Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. MHC Region SNP Selection
2.3. Statistical Analyses
3. Results
Association of SNPs in the MHC Region with Schizophrenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eaton, W.W.; Byrne, M.; Ewald, H.; Mors, O.; Chen, C.Y.; Agerbo, E.; Mortensen, P.B. Association of schizophrenia and autoimmune diseases: Linkage of Danish national registers. Am. J. Psychiatry 2006, 163, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G.; Krupp, I.M. Schizophrenia as an Immunologic Disorder I. Demonstration of antibrain globulins by fluorescent antibody techniques. Arch. Gen. Psychiatry 1967, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G.; Krupp, I.M.; Byers, L.W.; Liljekvist, J.I. Schizophrenia as an Immunologic Disorder II. Effects of Serum Protein Fractions on Brain Function. Arch. Gen. Psychiatry 1967, 16, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Shima, S.; Yano, K.; Sugiura, M.; Tokunaga, Y. Anticerebral antibodies in functional psychoses. Biol. Psychiatry 1991, 29, 322–328. [Google Scholar] [CrossRef]
- Heath, R.G.; Mccarron, K.L.; O’neil, C.E. Antiseptal brain antibody in IgG of schizophrenic patients. Biol. Psychiatry 1989, 25, 725–733. [Google Scholar] [CrossRef]
- Henneberg, A.E.; Horter, S.; Ruffert, S. Increased prevalence of antibrain antibodies in the sera from schizophrenic patients. Schizophr. Res. 1994, 14, 15–22. [Google Scholar] [CrossRef]
- Teplizki, H.A.; Sela, B.; Shoenfeld, Y. Autoantibodies to brain and polynucleotides in patients with schizophrenia: A puzzle. Immunol. Res. 1992, 11, 66–73. [Google Scholar] [CrossRef]
- Pathmanandavel, K.; Starling, J.; Dale, R.C.; Brilot, F. Autoantibodies and the immune hypothesis in psychotic brain diseases: Challenges and perspectives. Clin. Dev. Immunol. 2013, 2013, 257184. [Google Scholar] [CrossRef]
- Jeppesen, R.; Benros, M.E. Autoimmune Diseases and Psychotic Disorders. Front. Psychiatry 2019, 10, 131. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Greig, N.H. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front. Psychiatry 2021, 12, 536257. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, L.; Vellichirammal, N.N.; Alex, A.M.; Nair, I.V.; Nair, C.M.; Banerjee, M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J. Neuroinflamm. 2016, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P.; Macgregor, S.; Gurling, H.; Blackwood, D.H.R.; et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar]
- Shi, J.; Levinson, D.F.; Duan, J.; Sanders, A.R.; Zheng, Y.; Peâ, I. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009, 460, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietiläinen, O.P.; Mors, O.; Mortensen, P.B.; et al. Common variants conferring risk of schizophrenia. Nature 2009, 460, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Ripke, S.; O’dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013, 45, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, P. Is schizophrenia an HLA-associated disease? Psychol. Med. 1979, 9, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Berk, M.; Leboyer, M.; Tamouza, R. The MHC/HLA gene complex in major psychiatric disorders: Emerging roles and implications. Curr. Behav. Neurosci. Rep. 2018, 5, 179–188. [Google Scholar] [CrossRef]
- Kadasah, S.; Arfin, M.; Tariq, M. HLA-DRB1 association with schizophrenia in Saudi Arabian patients. Int. J. Psychiatry Clin. Pract. 2011, 15, 112–117. [Google Scholar] [CrossRef]
- Wright, P.; Donaldson, P.T.; Underhill, J.A.; Choudhuri, K.; Doherty, D.G.; Murray, R.M. Genetic association of the HLA DRB1 gene locus on chromosome 6p21.3 with schizophrenia. Am. J. Psychiatry 1996, 153, 1530–1533. [Google Scholar]
- Thomas, R.; Nair, S.B.; Banerjee, M. A crypto-Dravidian origin for the nontribal communities of South India based on human leukocyte antigen class I diversity. HLA 2006, 68, 225–234. [Google Scholar] [CrossRef]
- Saradalekshmi, K.R.; Neetha, N.V.; Sathyan, S.; Nair, I.V.; Nair, C.M.; Banerjee, M. DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS ONE 2014, 9, e98182. [Google Scholar]
- Wei, J.; Hemmings, G.P. The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat. Genet. 2000, 25, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Glessner, J.T.; Hakonarson, H. Common variants in polygenic schizophrenia. Genome. Biol. 2009, 10, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, X.J.; He, P.P.; Wang, Z.X.; Zhang, J.; Li, Y.B.; Wang, H.Y.; Wei, S.C.; Chen, S.Y.; Xu, S.J.; Jin, L.; et al. Evidence for a major psoriasis susceptibility locus at 6p21 (PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese Hans. J. Investig. Dermatol. 2002, 119, 1361–1366. [Google Scholar]
- Chang, Y.T.; Chou, C.T.; Shiao, Y.M.; Lin, M.W.; Yu, C.W.; Chen, C.C.; Huang, C.H.; Lee, D.D.; Liu, H.N.; Wang, W.J.; et al. Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 2006, 155, 663–669. [Google Scholar] [CrossRef]
- Miyaoka, T.; Seno, H.; Inagaki, T.; Ishino, H.; Ueda, D.; Ohno, T.; Dekio, S. Schizophrenia associated with psoriasis vulgaris: Three case reports. Schizophr. Res. 2000, 41, 383–386. [Google Scholar] [CrossRef]
- Yang, Y.W.; Lin, H.C. Increased Risk of Psoriasis among Patients with Schizophrenia: A Nationwide Population-based Study. Brit. J. Dermatol. 2012, 166, 899–900. [Google Scholar] [CrossRef]
- Ungprasert, P.; Wijarnpreecha, K.; Cheungpasitporn, W. Patients with psoriasis have a higher risk of schizophrenia: A systematic review and meta-analysis of observational studies. J. Postgrad. Med. 2019, 65, 141–145. [Google Scholar] [CrossRef]
- Gorwood, P.; Pouchot, J.; Vinceneux, P.; Puechal, X.; Flipo, R.M.; De Bandt, M.; Ades, J. Rheumatoid arthritis and schizophrenia: A negative association at a dimensional level. Schizophr. Res. 2004, 66, 21–29. [Google Scholar] [CrossRef]
- Sellgren, C.; Frisell, T.; Lichtenstein, P.; Landen, M.; Askling, J. The association between schizophrenia and rheumatoid arthritis: A nationwide population-based Swedish study on intraindividual and familial risks. Schizophr. Bull. 2014, 40, 1552–1559. [Google Scholar] [CrossRef]
- Euesden, J.; Breen, G.; Farmer, A.; McGuffin, P.; Lewis, C.M. The relationship between schizophrenia and rheumatoid arthritis revisited: Genetic and epidemiological analyses. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015, 168, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Plenge, R.M.; Seielstad, M.; Padyukov, L.; Lee, A.T.; Remmers, E.F.; Ding, B.; Liew, A.; Khalili, H.; Chandrasekaran, A.; Davies, L.R.; et al. TRAF1–C5 as a risk locus for rheumatoid arthritis—A genomewide study. N. Engl. J. Med. 2007, 357, 1199–1209. [Google Scholar] [CrossRef]
- Werner, M.C.; Wirgenes, K.V.; Shadrin, A.; Lunding, S.H.; Rødevand, L.; Hjell, G.; Ormerod, M.B.; Haram, M.; Agartz, I.; Djurovic, S.; et al. Immune marker levels in severe mental disorders: Associations with polygenic risk scores of related mental phenotypes and psoriasis. Transl. Psychiatry 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Corsi-Zuelli, F.; Deakin, B.; De Lima, M.H.; Qureshi, O.; Barnes, N.M.; Upthegrove, R.; Louzada-Junior, P.; Del-Ben, C.M. T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives. Brain Behav. Immun. Health 2021, 17, 100330. [Google Scholar] [CrossRef] [PubMed]
- Leykin, I.; Mayer, R.; Shinitzky, M. Short- and long-term immunosuppressive effects of clozapine and haloperidol. Immunopharmacology 1997, 37, 75–86. [Google Scholar] [CrossRef]
- Song, C.; Lin Ah Kenis, G.; Bosmans, E.; Maes, M. Immunosuppressive effects of clozapine and haloperidol: Enhanced production of the interleukin-1 receptor antagonist. Schizophr. Res. 2000, 42, 157–164. [Google Scholar] [CrossRef]
- Bujor, C.E.; Vang, T.; Nielsen, J.; Schjerning, O. Antipsychotic-associated psoriatic rash—A case report. BMC Psych. 2017, 17, 242. [Google Scholar] [CrossRef]
- Levine, J.; Gutman, J.; Feraro, R.; Levy, P.; Kimhi, R.; Leykin, I.; Deckmann, M.; Handzel, Z.T.; Shinitzky, M. Side effect profile of azathioprine in the treatment of chronic schizophrenic patients. Neuropsychobiology 1997, 36, 172–176. [Google Scholar] [CrossRef]
- Kelly, D.L.; Li, X.; Kilday, C.; Feldman, S.; Clark, S.; Liu, F.; Buchanan, R.W.; Tonelli, L.H. Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res. 2018, 269, 517–523. [Google Scholar] [CrossRef]
SNo. | dbSNP rs ID | Locus | Position | Alleles | SNP Functional Effect | Nearby Gene | Distance (bp) | Genotyping Method |
---|---|---|---|---|---|---|---|---|
1 | rs3130375 | 6p21.33 | 30429711 | A/C | -- | RPP21||LOC100129192 | −7100||−43,009 | KASPar assay |
2 | rs9368649 | 6p21.33 | 31046862 | A/G | -- | DPCR1||MUC21 | −16,885||−12,612 | KASPar assay |
3 | rs4713419 | 6p21.33 | 31101215 | A/G | TFBS | MUC21||LOC729792 | −35,561||−729 | KASPar assay |
4 | rs3815087 | 6p21.33 | 31201566 | G/A | Splicing regulation | PSORS1C1 | 10,964 | KASPar assay |
5 | rs1819788 | 6p21.33 | 31367116 | T/C | TFBS | HLA-C||HLA-B | −19,282||−62,512 | KASPar assay |
6 | rs9266336 | 6p21.33 | 31439114 | A/G | -- | HLA-B||LOC729816 | −6200||−2507 | KASPar assay |
7 | rs9266718 | 6p21.33 | 31457767 | C/T | -- | LOC729816 | −14,955 | KASPar assay |
8 | rs9267415 | 6p21.33 | 31579809 | A/G | -- | MICB | 5864 | TaqMan allelic discrimination |
9 | rs9267487 | 6p21.33 | 31619329 | C/T | TFBS | SNORD84||ATP6V1G2 | −2395||−889 | KASPar assay |
10 | rs1800629 | 6p21.33 | 31651010 | A/G | TFBS | LTA||TNF | −933||−319 | KASPar assay |
11 | rs361525 | 6p21.33 | 31651080 | A/G | TFBS | LTA||TNF | −1003||−249 | KASPar assay |
12 | rs3131296 | 6p21.32 | 32280971 | T/C | TFBS | NOTCH4 | 10,373||18,851 | KASPar assay |
13 | rs3130297 | 6p21.32 | 32306959 | C/T | -- | NOTCH4||C6orf10 | −7137||−61,494 | KASPar assay |
14 | rs9271850 | 6p21.32 | 32703038 | A/G | TFBS | HLA-DRB1||HLA-DQA1 | −37,479||−10,123 | KASPar assay |
15 | rs9272219 | 6p21.32 | 32710247 | G/T | TFBS | HLA-DRB1||HLA-DQA1 | −44,688||−2914 | KASPar assay |
SNP | CC | AC | AA | P | C | A | P | OR (95% CI) | |
---|---|---|---|---|---|---|---|---|---|
rs3130375 | Control | 242 (0.99) | 2 (0.01) | 0 | 0.12 | 486 (0.99) | 2 (0.01) | 0.03 | 5.0 (1.09–22.93) |
Case | 239 (0.96) | 8 (0.03) | 1 (0.01) | 486 (0.98) | 10 (0.02) | ||||
rs4713419 | AA | AG | GG | A | G | ||||
Control | 156 (0.64) | 78 (0.32) | 10 (0.04) | 0.19 | 390 (0.8) | 98 (0.2) | 0.14 | 1.25 (0.93–1.70) | |
Case | 141 (0.57) | 95 (0.38) | 12 (0.05) | 377 (0.76) | 119 (0.24) | ||||
rs3815087 | CC | CT | TT | C | T | ||||
Control | 149 (0.61) | 90 (0.37) | 5 (0.02) | 1.58 × 10−6 | 388 (0.80) | 100 (0.20) | 1.14 × 10−6 | 2.0 (1.50–2.67) | |
Case | 112 (0.45) | 103 (0.42) | 33 * (0.13) | 327 (0.66) | 169 (0.34) | ||||
rs1819788 | AA | AG | GG | A | G | ||||
Control | 234 (0.96) | 10 (0.04) | 0 | 0.41 | 478 (0.98) | 10 (0.02) | 0.33 | 1.49 (0.66–3.35) | |
Case | 234 (0.94) | 13 (0.05) | 1 (0.004) | 481 (0.97) | 15 (0.03) | ||||
rs9266336 | GG | AG | AA | G | A | ||||
Control | 111 (0.45) | 134 (0.55) | 0 | 0.92 | 356 (0.73) | 132 (0.27) | 0.99 | 0.99 (0.75–1.32) | |
Case | 114 (0.46) | 134 (0.54) | 0 | 362 (0.73) | 134 (0.27) | ||||
rs9266718 | TT | CT | CC | T | C | ||||
Control | 156 (0.64) | 76 (0.31) | 12 (0.05) | 0.23 | 390 (0.80) | 98 (0.20) | 0.73 | 1.05 (0.77–1.43) | |
Case | 151 (0.61) | 90 (0.36) | 7 (0.03) | 392 (0.79) | 104 (0.21) | ||||
rs9267415 | GG | AG | AA | G | A | ||||
Control | 85 (0.35) | 110 (0.45) | 49 (0.20) | 0.27 | 280 (0.57) | 208 (0.43) | 0.13 | 1.2 (0.94–1.57) | |
Case | 97 (0.39) | 114 (0.46) | 37 (0.15) | 308 (0.62) | 188 (0.38) | ||||
rs9267487 | TT | CT | CC | T | C | ||||
Control | 217 (0.89) | 25 (0.10) | 2 (0.01) | 0.003 | 459 (0.94) | 29 (0.06) | 0.03 | 1.66 (1.02–2.68) | |
Case | 201 (0.81) | 47 (0.19) | 0.00 | 449 (0.90) | 47 (0.10) | ||||
rs1800629 | GG | AG | AA | G | A | ||||
Control | 192 (0.78) | 51 (0.21) | 2 (0.01) | 0.09 | 434 (0.89) | 54 (0.11) | 0.62 | 1.11 (0.74–1.66) | |
Case | 203 (0.82) | 40 (0.16) | 5 (0.02) | 446 (0.90) | 50 (0.10) | ||||
rs361525 | GG | AG | AA | G | A | ||||
Control | 217 (0.89) | 25 (0.10) | 2 (0.01) | 0.019 | 459 (0.94) | 29 (0.06) | 0.018 | 1.77 (1.10–2.85) | |
Case | 199 (0.80) | 48 (0.19) | 1 (0.01) | 446 (0.90) | 50 (0.10) | ||||
rs3131296 | GG | AG | AA | G | A | ||||
Control | 207 (0.85) | 35 (0.14) | 2 (0.01) | 0.51 | 449 (0.92) | 39 (0.08) | 0.47 | 1.17 (0.75–1.84) | |
Case | 207 (0.83) | 36 (0.15) | 5 (0.02) | 450 (0.91) | 46 (0.09) | ||||
rs9271850 | AA | AG | GG | A | G | ||||
Control | 160 (0.66) | 66 (0.27) | 18 (0.07) | 0.26 | 386 (0.79) | 102 (0.21) | 0.68 | 1.06 (0.78–1.44) | |
Case | 151 (0.61) | 85 (0.34) | 12 (0.05) | 387 (0.78) | 109 (0.22) | ||||
rs9272219 | GG | GT | TT | G | T | ||||
Control | 191 (0.78) | 46 (0.19) | 7 (0.03) | 0.65 | 428 (0.88) | 60 (0.12) | 0.70 | 1.07 (0.74–1.56) | |
Case | 187 (0.75) | 57 (0.23) | 4 (0.02) | 431 (0.87) | 65 (0.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivas, L.; Vellichirammal, N.N.; Nair, I.V.; Nair, C.M.; Banerjee, M. Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background. Cells 2022, 11, 2695. https://doi.org/10.3390/cells11172695
Srinivas L, Vellichirammal NN, Nair IV, Nair CM, Banerjee M. Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background. Cells. 2022; 11(17):2695. https://doi.org/10.3390/cells11172695
Chicago/Turabian StyleSrinivas, Lekshmy, Neetha N. Vellichirammal, Indu V. Nair, Chandrasekharan M. Nair, and Moinak Banerjee. 2022. "Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background" Cells 11, no. 17: 2695. https://doi.org/10.3390/cells11172695
APA StyleSrinivas, L., Vellichirammal, N. N., Nair, I. V., Nair, C. M., & Banerjee, M. (2022). Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background. Cells, 11(17), 2695. https://doi.org/10.3390/cells11172695