyedjafari, E.; Ardeshirylajimi, A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev. Rep. 2020, 16, 427–433. [Google Scholar] [CrossRef]
- Zumla, A.; Wang, F.S.; Chang, C.; Ippolito, G.; Petrosillo, N.; Agrati, C.; Azhar, E.I.; El-Kafrawy, S.A.; Osman, M.; Zitvogel, L.; et al. Reducing Mortality and Morbidity in Patients with Severe COVID-19 Disease by Advancing Ongoing Trials of Mesenchymal Stromal (Stem) Cell (MSC) Therapy—Achieving Global Consensus and Visibility for Cellular Host-Directed Therapies. Int. J. Infect. Dis. 2020, 96, 431–439. [Google Scholar] [CrossRef]
- Asumda, F.Z. Age-Associated Changes in the Ecological Niche: Implications for Mesenchymal Stem Cell Aging Stem Cell Research and Therapy. Stem Cell Res. Ther. 2013, 4, 47. [Google Scholar] [CrossRef]
- Pardo-Saganta, A.; Calvo, I.A.; Saez, B.; Prosper, F. Role of the Extracellular Matrix in Stem Cell Maintenance. Curr. Stem Cell Reports 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Congrains, A.; Bianco, J.; Rosa, R.G.; Mancuso, R.I.; Saad, S.T.O. 3d Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. Materials 2021, 14, 569. [Google Scholar] [CrossRef]
- Kulikouskaya, V.; Kraskouski, A.; Hileuskaya, K.; Zhura, A.; Tratsyak, S.; Agabekov, V. Fabrication and Characterization of Pectin-Based Three-Dimensional Porous Scaffolds Suitable for Treatment of Peritoneal Adhesions. J. Biomed. Mater. Res. Part A 2019, 107, 1814–1823. [Google Scholar] [CrossRef]
- Serafini, M.; Sacchetti, B.; Pievani, A.; Redaelli, D.; Remoli, C.; Biondi, A.; Riminucci, M.; Bianco, P. Establishment of Bone Marrow and Hematopoietic Niches in Vivo by Reversion of Chondrocyte Differentiation of Human Bone Marrow Stromal Cells. Stem Cell Res. 2014, 12, 659–672. [Google Scholar] [CrossRef]
- Egorikhina, M.N.; Rubtsova, Y.P.; Charykova, I.N.; Bugrova, M.L.; Bronnikova, I.I.; Mukhina, P.A.; Sosnina, L.N.; Aleynik, D.Y. Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers 2020, 12, 2550. [Google Scholar] [CrossRef]
- Gautier, S.V.; Shagidulin, M.Y.; Onishchenko, N.A.; Iljinsky, I.M.; Sevastianov, V.I. Influence of Matrix Nature on the Functional Efficacy of Biomedical Cell Product for the Regeneration of Damaged Liver (Experimental Mod El of Acute Liver Failure). Vestn. Transpl. I Iskusstv. Organov 2017, 19, 78–89. [Google Scholar] [CrossRef]
- Haque, N.; Abu Kasim, N.H.; Rahman, M.T. Optimization of Pre-Transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells. Int. J. Biol. Sci. 2015, 11, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, K.; Davies, L.C. MSCs—Cells with Many Sides. Cytotherapy 2018, 20, 273–278. [Google Scholar] [CrossRef]
- Schlarb, D. Liposuction. Hautarzt 2018, 69, 165–176. [Google Scholar] [CrossRef]
- Doucet, M.; Yuille, M.; Georghiou, L.; Dagher, G. Biobank Sustainability: Current Status and Future Prospects. J. Biorepository Sci. Appl. Med. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Grivtsova, L.Y.; Popovkina, O.E.; Dukhova, N.N.; Politiko, O.A.; Yuzhakov, V.V.; Lepekhina, L.A.; Kalsina, S.S.; Ivanov, S.A.; Kaprin, A.D. Cell Biobank as a Necessary Infrastructure for the Development and Implementation of Mesenchymal Stem Cell-Based Therapy in the Treatment of Anthracycline-Induced Cardiotoxicity. Literature Review and Own Data. Cardiovasc. Ther. Prev. 2020, 19, 205–216. [Google Scholar] [CrossRef]
- Jang, T.H.; Park, S.C.; Yang, J.H.; Kim, J.Y.; Seok, J.H.; Park, U.S.; Choi, C.W.; Lee, S.R.; Han, J. Cryopreservation and Its Clinical Applications. Integr. Med. Res. 2017, 6, 12–18. [Google Scholar] [CrossRef]
- Duan, W.; Lopez, M.J.; Hicok, K. Adult Multipotent Stromal Cell Cryopreservation: Pluses and Pitfalls. Vet. Surg. 2018, 47, 19–29. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Sun, B.; Fan, W.; Cui, Z. Cryopreservation: Organ Preservation. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 689–708. ISBN 9780444640475. [Google Scholar]
- Pogozhykh, O.; Prokopyuk, V.; Prokopyuk, O.; Kuleshova, L.; Goltsev, A.; Figueiredo, C.; Pogozhykh, D. Towards Biobanking Technologies for Natural and Bioengineered Multicellular Placental Constructs. Biomaterials 2018, 185, 39–50. [Google Scholar] [CrossRef]
- Buhl, T.; Legler, T.J.; Rosenberger, A.; Schardt, A.; Schön, M.P.; Haenssle, H.A. Controlled-Rate Freezer Cryopreservation of Highly Concentrated Peripheral Blood Mononuclear Cells Results in Higher Cell Yields and Superior Autologous T-Cell Stimulation for Dendritic Cell-Based Immunotherapy. Cancer Immunol. Immunother. 2012, 61, 2021–2031. [Google Scholar] [CrossRef]
- Simione, F.P. Thermo Scientific Nalgene and Nunc Cryopreservation Guide Contents; Thermo Fisher Scientific: Waltham, MA, USA, 2009; p. 12. [Google Scholar]
- Gritsaev, S.V.; Bessmeltsev, S.S.; Ponomarev, S.A.; Rabinovich, V.I.; Korotaev, E.V.; Stepanov, A.A. Method of cryopreservation of hematopoietic stem cells for autologous transplantation. Guidelines 2015, 151, 3–41. [Google Scholar]
- Polezhaeva, T.V. Combined Cryopreservatives in Preserving the Functions of Leukocytes. Abstract of the Dissertation for the Degree of Doctor of Biological Sciences. Ph.D. Thesis, Federal State Budgetary Institution “Russian Research Institute of Hematology and Transfusiology” of the Federal Medical and Biological Agency of Russia, St. Petersburg, Russia, 2013. [Google Scholar]
- Bhattacharya, S.; Prajapati, B.G. A Review on Cryoprotectant and Its Modern Implication in Cryonics. Asian J. Pharm. 2016, 10, 154–159. [Google Scholar] [CrossRef]
- Cagol, N.; Bonani, W.; Maniglio, D.; Migliaresi, C.; Motta, A. Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants. Tissue Eng. Part C Methods 2018, 24, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Wowk, B. How Cryoprotectants Work. Cryonics 2007, 28, 3–7. [Google Scholar]
- Bhat, A.R.; Irorere, V.U.; Bartlett, T.; Hill, D.; Kedia, G.; Morris, M.R.; Charalampopoulos, D.; Radecka, I. Bacillus Subtilis Natto: A Non-Toxic Source of Poly-γ-Glutamic Acid That Could Be Used as a Cryoprotectant for Probiotic Bacteria. AMB Express 2013, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Agapova, O.I. Scanning Probe Nanotomography for Studying the 3D Structure of Matrices for Tissue Engineering and Regenerative Medicine. Master’s Thesis, Federal Scientific Center for Transplantology and Artificial Organs named after Academician V.I. Shumakova, Moscow, Russia, 2015. [Google Scholar]
- Marquez-Curtis, L.A.; Janowska-Wieczorek, A.; McGann, L.E.; Elliott, J.A.W. Mesenchymal Stromal Cells Derived from Various Tissues: Biological, Clinical and Cryopreservation Aspects. Cryobiology 2015, 71, 181–197. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, A.; Platt, C. Human Cryopreservation Procedures; Alcor Life Extension Foundation: Scottsdale, AZ, USA, 2020; pp. 1–18. [Google Scholar]
- Rajan, R.; Matsumura, K. Development and Application of Cryoprotectants. Adv. Exp. Med. Biol. 2018, 1081, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Solodeev, I.; Orgil, M.; Bordeynik-Cohen, M.; Meilik, B.; Manheim, S.; Volovitz, I.; Sela, M.; Inbal, A.; Gur, E.; Shani, N. Cryopreservation of Stromal Vascular Fraction Cells Reduces Their Counts but Not Their Stem Cell Potency. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2321. [Google Scholar] [CrossRef]
- Shaik, S.; Wu, X.; Gimble, J.; Devireddy, R. Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality. Sci. Rep. 2018, 8, 8162. [Google Scholar] [CrossRef]
- Oja, S.; Laitinen, A.; Kaartinen, T.; Ahti, M.; Korhonen, M.; Nystedt, J. The Utilization of Freezing Steps in Mesenchymal Stromal Cell (MSC) Manufacturing: Potential Impact on Quality and Cell Functionality Attributes. Cytotherapy 2017, 19, S189. [Google Scholar] [CrossRef]
- Chabot, D.; Tremblay, T.; Paré, I.; Bazin, R.; Loubaki, L. Transient Warming Events Occurring after Freezing Impairs Umbilical Cord–Derived Mesenchymal Stromal Cells Functionality. Cytotherapy 2017, 19, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Bárcia, R.N.; Santos, J.M.; Teixeira, M.; Filipe, M.; Pereira, A.R.S.; Ministro, A.; Água-Doce, A.; Carvalheiro, M.; Gaspar, M.M.; Miranda, J.P.; et al. Umbilical Cord Tissue–Derived Mesenchymal Stromal Cells Maintain Immunomodulatory and Angiogenic Potencies after Cryopreservation and Subsequent Thawing. Cytotherapy 2017, 19, 360–370. [Google Scholar] [CrossRef] [PubMed]
- François, M.; Copland, I.B.; Yuan, S.; Romieu-Mourez, R.; Waller, E.K.; Galipeau, J. Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunosuppressive Properties as a Result of Heat-Shock Response and Impaired Interferon-γ Licensing. Cytotherapy 2012, 14, 147–152. [Google Scholar] [CrossRef]
- Moll, G.; Alm, J.J.; Davies, L.C.; Von Bahr, L.; Heldring, N.; Stenbeck-Funke, L.; Hamad, O.A.; Hinsch, R.; Ignatowicz, L.; Locke, M.; et al. Do Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunomodulatory and Therapeutic Properties? Stem Cells 2014, 32, 2430–2442. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Ma, X.; Martin-Rendon, E.; Watt, S.; Cui, Z. Cryopreservation of Human Bone Marrow-Derived Mesenchymal Stem Cells with Reduced Dimethylsulfoxide and Well-Defined Freezing Solutions. Biotechnol. Prog. 2010, 26, 1635–1643. [Google Scholar] [CrossRef]
- Gong, W.; Han, Z.; Zhao, H.; Wang, Y.; Wang, J.; Zhong, J.; Wang, B.; Wang, S.; Wang, Y.; Sun, L.; et al. Banking Human Umbilical Cord-Derived Mesenchymal Stromal Cells for Clinical Use. Cell Transplant. 2012, 21, 207–216. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhu, K.; Zhou, P.; Zhang, Z. Effects of Recombinant AavLEA1 Protein on Human Umbilical Cord Matrix Mesenchymal Stem Cells Survival during Cryopreservation. Biopreserv. Biobank. 2020, 18, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Pollock, K.; Sumstad, D.; Kadidlo, D.; McKenna, D.H.; Hubel, A. Clinical Mesenchymal Stromal Cell Products Undergo Functional Changes in Response to Freezing. Cytotherapy 2015, 17, 38–45. [Google Scholar] [CrossRef]
- Svalgaard, J.D.; Munthe-Fog, L.; Ballesteros, O.R.; Brooks, P.T.; Rangatchew, F.; Vester-Glowinski, P.V.; Haastrup, E.K.; Fischer-Nielsen, A. Cryopreservation of Adipose-Derived Stromal/Stem Cells Using 1–2% Me2SO (DMSO) in Combination with Pentaisomaltose: An Effective and Less Toxic Alternative to Comparable Freezing Media. Cryobiology 2020, 96, 207–213. [Google Scholar] [CrossRef]
- Diaz-Dussan, D.; Peng, Y.Y.; Sengupta, J.; Zabludowski, R.; Adam, M.K.; Acker, J.P.; Ben, R.N.; Kumar, P.; Narain, R. Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules 2020, 21, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Freimark, D.; Sehl, C.; Weber, C.; Hudel, K.; Czermak, P.; Hofmann, N.; Spindler, R.; Glasmacher, B. Systematic Parameter Optimization of a Me2SO- and Serum-Free Cryopreservation Protocol for Human Mesenchymal Stem Cells. Cryobiology 2011, 63, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Yang, J.C.; Wang, C.W.; Lee, S.Y. Dental Stem Cells and Tooth Banking for Regenerative Medicine. J. Exp. Clin. Med. 2010, 2, 111–117. [Google Scholar] [CrossRef]
- Hoang, V.T.; Trinh, Q.M.; Phuong, D.T.M.; Bui, H.T.H.; Hang, L.M.; Ngan, N.T.H.; Anh, N.T.T.; Nhi, P.Y.; Nhung, T.T.H.; Lien, H.T.; et al. Standardized Xeno- and Serum-Free Culture Platform Enables Large-Scale Expansion of High-Quality Mesenchymal Stem/Stromal Cells from Perinatal and Adult Tissue Sources. Cytotherapy 2021, 23, 88–99. [Google Scholar] [CrossRef]
- CryoStor® CS10|HemaCare. Available online: https://www.hemacare.com/product/cryostor-cs10/ (accessed on 22 November 2021).
- Woods, E.; Thirumala, S.; Badhe-Buchanan, S.; Clarke, D.; Mathew, A. Off the Shelf Cellular Therapeutics: Factors to Consider During Cryopreservation and Storage of Human Cells for Clinical Use. Cytotherapy 2016, 18, S66. [Google Scholar] [CrossRef]
- Biological Industries. Cryopreservation Guide; Biological Industries: Beit Haemek, Israel, 2017; pp. 1–16. [Google Scholar]
- Shaik, S.; Devireddy, R. Cryopreservation Protocols for Human Adipose Tissue Derived Adult Stem Cells. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2018; Volume 1773, pp. 231–259. [Google Scholar]
- Samsonraj, R.M.; Rai, B.; Sathiyanathan, P.; Puan, K.J.; Rötzschke, O.; Hui, J.H.; Raghunath, M.; Stanton, L.W.; Nurcombe, V.; Cool, S.M. Establishing Criteria for Human Mesenchymal Stem Cell Potency. Stem Cells 2015, 33, 1878–1891. [Google Scholar] [CrossRef]
- Vašíček, J.; Kováč, M.; Baláži, A.; Kulíková, B.; Tomková, M.; Olexiková, L.; Čurlej, J.; Bauer, M.; Schnabl, S.; Hilgarth, M.; et al. Combined Approach for Characterization and Quality Assessment of Rabbit Bone Marrow-Derived Mesenchymal Stem Cells Intended for Gene Banking. N. Biotechnol. 2020, 54, 1–12. [Google Scholar] [CrossRef]
- Gurruchaga, H.; Saenz del Burgo, L.; Hernandez, R.M.; Orive, G.; Selden, C.; Fuller, B.; Ciriza, J.; Pedraz, J.L. Advances in the Slow Freezing Cryopreservation of Microencapsulated Cells. J. Control. Release 2018, 281, 119–138. [Google Scholar] [CrossRef]
- Rogulska, O.; Petrenko, Y.; Petrenko, A. DMSO-Free Cryopreservation of Adipose-Derived Mesenchymal Stromal Cells: Expansion Medium Affects Post-Thaw Survival. Cytotechnology 2017, 69, 265–276. [Google Scholar] [CrossRef]
- Mazur, P. The Role of Intracellular Freezing in the Death of Cells Cooled at Supraoptimal Rates. Cryobiology 1977, 14, 251–272. [Google Scholar] [CrossRef]
- Hunt, C.J. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfus. Med. Hemother. 2019, 46, 134–149. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Kim, U.; Lee, S.G.; Ryu, B.; Kim, J.; Igor, A.; Kim, J.S.; Jung, C.R.; Park, J.H.; Kim, C.Y. Vitrification for Cryopreservation of 2D and 3D Stem Cells Culture Using High Concentration of Cryoprotective Agents. BMC Biotechnol. 2020, 20, 45. [Google Scholar] [CrossRef]
- Zander, J.; Bruegel, M.; Kleinhempel, A.; Becker, S.; Petros, S.; Kortz, L.; Dorow, J.; Kratzsch, J.; Baber, R.; Ceglarek, U.; et al. Effect of Biobanking Conditions on Short-Term Stability of Biomarkers in Human Serum and Plasma. Clin. Chem. Lab. Med. 2014, 52, 629–639. [Google Scholar] [CrossRef]
- Zander, J.; Maier, B.; Zoller, M.; Döbbeler, G.; Frey, L.; Teupser, D.; Vogeser, M. Effects of Biobanking Conditions on Six Antibiotic Substances in Human Serum Assessed by a Novel Evaluation Protocol. Clin. Chem. Lab. Med. 2016, 54, 265–274. [Google Scholar] [CrossRef]
- Shaik, S.; Wu, X.; Gimble, J.M.; Devireddy, R. Non-Toxic Freezing Media to Retain the Stem Cell Reserves in Adipose Tissues. Cryobiology 2020, 96, 137–144. [Google Scholar] [CrossRef]
- Gao, S.; Takami, A.; Takeshita, K.; Niwa, R.; Kato, H.; Nakayama, T. Practical and Safe Method of Cryopreservation for Clinical Application of Human Adipose-Derived Mesenchymal Stem Cells without a Programmable Freezer or Serum. bioRxiv 2019, 41, 664524. [Google Scholar] [CrossRef]
- Pogozhykh, D.; Pogozhykh, O.; Prokopyuk, V.; Kuleshova, L.; Goltsev, A.; Blasczyk, R.; Mueller, T. Influence of Temperature Fluctuations during Cryopreservation on Vital Parameters, Differentiation Potential, and Transgene Expression of Placental Multipotent Stromal Cells. Stem Cell Res. Ther. 2017, 8, 66. [Google Scholar] [CrossRef]
- Mazini, L.; Ezzoubi, M.; Malka, G. Overview of Current Adipose-Derived Stem Cell (ADSCs) Processing Involved in Therapeutic Advancements: Flow Chart and Regulation Updates before and after COVID-19. Stem Cell Res. Ther. 2021, 12, 1. [Google Scholar] [CrossRef]
- Freitas, D.M.B.; Aguiar, A.M.; Favero, G.M. Isolation and Cryopreservation of Adipose Tissue Derived Stem Cells from Different Adipose Tissues in Obese Patients. J. Morphol. Sci. 2017, 34, 168–172. [Google Scholar] [CrossRef]
- Thirumala, S.; Goebel, W.S.; Woods, E.J. Clinical Grade Adult Stem Cell Banking. Organogenesis 2009, 5, 143–154. [Google Scholar] [CrossRef]
- Xu, Y.; Li-Ying Chan, L.; Chen, S.; Ying, B.; Zhang, T.; Liu, W.; Guo, H.; Wang, J.; Xu, Z.; Zhang, X.; et al. Optimization of UC-MSCs Cold-Chain Storage by Minimizing Temperature Fluctuations Using an Automatic Cryopreservation System. Cryobiology 2021, 99, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, D.R.; Nam, J.S.; Ahn, C.W.; Kim, H. Fetal Bovine Serum-Free Cryopreservation Methods for Clinical Banking of Human Adipose-Derived Stem Cells. Cryobiology 2018, 81, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Oishi, K.; Yukawa, H.; Noguchi, H.; Sasaki, M.; Iwata, H.; Hayashi, S. Cryopreservation of Human Adipose Tissue-Derived Stem/Progenitor Cells Using the Silk Protein Sericin. Cell Transplant. 2012, 21, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Jong, K.S.; Hui, Y.L.; Yu, C.M.; Ki, S.Y.; Kim, S.H.; Pak, H.H. The Impact of Cryoprotective Media on Cryopreservation of Cells Using Loading Trehalose. Cryobiology 2020, 92, 258–259. [Google Scholar] [CrossRef]
- Bahsoun, S.; Coopman, K.; Akam, E.C. The Impact of Cryopreservation on Bone Marrow-Derived Mesenchymal Stem Cells: A Systematic Review. J. Transl. Med. 2019, 17, 397. [Google Scholar] [CrossRef]
- Thirumala, S.; Zvonic, S.; Floyd, E.; Gimble, J.M.; Devireddy, R.V. Effect of Various Freezing Parameters on the Immediate Post-Thaw Membrane Integrity of Adipose Tissue Derived Adult Stem Cells. Biotechnol. Prog. 2005, 21, 1511–1524. [Google Scholar] [CrossRef]
- Rogulska, O.; Tykhvynska, O.; Revenko, O.; Grischuk, V.; Mazur, S.; Volkova, N.; Vasyliev, R.; Petrenko, A.; Petrenko, Y. Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells Int. 2019, 2019, 4150690. [Google Scholar] [CrossRef]
- Antebi, B.; Asher, A.M.; Rodriguez, L.A.; Moore, R.K.; Mohammadipoor, A.; Cancio, L.C. Cryopreserved Mesenchymal Stem Cells Regain Functional Potency Following a 24-h Acclimation Period. J. Transl. Med. 2019, 17, 297. [Google Scholar] [CrossRef]
- Bahsoun, S.; Coopman, K.; Akam, E.C. Quantitative Assessment of the Impact of Cryopreservation on Human Bone Marrow-Derived Mesenchymal Stem Cells: Up to 24 h Post-Thaw and Beyond. Stem Cell Res. Ther. 2020, 11, 540. [Google Scholar] [CrossRef]
- Arif, S.; Dilogo, I.H.; Pawitan, J.A.; Anggraeni, R.; Gani, Y.I. Senescent Profile of Cryopreserved Adipose Mesenchymal Stem Cells after Multiple Passages. Adv. Sci. Lett. 2017, 23, 6921–6927. [Google Scholar] [CrossRef]
- Van Pel, M.; Steeneveld, E.; van den Broeke, L.; Kortekaas, S.; de Hoop, T.D.; Fibbe, W.; Zwaginga, J. Comparability of MSC Manufacturing Protocols for Clinical Trials. Cytotherapy 2020, 22, S161. [Google Scholar] [CrossRef]
- Berens, C.; Heine, A.; Müller, J.; Held, S.A.E.; Mayer, K.; Brossart, P.; Oldenburg, J.; Pötzsch, B.; Wolf, D.; Rühl, H. Variable Resistance to Freezing and Thawing of CD34-Positive Stem Cells and Lymphocyte Subpopulations in Leukapheresis Products. Cytotherapy 2016, 18, 1325–1331. [Google Scholar] [CrossRef]
- Adewumi, O.; Aflatoonian, B.; Ahrlund-Richter, L.; Amit, M.; Andrews, P.W.; Beighton, G.; Bello, P.A.; Benvenisty, N.; Berry, L.S.; Bevan, S.; et al. Characterization of Human Embryonic Stem Cell Lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007, 25, 803–816. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Hynes, K.; Menichanin, D.; Bright, R.; Ivanovski, S.; Hutmacher, D.W.; Gronthos, S.; Bartold, P.M. Induced Pluripotent Stem Cells. J. Dent. Res. 2015, 94, 1508–1515. [Google Scholar] [CrossRef]
- Doss, M.X.; Sachinidis, A. Current Challenges of IPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019, 8, 403. [Google Scholar] [CrossRef]
- Aboul-Soud, M.A.M.; Alzahrani, A.J.; Mahmoud, A. Induced Pluripotent Stem Cells (IPSCs)—Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Tian, Y.; Park, J.; Dai, A.; Roberts, R.M.; Liu, Y.; Han, X. Efficient Long-Term Cryopreservation of Pluripotent Stem Cells at −80 °C. Sci. Rep. 2016, 6, 34476. [Google Scholar] [CrossRef]
- Uhrig, M.; Ezquer, F.; Ezquer, M. Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells. Cells 2022, 11, 799. [Google Scholar] [CrossRef]
- Amit, M.; Carpenter, M.K.; Inokuma, M.S.; Chiu, C.P.; Harris, C.P.; Waknitz, M.A.; Itskovitz-Eldor, J.; Thomson, J.A. Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture. Dev. Biol. 2000, 227, 271–278. [Google Scholar] [CrossRef]
- Cohen, R.I.; Thompson, M.L.; Schryver, B.; Ehrhardt, R.O. Standardized Cryopreservation of Pluripotent Stem Cells. Curr. Protoc. Stem Cell Biol. 2014, 28, 1C.14.1–1C.14.10. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Park, E.Y.H.; Fowler, A.; Yarmush, M.L.; Toner, M. Vitrification by Ultra-Fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Micro-Capillary: A Study Using Murine Embryonic Stem Cells. Cryobiology 2008, 56, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaindl, J.; Meiser, I.; Majer, J.; Sommer, A.; Krach, F.; Katsen-Globa, A.; Winkler, J.; Zimmermann, H.; Neubauer, J.C.; Winner, B. Zooming in on Cryopreservation of HiPSCs and Neural Derivatives: A Dual-Center Study Using Adherent Vitrification. Stem Cells Transl. Med. 2019, 8, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.; Liu, Z.; Long, P.; Zhao, X.; Li, Q.; Huang, Y.; Ma, Y. Cryopreservation of Human Induced Pluripotent Stem Cells by Using a New CryoLogic Vitrification Method. Cryobiology 2021, 98, 210–214. [Google Scholar] [CrossRef]
- Baharvand, H.; Salekdeh, G.H.; Taei, A.; Mollamohammadi, S. An Efficient and Easy-to-Use Cryopreservation Protocol for Human ES and IPS Cells. Nat. Protoc. 2010, 5, 588–594. [Google Scholar] [CrossRef]
- Reubinoff, B.E.; Pera, M.F.; Vajta, G.; Trounson, A.O. Effective Cryopreservation of Human Embryonic Stem Cells by the Open Pulled Straw Vitrification Method. Hum. Reprod. 2001, 16, 2187–2194. [Google Scholar] [CrossRef]
- Richards, M.; Fong, C.; Tan, S.; Chan, W.; Bongso, A. An Efficient and Safe Xeno-Free Cryopreservation Method for the Storage of Human Embryonic Stem Cells. Stem Cells 2004, 22, 779–789. [Google Scholar] [CrossRef]
- Mirabet, V.; Alvarez, M.; Solves, P.; Ocete, D.; Gimeno, C. Use of Liquid Nitrogen during Storage in a Cell and Tissue Bank: Contamination Risk and Effect on the Detectability of Potential Viral Contaminants. Cryobiology 2012, 64, 121–123. [Google Scholar] [CrossRef]
- Ohta, Y.; Takenaga, M.; Hamaguchi, A.; Ootaki, M.; Takeba, Y.; Kobayashi, T.; Watanabe, M.; Iiri, T.; Matsumoto, N. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury. Int. J. Mol. Sci. 2018, 19, 1963. [Google Scholar] [CrossRef]
- Zanata, F.; Bowles, A.; Frazier, T.; Lowry Curley, J.; Bunnell, B.A.; Wu, X.; Wade, J.; Devireddy, R.; Gimble, J.M.; Ferreira, L.M. Effect of Cryopreservation on Human Adipose Tissue and Isolated Stromal Vascular Fraction Cells: In Vitro and in Vivo Analyses. Plast. Reconstr. Surg. 2018, 141, 232E–243E. [Google Scholar] [CrossRef]
- Badowski, M.; Muise, A.; Harris, D. Long-Term Biobanking of Intact Tissue from Lipoaspirate. J. Clin. Med. 2019, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Sun, Y.; Wang, P.; Liu, L.; Gu, J. Human Adipose Tissue Cryopreservation: Impact of Different Calf Serum Concentrations on Tissue Viability. Biopreserv. Biobank. 2021, 19, 41–47. [Google Scholar] [CrossRef]
- Gal, S.; Pu, L.L.Q. An Update on Cryopreservation of Adipose Tissue. Plast. Reconstr. Surg. 2020, 145, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Massiah, G.; De Palma, G.; Negri, A.; Mele, F.; Loisi, D.; Paradiso, A.V.; Ressa, C.M. Cryopreservation of Adipose Tissue with and without Cryoprotective Agent Addition for Breast Lipofilling: A Cytological and Histological Study. Cryobiology 2021, 103, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Rossi, F.M.; Aldinucci, D.; Battiston, M.; Lombardi, E.; Zanolin, S.; Massarut, S.; Parodi, P.C.; Da Ponte, A.; Tessitori, G.; et al. Improved GMP Compliant Approach to Manipulate Lipoaspirates, to Cryopreserve Stromal Vascular Fraction, and to Expand Adipose Stem Cells in Xeno-Free Media. Stem Cell Res. Ther. 2018, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Crowley, C.A.; Smith, W.P.W.; Seah, K.T.M.; Lim, S.-K.; Khan, W.S. Cryopreservation of Human Adipose Tissues and Adipose-Derived Stem Cells with DMSO and/or Trehalose: A Systematic Review. Cells 2021, 10, 1837. [Google Scholar] [CrossRef]
- Zhang, P.; Tan, P. The Effect of Glycerol as a Cryoprotective Agent in the Cryopreservation of Adipose Tissue. Stem Cell Res. Ther. 2021, 13, 152. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, J.; Wang, H.; Yin, Y.; Wang, P.; Jin, P.; Zhang, A. Effects of Frozen Stromal Vascular Fraction on the Survival of Cryopreserved Fat Tissue. Aesthetic Plast. Surg. 2019, 43, 826–835. [Google Scholar] [CrossRef]
- Egger, D.; Oliveira, A.C.; Mallinger, B.; Hemeda, H.; Charwat, V.; Kasper, C. From 3D to 3D: Isolation of Mesenchymal Stem/Stromal Cells into a Three-Dimensional Human Platelet Lysate Matrix. Stem Cell Res. Ther. 2019, 10, 248. [Google Scholar] [CrossRef]
- Svalgaard, J.D.; Juul, S.; Vester-Glovinski, P.V.; Haastrup, E.K.; Ballesteros, O.R.; Lynggaard, C.D.; Jensen, A.K.; Fischer-Nielsen, A.; Herly, M.; Munthe-Fog, L. Lipoaspirate Storage Time and Temperature: Effects on Stromal Vascular Fraction Quality and Cell Composition. Cells Tissues Organs 2020, 209, 54–63. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, E.; Kim, K.J.; Jun, Y.J.; Rhie, J.W. Cryopreservation of Lipoaspirates: In Vitro Measurement of the Viability of Adipose-Derived Stem Cell and Lipid Peroxidation. Int. Wound J. 2020, 17, 1282–1290. [Google Scholar] [CrossRef]
- Kaplan, A.; Sackett, K.; Sumstad, D.; Kadidlo, D.; McKenna, D.H. Impact of Starting Material (Fresh versus Cryopreserved Marrow) on Mesenchymal Stem Cell Culture. Transfusion 2017, 57, 2216–2219. [Google Scholar] [CrossRef]
- Berger, D.R.; Aune, E.T.; Centeno, C.J.; Steinmetz, N.J. Cryopreserved Bone Marrow Aspirate Concentrate as a Cell Source for the Colony-Forming Unit Fibroblast Assay. Cytotherapy 2020, 22, 486–493. [Google Scholar] [CrossRef]
- Papazian, A.E.; Kfoury, Y.S.; Scadden, D.T. Shipping Mouse Bone Marrow: Keep It in the Bone. Exp. Hematol. 2017, 49, 68–72. [Google Scholar] [CrossRef]
- Carnevale, G.; Pisciotta, A.; Riccio, M.; De Biasi, S.; Gibellini, L.; Ferrari, A.; La Sala, G.B.; Bruzzesi, G.; Cossarizza, A.; De Pol, A. Optimized Cryopreservation and Banking of Human Bone-Marrow Fragments and Stem Cells. Biopreserv. Biobank. 2016, 14, 138–148. [Google Scholar] [CrossRef]
- Arutyunyan, I.; Fatkhudinov, T.; Sukhikh, G. Umbilical Cord Tissue Cryopreservation: A Short Review. Stem Cell Res. Ther. 2018, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Arutyunyan, I.V.; Strokova, S.; Makarov, V.; Mullabaeva, S.; Elchaninov, V.; Lokhonina, V.; Abramov, A.A.; Fatkhudinov, T.K. DMSO-Free Cryopreservation of Human Umbilical Cord Tissue. Bull. Exp. Biol. Med. 2018, 166, 155–162. [Google Scholar] [CrossRef]
- Shimazu, T.; Mori, Y.; Takahashi, A.; Tsunoda, H.; Tojo, A.; Nagamura-Inoue, T. Serum- and Xeno-Free Cryopreservation of Human Umbilical Cord Tissue as Mesenchymal Stromal Cell Source. Cytotherapy 2015, 17, 593–600. [Google Scholar] [CrossRef]
- Isildar, B.; Ozkan, S.; Oncul, M.; Baslar, Z.; Kaleli, S.; Tasyurekli, M.; Koyuturk, M. Comparison of Different Cryopreservation Protocols for Human Umbilical Cord Tissue as Source of Mesenchymal Stem Cells. Acta Histochem. 2019, 121, 361–367. [Google Scholar] [CrossRef]
- Skiles, M.L.; Marzan, A.J.; Brown, K.S.; Shamonki, J.M. Comparison of Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Isolated from Cryopreserved Material and Extracted by Explantation and Digestion Methods Utilizing a Split Manufacturing Model. Cytotherapy 2020, 22, 581–591. [Google Scholar] [CrossRef]
- Pravdyuk, A.I.; Petrenko, Y.A.; Fuller, B.J.; Petrenko, A.Y. Cryopreservation of Alginate Encapsulated Mesenchymal Stromal Cells. Cryobiology 2013, 66, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Katsen-Globa, A.; Meiser, I.; Petrenko, Y.A.; Ivanov, R.V.; Lozinsky, V.I.; Zimmermann, H.; Petrenko, A.Y. Towards Ready-to-Use 3-D Scaffolds for Regenerative Medicine: Adhesion-Based Cryopreservation of Human Mesenchymal Stem Cells Attached and Spread within Alginate-Gelatin Cryogel Scaffolds. J. Mater. Sci. Mater. Med. 2014, 25, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Nagao, M.; Sengupta, J.; Diaz-Dussan, D.; Adam, M.; Wu, M.; Acker, J.; Ben, R.; Ishihara, K.; Zeng, H.; Miura, Y.; et al. Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Appl. Bio Mater. 2018, 1, 356–366. [Google Scholar] [CrossRef]
- Mutsenko, V.; Knaack, S.; Lauterboeck, L.; Tarusin, D.; Sydykov, B.; Cabiscol, R.; Ivnev, D.; Belikan, J.; Beck, A.; Dipresa, D.; et al. Effect of ‘in Air’ Freezing on Post-Thaw Recovery of Callithrix Jacchus Mesenchymal Stromal Cells and Properties of 3D Collagen-Hydroxyapatite Scaffolds. Cryobiology 2020, 92, 215–230. [Google Scholar] [CrossRef]
- Egorikhina, M.N.; Rubtsova, Y.P.; Aleynik, D.Y. Long-Term Cryostorage of Mesenchymal Stem Cell-Containing Hybrid Hydrogel Scaffolds Based on Fibrin and Collagen. Gels 2020, 6, 44. [Google Scholar] [CrossRef]
Principle of Operation | ||
---|---|---|
endocellular (penetrating) | exocellular (non-penetrating) | |
Class of compounds by molecular weight | ||
low molecular weight compounds | high molecular compounds | |
Substances | ||
dimethyl sulfoxide (DMSO), glycerol, ethylene glycol, propylene glycol 1,2-propanediol, methanol, dimethylacetamide | oligosaccharides | high molecular polymer compounds |
sucrose, trehalose | ficoll, albumin, polyvinylpyrrolidone, hydroxyethyl starch, polyethylene glycol, hexamethylene hydroxyethyl urea, oxyethylated glycerin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linkova, D.D.; Rubtsova, Y.P.; Egorikhina, M.N. Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products. Cells 2022, 11, 2691. https://doi.org/10.3390/cells11172691
Linkova DD, Rubtsova YP, Egorikhina MN. Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products. Cells. 2022; 11(17):2691. https://doi.org/10.3390/cells11172691
Chicago/Turabian StyleLinkova, Daria D., Yulia P. Rubtsova, and Marfa N. Egorikhina. 2022. "Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products" Cells 11, no. 17: 2691. https://doi.org/10.3390/cells11172691
APA StyleLinkova, D. D., Rubtsova, Y. P., & Egorikhina, M. N. (2022). Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products. Cells, 11(17), 2691. https://doi.org/10.3390/cells11172691