Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation
Abstract
:1. Introduction
2. Tissue Expression of PepT2
3. Function of PepT2
4. Structure of PepT2
5. Substrates of PepT2
6. Transport Mechanism of PepT2
7. Regulation of PepT2
7.1. Genetic and Transcriptional Regulation of PepT2
7.2. Regulation by Hormones
7.3. Regulation by Development and Age
7.4. Regulation by Disease
7.5. Regulation by Posttranscriptional Modifications
7.6. Regulation by Other Proteins
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amasheh, S.; Wenzel, U.; Weber, W.M.; Clauss, W.; Daniel, H. Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes. J. Physiol. 1997, 504 Pt 1, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Shimada, S.; Guo, W.; Sato, K.; Kohmura, E.; Hayakawa, T.; Takagi, T.; Tohyama, M. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 1997, 272, 10205–10211. [Google Scholar] [CrossRef] [PubMed]
- Sakata, K.; Yamashita, T.; Maeda, M.; Moriyama, Y.; Shimada, S.; Tohyama, M. Cloning of a lymphatic peptide/histidine transporter. Biochem. J. 2001, 356, 53–60. [Google Scholar] [CrossRef]
- Van Aubel, R.A.M.H.; Masereeuw, R.; Russel, F.G.M. Molecular pharmacology of renal organic anion transporters. Am. J. Physiol. Renal Physiol. 2000, 279, F216–F232. [Google Scholar] [CrossRef]
- Lu, X.; Chan, T.; Xu, C.; Zhu, L.; Zhou, Q.T.; Roberts, K.D.; Chan, H.K.; Li, J.; Zhou, F. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J. Antimicrob. Chemother. 2016, 71, 403–412. [Google Scholar] [CrossRef]
- Sala-Rabanal, M.; Loo, D.D.F.; Hirayama, B.A.; Wright, E.M. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. Am. J. Physiol. Renal Physiol. 2008, 294, F1422–F1432. [Google Scholar] [CrossRef]
- Agarwal, S.; Boddu, S.H.; Jain, R.; Samanta, S.; Pal, D.; Mitra, A.K. Peptide prodrugs: Improved oral absorption of lopinavir, a HIV protease inhibitor. Int. J. Pharm. 2008, 359, 7–14. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Zhao, H.; Wang, Q.; Pan, Y. Comparative analysis of vertebrate PEPT1 and PEPT2 genes. Genetica 2010, 138, 587–599. [Google Scholar] [CrossRef]
- Lu, H.; Klaassen, C. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents. Peptides 2006, 27, 850–857. [Google Scholar] [CrossRef]
- Liu, W.; Liang, R.; Ramamoorthy, S.; Fei, Y.J.; Ganapathy, M.E.; Hediger, M.A.; Ganapathy, V.; Leibach, F.H. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1995, 1235, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Lu, K. Substrates of the human oligopeptide transporter hPEPT2. Biosci. Trends 2015, 9, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Keep, R.F.; Liang, Y.; Zhu, H.-J.; Hammarlund-Udenaes, M.; Hu, Y.; Smith, D.E. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: A microdialysis study. Biochem. Pharmacol. 2017, 131, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E.; Johanson, C.E.; Keep, R.F. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv. Drug Deliv. Rev. 2004, 56, 1765–1791. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.A.; Keep, R.F.; Smith, D.E. Role and Relevance of PEPT2 in Drug Disposition, Dynamics, and Toxicity. Drug Metab. Pharmacokinet. 2008, 23, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.; Herget, M.; Wagener, M.; Weber, W.M.; Markovich, D.; Biber, J.; Clauss, W.; Murer, H.; Daniel, H. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. USA 1996, 93, 284–289. [Google Scholar] [CrossRef]
- Shen, H.; Smith, D.E.; Yang, T.; Huang, Y.G.; Schnermann, J.B.; Brosius, F.C. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 1999, 276, F658–F665. [Google Scholar] [CrossRef]
- Shen, H.; Smith, D.E.; Keep, R.F.; Brosius, F.C. Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol. Pharm. 2004, 1, 248–256. [Google Scholar] [CrossRef]
- Novotny, A.; Xiang, J.; Stummer, W.; Teuscher, N.S.; Smith, D.E.; Keep, R.F. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J. Neurochem. 2000, 75, 321–328. [Google Scholar] [CrossRef]
- Shu, C.; Shen, H.; Teuscher, N.S.; Lorenzi, P.J.; Keep, R.F.; Smith, D.E. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: Studies in rat choroid plexus epithelial cells in primary culture. J. Pharmacol. Exp. Ther. 2002, 301, 820–829. [Google Scholar] [CrossRef]
- Teuscher, N.S.; Novotny, A.; Keep, R.F.; Smith, D.E. Functional evidence for presence of PEPT2 in rat choroid plexus: Studies with glycylsarcosine. J. Pharmacol. Exp. Ther. 2000, 294, 494–499. [Google Scholar]
- Teuscher, N.S.; Keep, R.F.; Smith, D.E. PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. 2001, 18, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Groneberg, D.A.; Nickolaus, M.; Springer, J.; Döring, F.; Daniel, H.; Fischer, A. Localization of the peptide transporter PEPT2 in the lung: Implications for pulmonary oligopeptide uptake. Am. J. Pathol. 2001, 158, 707–714. [Google Scholar] [CrossRef]
- Shu, D.-P.; Chen, B.-L.; Hong, J.; Liu, P.-P.; Hou, D.-X.; Huang, X.; Zhang, F.-T.; Wei, J.-L.; Guan, W.-T. Global transcriptional profiling in porcine mammary glands from late pregnancy to peak lactation. OMICS 2012, 16, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Alcorn, J.; Lu, X.; Moscow, J.A.; McNamara, P.J. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J. Pharmacol. Exp. Ther. 2002, 303, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, S.E.; Alcorn, J. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam. Clin. Pharmacol. 2010, 24, 205–214. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Y.; Zhao, F.-Q.; Liu, J.; Liu, H. Functional Characterization of Peptide Transporters in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2019, 67, 213–219. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.-Q.; Liu, J.; Liu, H. Short communication: The essential role of N-glycosylation in the transport activity of bovine peptide transporter 2. J. Dairy Sci. 2020, 103, 6679–6683. [Google Scholar] [CrossRef]
- Berger, U.V.; Hediger, M.A. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryol. 1999, 199, 439–449. [Google Scholar] [CrossRef]
- Kudo, M.; Katayoshi, T.; Kobayashi-Nakamura, K.; Akagawa, M.; Tsuji-Naito, K. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport. Biochem. Biophys. Res. Commun. 2016, 475, 335–341. [Google Scholar] [CrossRef]
- Rühl, A.; Hoppe, S.; Frey, I.; Daniel, H.; Schemann, M. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J. Comp. Neurol. 2005, 490, 1–11. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Y.; Tan, F.; Fang, D.; Hu, Y.; Smith, D.E.; Jiang, H. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol. Pharm. 2013, 10, 1409–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Song, F.; Jiang, H.; Nuñez, G.; Smith, D.E. SLC15A2 and SLC15A4 Mediate the Transport of Bacterially Derived Di/Tripeptides To Enhance the Nucleotide-Binding Oligomerization Domain-Dependent Immune Response in Mouse Bone Marrow-Derived Macrophages. J. Immunol. 2018, 201, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Shennan, D.B.; Peaker, M. Transport of milk constituents by the mammary gland. Physiol. Rev. 2000, 80, 925–951. [Google Scholar] [CrossRef]
- Ocheltree, S.M.; Shen, H.; Hu, Y.; Xiang, J.; Keep, R.F.; Smith, D.E. Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: Studies in wild-type and null mice. Pharm. Res. 2004, 21, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Bravo, S.A.; Nielsen, C.U.; Amstrup, J.; Frokjaer, S.; Brodin, B. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2. Am. J. Physiol. Renal Physiol. 2004, 286, F385–F393. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, H.; Keep, R.F.; Smith, D.E. Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J. Neurochem. 2007, 103, 2058–2065. [Google Scholar] [CrossRef]
- Shen, H.; Keep, R.F.; Hu, Y.; Smith, D.E. PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. J. Pharmacol. Exp. Ther. 2005, 315, 1101–1108. [Google Scholar] [CrossRef]
- Sun, D.; Tan, F.; Fang, D.; Wang, Y.; Zeng, S.; Jiang, H. Expression of proton-coupled oligopeptide transporter (POTs) in prostate of mice and patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Prostate 2013, 73, 287–295. [Google Scholar] [CrossRef]
- Rubio-Aliaga, I.; Frey, I.; Boll, M.; Groneberg, D.A.; Eichinger, H.M.; Balling, R.; Daniel, H. Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol. Cell. Biol. 2003, 23, 3247–3252. [Google Scholar] [CrossRef]
- Takano, M.; Sugimoto, N.; Ehrhardt, C.; Yumoto, R. Functional Expression of PEPT2 in the Human Distal Lung Epithelial Cell Line NCl-H441. Pharm. Res. 2015, 32, 3916–3926. [Google Scholar] [CrossRef]
- Backwell, F.R.; Bequette, B.J.; Wilson, D.; Calder, A.G.; Metcalf, J.A.; Wray-Cahen, D.; MacRae, J.C.; Beever, D.E.; Lobley, G.E. Utilization of dipeptides by the caprine mammary gland for milk protein synthesis. Am. J. Physiol. 1994, 267, R1–R6. [Google Scholar] [CrossRef] [PubMed]
- Groneberg, D.A.; Döring, F.; Theis, S.; Nickolaus, M.; Fischer, A.; Daniel, H. Peptide transport in the mammary gland: Expression and distribution of PEPT2 mRNA and protein. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1172–E1179. [Google Scholar] [CrossRef]
- Alghamdi, O.; King, N.; Jones, G.L.; Moens, P.D.J. Effect of ageing and hypertension on the expression and activity of PEPT2 in normal and hypertrophic hearts. Amino Acids 2021, 53, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; King, N. Demonstration of functional dipeptide transport with expression of PEPT2 in guinea pig cardiomyocytes. Pflugers. Arch. 2007, 453, 915–922. [Google Scholar] [CrossRef]
- Matthews, J.C.; Webb, K.E. Absorption of L-carnosine, L-methionine, and L-methionylglycine by isolated sheep ruminal and omasal epithelial tissue. J. Anim. Sci. 1995, 73, 3464–3475. [Google Scholar] [CrossRef] [PubMed]
- Tagari, H.; Webb, K.; Theurer, B.; Huber, T.; DeYoung, D.; Cuneo, P.; Santos, J.E.P.; Simas, J.; Sadik, M.; Alio, A.; et al. Portal drained visceral flux, hepatic metabolism, and mammary uptake of free and peptide-bound amino acids and milk amino acid output in dairy cows fed diets containing corn grain steam flaked at 360 or steam rolled at 490 g/L. J. Dairy Sci. 2004, 87, 413–430. [Google Scholar] [CrossRef]
- Tagari, H.; Webb, K.; Theurer, B.; Huber, T.; DeYoung, D.; Cuneo, P.; Santos, J.E.P.; Simas, J.; Sadik, M.; Alio, A.; et al. Mammary uptake, portal-drained visceral flux, and hepatic metabolism of free and peptide-bound amino acids in cows fed steam-flaked or dry-rolled sorghum grain diets. J. Dairy Sci. 2008, 91, 679–697. [Google Scholar] [CrossRef]
- Ganapathy, V.; Leibach, F.H. Carrier-mediated reabsorption of small peptides in renal proximal tubule. Am. J. Physiol. 1986, 251, F945–F953. [Google Scholar] [CrossRef]
- Seal, C.J.; Parker, D.S. Isolation and characterization of circulating low molecular weight peptides in steer, sheep and rat portal and peripheral blood. Comp. Biochem. Physiol. B 1991, 99, 679–685. [Google Scholar] [CrossRef]
- Adibi, S.A. Renal assimilation of oligopeptides: Physiological mechanisms and metabolic importance. Am. J. Physiol. 1997, 272, E723–E736. [Google Scholar] [CrossRef]
- Rubio-Aliaga, I.; Daniel, H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008, 38, 1022–1042. [Google Scholar] [CrossRef]
- Shen, H.; Ocheltree, S.M.; Hu, Y.; Keep, R.F.; Smith, D.E. Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab. Dispos. 2007, 35, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, C.; Meng, Q.; Liu, Q.; Sun, P.; Sun, H.; Guo, X.; Liu, K. The oligopeptide transporter 2-mediated reabsorption of entecavir in rat kidney. Eur. J. Pharm. Sci. 2014, 52, 41–47. [Google Scholar] [CrossRef]
- Ocheltree, S.M.; Shen, H.; Hu, Y.; Xiang, J.; Keep, R.F.; Smith, D.E. Mechanisms of cefadroxil uptake in the choroid plexus: Studies in wild-type and PEPT2 knockout mice. J. Pharmacol. Exp. Ther. 2004, 308, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Broer, S.; Fairweather, S.J. Amino Acid Transport Across the Mammalian Intestine. Compr. Physiol. 2019, 9, 343–373. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, Y.; Keep, R.F.; Smith, D.E. Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J. Neurochem. 2009, 109, 1536–1543. [Google Scholar] [CrossRef]
- Xiang, J.; Chiang, P.-P.; Hu, Y.; Smith, D.E.; Keep, R.F. Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neurosci. Lett. 2006, 396, 225–229. [Google Scholar] [CrossRef]
- Xiang, J.; Hu, Y.; Smith, D.E.; Keep, R.F. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Res. 2006, 1122, 18–23. [Google Scholar] [CrossRef]
- Xiang, J.; Jiang, H.; Hu, Y.; Smith, D.E.; Keep, R.F. Kyotorphin transport and metabolism in rat and mouse neonatal astrocytes. Brain Res. 2010, 1347, 11–18. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Fischer, A.; Chung, K.F.; Daniel, H. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am. J. Respir. Cell Mol. Biol. 2004, 30, 251–260. [Google Scholar] [CrossRef]
- Li, L.; Wang, D.; Zhang, X.; Song, X.; Ma, X.; Hu, Z. Expression of PEPT2 mRNA in lung tissue of rats with pulmonary fibrosis. Zhongguo Fei Ai Za Zhi 2013, 16, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Takeuchi, T.; Kuriyama, S.; Yumoto, R. Role of peptide transporter 2 and MAPK signaling pathways in the innate immune response induced by bacterial peptides in alveolar epithelial cells. Life Sci. 2019, 229, 173–179. [Google Scholar] [CrossRef]
- Baumrucker, C.R. Amino acid transport systems in bovine mammary tissue. J. Dairy Sci. 1985, 68, 2436–2451. [Google Scholar] [CrossRef]
- Lopachev, A.V.; Abaimov, D.A.; Filimonov, I.S.; Kulichenkova, K.N.; Fedorova, T.N. An assessment of the transport mechanism and intraneuronal stability of L-carnosine. Amino Acids 2022, 54, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Terada, T.; Inui, K.-I. Peptide transporters: Structure, function, regulation and application for drug delivery. Curr. Drug Metab. 2004, 5, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Döring, F.; Martini, C.; Walter, J.; Daniel, H. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function. J. Membr. Biol. 2002, 186, 55–62. [Google Scholar] [CrossRef]
- Hu, Y.; Ocheltree, S.M.; Xiang, J.; Keep, R.F.; Smith, D.E. Glycyl-L-glutamine disposition in rat choroid plexus epithelial cells in primary culture: Role of PEPT2. Pharm. Res. 2005, 22, 1281–1286. [Google Scholar] [CrossRef]
- Fei, Y.J.; Liu, J.C.; Fujita, T.; Liang, R.; Ganapathy, V.; Leibach, F.H. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras. Biochem. Biophys. Res. Commun. 1998, 246, 39–44. [Google Scholar] [CrossRef]
- Terada, T.; Irie, M.; Okuda, M.; Inui, K. Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Biochem. Biophys. Res. Commun. 2004, 316, 416–420. [Google Scholar] [CrossRef]
- Helliwell, P.A.; Meredith, D.; Boyd, C.A.; Bronk, J.R.; Lister, N.; Bailey, P.D. Tripeptide transport in rat lung. Biochim. Biophys. Acta 1994, 1190, 430–434. [Google Scholar] [CrossRef]
- Saito, H.; Terada, T.; Okuda, M.; Sasaki, S.; Inui, K. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta 1996, 1280, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Pao, S.S.; Paulsen, I.T.; Saier, M.H., Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 1998, 62, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Killer, M.; Wald, J.; Pieprzyk, J.; Marlovits, T.C.; Löw, C. Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. Sci. Adv. 2021, 7, eabk3259. [Google Scholar] [CrossRef]
- Parker, J.L.; Deme, J.C.; Wu, Z.; Kuteyi, G.; Huo, J.; Owens, R.J.; Biggin, P.C.; Lea, S.M.; Newstead, S. Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals. Sci. Adv. 2021, 7, eabh3355. [Google Scholar] [CrossRef]
- Fei, Y.J.; Liu, W.; Prasad, P.D.; Kekuda, R.; Oblak, T.G.; Ganapathy, V.; Leibach, F.H. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry 1997, 36, 452–460. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Liu, W.; Ma, Y.Y.; Yang-Feng, T.L.; Ganapathy, V.; Leibach, F.H. Proton/peptide cotransporter (PEPT 2) from human kidney: Functional characterization and chromosomal localization. Biochim. Biophys. Acta 1995, 1240, 1–4. [Google Scholar] [CrossRef]
- Terada, T.; Saito, H.; Sawada, K.; Hashimoto, Y.; Inui, K. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm. Res. 2000, 17, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Döring, F.; Dorn, D.; Bachfischer, U.; Amasheh, S.; Herget, M.; Daniel, H. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J. Physiol. 1996, 497 Pt 3, 773–779. [Google Scholar] [CrossRef]
- Daniel, H.; Herget, M. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 1997, 273, F1–F8. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H.; Spanier, B.; Kottra, G.; Weitz, D. From bacteria to man: Archaic proton-dependent peptide transporters at work. Physiology 2006, 21, 93–102. [Google Scholar] [CrossRef]
- Theis, S.; Knutter, I.; Hartrodt, B.; Brandsch, M.; Kottra, G.; Neubert, K.; Daniel, H. Synthesis and characterization of high affinity inhibitors of the H+/peptide transporter PEPT2. J. Biol. Chem. 2002, 277, 7287–7292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doring, F.; Will, J.; Amasheh, S.; Clauss, W.; Ahlbrecht, H.; Daniel, H. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem. 1998, 273, 23211–23218. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.J.; Nara, E.; Liu, J.C.; Boyd, C.A.; Ganapathy, V.; Leibach, F.H. Preferential recognition of zwitterionic dipeptides as transportable substrates by the high-affinity peptide transporter PEPT2. Biochim. Biophys. Acta 1999, 1418, 344–351. [Google Scholar] [CrossRef]
- Payne, J.W.; Grail, B.M.; Gupta, S.; Ladbury, J.E.; Marshall, N.J.; O’Brien, R.; Payne, G.M. Structural basis for recognition of dipeptides by peptide transporters. Arch. Biochem. Biophys. 2000, 384, 9–23. [Google Scholar] [CrossRef]
- Luckner, P.; Brandsch, M. Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: Analysis of affinity constants and comparison with PEPT1. Eur. J. Pharm. Biopharm. 2005, 59, 17–24. [Google Scholar] [CrossRef]
- Liu, R.; Tang, A.M.Y.; Tan, Y.L.; Limenta, L.M.G.; Lee, E.J.D. Interethnic differences of PEPT2 (SLC15A2) polymorphism distribution and associations with cephalexin pharmacokinetics in healthy Asian subjects. Eur. J. Clin. Pharmacol. 2009, 65, 65–70. [Google Scholar] [CrossRef]
- Takahashi, K.; Nakamura, N.; Terada, T.; Okano, T.; Futami, T.; Saito, H.; Inui, K.I. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes. J. Pharmacol. Exp. Ther. 1998, 286, 1037–1042. [Google Scholar]
- Ganapathy, M.E.; Huang, W.; Wang, H.; Ganapathy, V.; Leibach, F.H. Valacyclovir: A substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 1998, 246, 470–475. [Google Scholar] [CrossRef]
- Shu, C.; Shen, H.; Hopfer, U.; Smith, D.E. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: Uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. 2001, 29, 1307–1315. [Google Scholar]
- Inui, K.; Okano, T.; Takano, M.; Saito, H.; Hori, R. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles. Biochim. Biophys. Acta 1984, 769, 449–454. [Google Scholar] [CrossRef]
- Ries, M.; Wenzel, U.; Daniel, H. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems. J. Pharmacol. Exp. Ther. 1994, 271, 1327–1333. [Google Scholar] [PubMed]
- Smith, D.E.; Hu, Y.; Shen, H.; Nagaraja, T.N.; Fenstermacher, J.D.; Keep, R.F. Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J. Cereb. Blood Flow Metab. 2011, 31, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.T.; Goralski, K.B.; Piquette-Miller, M.; Renton, K.W.; Robertson, G.R.; Chaluvadi, M.R.; Charles, K.A.; Clarke, S.J.; Kacevska, M.; Liddle, C.; et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab. Dispos. 2008, 36, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirai, T.; Heymann, J.A.; Shi, D.; Sarker, R.; Maloney, P.C.; Subramaniam, S. Three-dimensional structure of a bacterial oxalate transporter. Nat. Struct. Biol. 2002, 9, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Fowler, P.W.; Orwick-Rydmark, M.; Radestock, S.; Solcan, N.; Dijkman, P.M.; Lyons, J.A.; Kwok, J.; Caffrey, M.; Watts, A.; Forrest, L.R.; et al. Gating Topology of the Proton-Coupled Oligopeptide Symporters. Structure 2015, 23, 290–301. [Google Scholar] [CrossRef]
- Solcan, N.; Kwok, J.; Fowler, P.W.; Cameron, A.D.; Drew, D.; Iwata, S.; Newstead, S. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 2012, 31, 3411–3421. [Google Scholar] [CrossRef]
- Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 488–499. [Google Scholar] [CrossRef]
- Parker, J.L.; Li, C.; Brinth, A.; Wang, Z.; Vogeley, L.; Solcan, N.; Ledderboge-Vucinic, G.; Swanson, J.M.J.; Caffrey, M.; Voth, G.A.; et al. Proton movement and coupling in the POT family of peptide transporters. Proc. Natl. Acad. Sci. USA 2017, 114, 13182–13187. [Google Scholar] [CrossRef]
- Quistgaard, E.M.; Low, C.; Guettou, F.; Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way. Nat. Rev. Mol. Cell Biol. 2016, 17, 123–132. [Google Scholar] [CrossRef]
- Newstead, S.; Drew, D.; Cameron, A.D.; Postis, V.L.G.; Xia, X.B.; Fowler, P.W.; Ingram, J.C.; Carpenter, E.P.; Sansom, M.S.P.; McPherson, M.J.; et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 2011, 30, 417–426. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Liu, J.; Liu, H. Dipeptide (Methionyl-Methionine) Transport and Its Effect on β-Casein Synthesis in Bovine Mammary Epithelial Cells. Cell. Physiol. Biochem. 2018, 49, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.M.; Wu, Y.M.; Liu, H.Y.; Zhao, K.; Liu, J.X. Effects of tripeptides and lactogenic hormones on oligopeptide transporter 2 in bovine mammary gland. J. Anim. Physiol. Anim. Nutr. 2011, 95, 781–789. [Google Scholar] [CrossRef]
- Sondergaard, H.B.; Bravo, S.A.; Nielsen, C.U.; Frokjaer, S.; Brodin, B. Cloning of the pig PEPT2 (pPEPT2) and characterization of the effects of epidermal growth factor (EGF) on pPEPT2-mediated peptide uptake in the renal porcine cell line LLC-PK1. Eur. J. Pharm. Sci. 2008, 33, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Kuriyama, S.; Kameda, N.; Kawami, M.; Yumoto, R. Effect of Corticosteroids on Peptide Transporter 2 Function and Induction of Innate Immune Response by Bacterial Peptides in Alveolar Epithelial Cells. Biol. Pharm. Bull. 2022, 45, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.; Sousa, J.C.; Coppola, G.; Falcao, A.M.; Rodrigues, A.J.; Geschwind, D.H.; Sousa, N.; Correia-Neves, M.; Palha, J.A. Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J. Cereb. Blood Flow Metab. 2009, 29, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Höcherl, K.; Schmidt, C.; Bucher, M. COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex. Kidney Int. 2009, 75, 373–380. [Google Scholar] [CrossRef]
- Huh, Y.; Keep, R.F.; Smith, D.E. Impact of lipopolysaccharide-induced inflammation on the disposition of the aminocephalosporin cefadroxil. Antimicrob. Agents Chemother. 2013, 57, 6171–6178. [Google Scholar] [CrossRef]
- Wada, M.; Miyakawa, S.; Shimada, A.; Okada, N.; Yamamoto, A.; Fujita, T. Functional linkage of H+/peptide transporter PEPT2 and Na+/H+ exchanger in primary cultures of astrocytes from mouse cerebral cortex. Brain Res. 2005, 1044, 33–41. [Google Scholar] [CrossRef]
- Noshiro, R.; Anzai, N.; Sakata, T.; Miyazaki, H.; Terada, T.; Shin, H.J.; He, X.; Miura, D.; Inui, K.; Kanai, Y.; et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney Int. 2006, 70, 275–282. [Google Scholar] [CrossRef]
- Wenzel, U.; Diehl, D.; Herget, M.; Kuntz, S.; Daniel, H. Regulation of the high-affinity H+/peptide cotransporter in renal LLC-PK1 cells. J. Cell. Physiol. 1999, 178, 341–348. [Google Scholar] [CrossRef]
- Adibi, S.A.; Lochs, H.; Abumrad, N.N.; Daniel, H.; Vazquez, J.A. Removal of glycylglutamine from plasma by individual tissues: Mechanism and impact on amino acid fluxes in postabsorption and starvation. J. Nutr. 1993, 123, 325–331. [Google Scholar] [CrossRef]
- Sun, Y.; Teng, T.; Bai, G.; Qiu, S.; Shi, B.; Ju, D.; Zhao, X. Protein-restricted diet balanced for lysine, methionine, threonine, and tryptophan for nursery pigs elicits subsequent compensatory growth and has long term effects on protein metabolism and organ development. Anim. Feed Sci. Technol. 2020, 270, 114712. [Google Scholar] [CrossRef]
- Alghamdi, O.A.; King, N.; Andronicos, N.M.; Jones, G.L.; Chami, B.; Witting, P.K.; Moens, P.D.J. Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. Mol. Cell. Biochem. 2019, 452, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Smith, D.E.; Brosius, F.C. Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatr. Res. 2001, 49, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xie, Y.; Keep, R.F.; Smith, D.E. Divergent developmental expression and function of the proton-coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat. J. Neurochem. 2014, 129, 955–965. [Google Scholar] [CrossRef]
- Takano, M.; Horiuchi, T.; Sasaki, Y.; Kato, Y.; Nagai, J.; Yumoto, R. Expression and function of PEPT2 during transdifferentiation of alveolar epithelial cells. Life Sci. 2013, 93, 630–636. [Google Scholar] [CrossRef]
- Li, L.-B.; Chen, N.; Ramamoorthy, S.; Chi, L.; Cui, X.-N.; Wang, L.C.; Reith, M.E.A. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. 2004, 279, 21012–21020. [Google Scholar] [CrossRef]
- Haga, Y.; Ishii, K.; Suzuki, T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J. Biol. Chem. 2011, 286, 31320–31327. [Google Scholar] [CrossRef]
- Hayashi, H.; Yamashita, Y. Role of N-glycosylation in cell surface expression and protection against proteolysis of the intestinal anion exchanger SLC26A3. Am. J. Physiol. Cell Physiol. 2012, 302, C781–C795. [Google Scholar] [CrossRef]
- Warsi, J.; Hosseinzadeh, Z.; Elvira, B.; Pelzl, L.; Shumilina, E.; Zhang, D.-E.; Lang, K.S.; Lang, P.A.; Lang, F. USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2. PLoS ONE 2015, 10, e0129365. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Liu, J.; Liu, H. The ubiquitin ligase Nedd4-2 mediates the regulation of PepT2 by mTORC1 in bovine mammary epithelial cells. Anim. Nutr. 2022, 10, 12–18. [Google Scholar] [CrossRef]
- Moe, O.W. Scaffolds: Orchestrating proteins to achieve concerted function. Kidney Int. 2003, 64, 1916–1917. [Google Scholar] [CrossRef] [PubMed]
- Brandsch, M.; Ganapathy, V.; Leibach, F.H. H(+)-peptide cotransport in Madin-Darby canine kidney cells: Expression and calmodulin-dependent regulation. Am. J. Physiol. 1995, 268, F391–F397. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, K.; Kinross, K.M.; Solomon, B.; Pearson, R.B.; Phillips, W.A. Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit. Rev. Oncogenes. 2012, 17, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Rexhepaj, R.; Artunc, F.; Metzger, M.; Skutella, T.; Lang, F. PI3-kinase-dependent electrogenic intestinal transport of glucose and amino acids. Pflugers. Arch. 2007, 453, 863–870. [Google Scholar] [CrossRef]
Tissue | Localization | Species | Function | References |
---|---|---|---|---|
Brain | the apical membrane of epithelial cells of the choroid plexus | Human, Rat, Mouse | responsible for the uptake of carnosine from cerebrospinal fluid | [17,19,20,36,37]; |
Reproductive organ | reproductive organs including testis, prostate, ovary and uterus | Rat, Mouse | absorption of di- and tri-peptides and peptidomimetic drugs in reproductive organ | [9,38] |
Spleen | splenic lymphocytes and macrophages | Mouse, Human | mediate the innate immune response to bacterially produced chemotactic peptidomimetics in the spleen, especially macrophages | [31] |
Kidney | brush border membrane of the epithelial cells in the proximal tubule | Human, Rat, Mouse, Rabbit | tubular reabsorption of carnosine into epithelial cells | [10,15,16,39] |
Lung | bronchial epithelial cells and alveolar type II epithelial cells | Human | mediates the active translocation of peptides across the lung | [40] |
Mammary gland | epithelial cells of mammary glands and ducts | Rat, Rabbit, Bovine, Human, Pig, Caprine | mediates the transport of peptides into the mammary gland | [23,25,26,27,41,42] |
Skin | keratinocytes | Human | mediates the absorption of di-peptide, tripeptides and peptidomic drugs | [29] |
heart | cardiomyocytes | Pig, Rat | serves to peptide uptake | [43,44] |
Factors | Effect on PepT2 | Modulation Type | References |
---|---|---|---|
Substrates, hormone | |||
Met-Met dipeptide;threonyl-phenylalanyl-phenylalanine tripeptide | increased the protein expression of PepT2 in BMEC | translational, functional | [101,102] |
Protein restriction | decreased the mRNA expression levels of PepT2 in the kidney of nursery pig | transcriptional | [38] |
Prolactin, Hydrocortisone, Insulin | enhanced the protein expression of PepT2 in bovine mammary gland | transcriptional | [102] |
Epidermal growth factor | decreased in the transport capacity and expression of PepT2 in SKPT cells; enhanced peptide transport activity of PepT2 in LLC-PK1 cells | translational, functional | [35,103] |
Thyroid | downregulated the mRNA expression of PepT2 in male rat kidney | transcriptional | [9] |
Corticosteroids | inhibited the function of PEPT2 and resulted in lower bacterial peptide-induced into alveolar epithelial cells | functional | [104] |
Disease | |||
Peripheral inflammation | PepT2 mRNA was increased due to peripheral inflammation | transcriptional | [105,106] |
LPS-treated acute inflammation | Renal PepT2 expression was slightly inhibited in LPS-treated mice | transcriptional, functional | [107] |
Prostate inflammation | the mRNA expression of PepT2 was downregulated by TNFα and IFNγ in RWPE-1 cell | transcriptional | [38] |
Hypertension | reduced the expression of PepT2 | translational | [43] |
other protein | |||
PDZK1 | PepT2—PDZK1 interaction was identified to function in the transport of di- and tri-peptides as well as peptide-like drug transport in the human kidney | translational, functional | [108,109] |
PKC | affected the kinetic properties of PepT2 in renal cell lines LLC-PK1 | functional | [110] |
PI3K | regulated the xpression of PepT2 and the transport of model dipeptides | transcriptional, functional | [26] |
MAPK | regulated the expression of PepT2 uptake of bacterial peptides in H441 cells | functional | [62] |
NFκB | regulated the expression of PepT2 uptake of bacterial peptides in H442 cells | functional | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chu, C.; Ji, X.; Luo, G.; Xu, C.; He, H.; Yao, J.; Wu, J.; Hu, J.; Jin, Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022, 11, 2874. https://doi.org/10.3390/cells11182874
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells. 2022; 11(18):2874. https://doi.org/10.3390/cells11182874
Chicago/Turabian StyleWang, Caihong, Chu Chu, Xiang Ji, Guoliang Luo, Chunling Xu, Houhong He, Jianbiao Yao, Jian Wu, Jiangning Hu, and Yuanxiang Jin. 2022. "Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation" Cells 11, no. 18: 2874. https://doi.org/10.3390/cells11182874
APA StyleWang, C., Chu, C., Ji, X., Luo, G., Xu, C., He, H., Yao, J., Wu, J., Hu, J., & Jin, Y. (2022). Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells, 11(18), 2874. https://doi.org/10.3390/cells11182874