The Effect of Mutation in Lipopolysaccharide Biosynthesis on Bacterial Fitness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Storage
2.2. Sequencing
2.3. Genomic Analysis
2.4. Electron Microscopy
2.5. Measuring Antibiotic Susceptibility
2.6. Testing Thermosensitivity
2.7. qPCR
2.8. Sanger Sequencing
2.9. 3D Protein Structure Prediction
3. Results
4. Discussion
4.1. Structural Consequence of Mutation in the Biosynthesis
4.2. Role of Mutation in Bacterial Fitness
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meredith, T.C.; Aggarwal, P.; Mamat, U.; Lindner, B.; Woodard, R.W. Redefining the Requisite Lipopolysaccharide Structure in Escherichia coli. ACS Chem. Biol. 2006, 1, 33–42. [Google Scholar] [CrossRef]
- Anderson, M.; Bull, H.; Galloway, S.; Kelly, T.; Mohan, S.; Radika, K.; Raetz, C. UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J. Biol. Chem. 1993, 268, 19858–19865. [Google Scholar] [CrossRef]
- Sorensen, P.G.; Lutkenhaus, J.; Young, K.; Eveland, S.S.; Anderson, M.S.; Raetz, C.R. Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine Deacetylase in Escherichia coli: The second enzymatic step of lipid a biosynthesis. J. Biol. Chem. 1996, 271, 25898–25905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartling, C.M.; Raetz, C.R.H. Steady-State Kinetics and Mechanism of LpxD, the N-Acyltransferase of Lipid A Biosynthesis. Biochemistry 2008, 47, 5290–5302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babinski, K.J.; Ribeiro, A.A.; Raetz, C.R.H. The Escherichia coli Gene Encoding the UDP-2,3-diacylglucosamine Pyrophosphatase of Lipid A Biosynthesis. J. Biol. Chem. 2002, 277, 25937–25946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radika, K.; Raetz, C.R. Purification and properties of lipid A disaccharide synthase of Escherichia coli. J. Biol. Chem. 1988, 263, 14859–14867. [Google Scholar] [CrossRef]
- Garrett, T.A.; Que, N.L.; Raetz, C.R. Accumulation of a Lipid A Precursor Lacking the 4′-Phosphate following Inactivation of the Escherichia coli lpxKGene. J. Biol. Chem. 1998, 273, 12457–12465. [Google Scholar] [CrossRef] [Green Version]
- Sperandeo, P.; Pozzi, C.; Dehò, G.; Polissi, A. Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG–yhbG locus. Res. Microbiol. 2006, 157, 547–558. [Google Scholar] [CrossRef]
- Rick, P.D.; Osborn, M.J. Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-D-mannooctulosonate-8-phosphate synthetase. J. Biol. Chem. 1977, 252, 4895–4903. [Google Scholar] [CrossRef]
- Ray, P.H.; Benedict, C.D. Purification and Characterization of a Specific 3-Deoxy-D-manno-Octulosonate 8-Phosphate Phosphatase from Escherichia coli B. J. Bacteriol. 1980, 142, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Heyes, D.; Levy, C.; Lafite, P.; Roberts, I.S.; Goldrick, M.; Stachulski, A.V.; Rossington, S.B.; Stanford, D.; Rigby, S.E.J.; Scrutton, N.S.; et al. Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: Convergent evolution of a sug-ar-activating enzyme with DNA/RNA polymerases. J. Biol. Chem. 2009, 284, 35514–35523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belunis, C.J.; Clementz, T.; Carty, S.M.; Raetz, C.R.H. Inhibition of Lipopolysaccharide Biosynthesis and Cell Growth following Inactivation of the kdtA Gene in Escherichia coli. J. Biol. Chem. 1995, 270, 27646–27652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somerville, J.E.; Cassiano, L.; Bainbridge, B.; Cunningham, M.D.; Darveau, R.P. A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J. Clin. Investig. 1996, 97, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Kneidinger, B.; Marolda, C.; Graninger, M.; Zamyatina, A.; McArthur, F.; Kosma, P.; Valvano, M.A.; Messner, P. Biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 2002, 184, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.L.; Blakely, K.M.; de León, G.P.-P.; Walker, J.R.; McArthur, F.; Evdokimova, E.; Zhang, K.; Valvano, M.; Wright, G.; Junop, M.S. Structure and Function of Sedoheptulose-7-phosphate Isomerase, a Critical Enzyme for Lipopolysaccharide Biosynthesis and a Target for Antibiotic Adjuvants. J. Biol. Chem. 2008, 283, 2835–2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güzlek, H.; Graziani, A.; Kosma, P. A short synthesis of D-glycero-D-manno-heptose 7-phosphate. Carbohydr. Res. 2005, 340, 2808–2811. [Google Scholar] [CrossRef] [PubMed]
- Deacon, A.; Ni, Y.; Coleman, W.; Ealick, S. The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: Catalysis with a twist. Structure 2000, 8, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Kadrmas, J.L.; Raetz, C.R.H. Enzymatic Synthesis of Lipopolysaccharide in Escherichia coli. Purification and Properties of Hepto-Syltransferase I. J. Biol. Chem. 1998, 273, 2799–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H. Outer membrane of Salmonella typhimurium: Transmembrane diffusion of some hydrophobic substances. Biochim. Biophys. Acta Biomembr. 1976, 433, 118–132. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Onishi, H.R.; Pelak, B.A.; Gerckens, L.S.; Silver, L.L.; Kahan, F.M.; Chen, M.-H.; Patchett, A.A.; Galloway, S.M.; Hyland, S.A.; Anderson, M.S.; et al. Antibacterial Agents That Inhibit Lipid A Biosynthesis. Science 1996, 274, 980–982. [Google Scholar] [CrossRef] [PubMed]
- Mdluli, K.E.; Witte, P.R.; Kline, T.; Barb, A.W.; Erwin, A.L.; Mansfield, B.E.; McClerren, A.L.; Pirrung, M.C.; Tumey, L.N.; Warrener, P.; et al. Molecular Validation of LpxC as an Antibacterial Drug Target in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 2178–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfannkuch, L.; Hurwitz, R.; Trauisen, J.; Sigulla, J.; Poeschke, M.; Matzner, L.; Kosma, P.; Schmid, M.; Meyer, T.F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 2019, 33, 9087–9099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posch, G.; Andrukhov, O.; Vinogradov, E.; Lindner, B.; Messner, P.; Holst, O.; Schäffer, C. Structure and Immunogenicity of the Rough-Type Lipopolysaccharide from the Periodontal Pathogen Tannerella forsythia. Clin. Vaccine Immunol. 2013, 20, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Ledov, V.A.; Golovina, M.E.; Markina, A.A.; Knirel, Y.A.; L’Vov, V.L.; Kovalchuk, A.L.; Aparin, P.G. Highly homogenous tri-acylated S-LPS acts as a novel clinically applicable vaccine against Shigella flexneri 2a infection. Vaccine 2019, 37, 1062–1072. [Google Scholar] [CrossRef]
- Goyette-Desjardins, G.; Auger, J.-P.; Dolbec, D.; Vinogradov, E.; Okura, M.; Takamatsu, D.; Van Calsteren, M.-R.; Gottschalk, M.; Segura, M. Comparative study of immunogenic properties of purified capsular polysaccharides from Streptococcus suis serotypes 3, 7, 8, and 9: The serotype 3 polysaccharide induces an opsonizing IgG response. Infect. Immun. 2020, 88, e00377-20. [Google Scholar] [CrossRef]
- Bui, A.; Kilár, A.; Dörnyei, Á.; Poór, V.; Kovács, K.; Kocsis, B.; Kilár, F. Carbohydrate composition of endotoxins from R-type isogenic mutants of Shigella sonnei studied by capillary electrophoresis and GC-MS. Croat. Chem. Acta 2011, 84, 393–398. [Google Scholar] [CrossRef]
- Rauss, K.; Kétyi, I.; Vertényi, A.; Vörös, S. Studies on the nature of phase variation of Shigella sonnei. Acta microbiol. Acad. Sci. Hung. 1954, 8, 53–63. [Google Scholar]
- Kocsis, T.B.; Kontrohr, V.; László, H. Milch, Biosynthesis of the cell-wall of Shigella sonnei. 1. Isolation and characterization of different defective mutants. Acta Microbiol. Acad. Sci. Hung. 1980, 27, 217. [Google Scholar]
- Kontrohr, T.; Kocsis, B. Isolation of adenosine 5’-diphosphate-D-glycero-D-mannoheptose. An intermediate in lipopolysaccharide biosynthesis of Shigella sonnei. J. Biol. Chem. 1981, 256, 7715–7718. [Google Scholar] [CrossRef]
- Kocsis, B.; Kontrohr, T. Isolation of adenosine 5’-diphosphate-L-glycero-D-mannoheptose, the assumed substrate of heptose transferase(s), from Salmonella minnesota R595 and Shigella sonnei Re mutants. J. Biol. Chem. 1984, 259, 11858–11860. [Google Scholar] [CrossRef]
- Makszin, L.; Kilár, A.; Felső, P.; Péterfi, Z.; Kocsis, B.; Kilár, F. Quantitative microfluidic analysis of S- and R-type endotoxin components with chip capillary electrophoresis. Electrophoresis 2012, 33, 3351–3360. [Google Scholar] [CrossRef]
- Raetz, C.R.H. Biochemistry of endotoxins. Annu. Rev. Biochem. 1990, 59, 129–170. [Google Scholar] [CrossRef] [PubMed]
- Deutsch-Nagy, L.; Urbán, P.; Tóth, Z.; Bihari, Z.; Kocsis, B.; Fekete, C.; Kilár, F. Genome sequence of Shigella sonnei 4303. Gut Pathog. 2018, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- GenBank Data-National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_002811105.1/ (accessed on 22 July 2022).
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Vaara, M. Antimicrobial susceptibility of Salmonella typhimurium carrying the outer membrane permeability mutation SS-B. Antimicrob. Agents Chemother. 1990, 34, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Zamyatina, A.; Gronow, S.; Puchberger, M.; Graziani, A.; Hofinger, A.; Kosma, P. Efficient chemical synthesis of both anomers of ADP L-glycero- and D-glycero-D-manno-heptopyranose. Carbohydr. Res. 2003, 338, 2571–2589. [Google Scholar] [CrossRef]
- Kilár, A.; Dörnyei, A.; Bui, A.; Szabó, Z.; Kocsis, B.; Kilár, F. Structural variability of endotoxins from R-type isogenic mutants of Shigella sonnei. Biol. Mass Spectrom. 2010, 46, 61–70. [Google Scholar] [CrossRef]
- Karow, M.; Raina, S.; Georgopoulos, C.; Fayet, O. Complex phenotypes of null mutations in the htr genes, whose products are essential for Escherichia coli growth at elevated temperatures. Res. Microbiol. 1991, 142, 289–294. [Google Scholar] [CrossRef]
- Murata, M.; Fujimoto, H.; Nishimura, K.; Charoensuk, K.; Nagamitsu, H.; Raina, S.; Kosaka, T.; Oshima, T.; Ogasawara, N.; Yamada, M. Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS ONE 2011, 6, e20063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, D.L.; Lew, C.S.; Kartchner, B.; Porter, N.; McDaniel, S.W.; Jones, N.M.; Mason, S.; Wu, E.; Wilson, E. Lipopolysaccharide biosynthesis genes of Yersinia pseudotuberculosis promote resistance to antimicrobial chemokines. PLoS ONE 2016, 11, e0157092. [Google Scholar] [CrossRef] [Green Version]
- Deutsch-Nagy, L.; Urbán, P.; Szebeni, H.; Albert, B.; Kocsis, B.; Kilár, F. Closantel as a potential lipopolysaccharide biosynthesis inhibitor in Shigella sonnei 4303. Stud. Univ. Babes Bolyai Chem. 2019, 64, 61–68. [Google Scholar] [CrossRef]
uidA | |
Forward primer | GAATACGGCGTGGATACGTTAG (sense) |
Reverse primer | GATCAAAGACGCGGTGATACA (antisense) |
Probe | TGAAGAGTATCAGTGTGCATGGCTGG (sense) |
gmhD | |
Forward primer | CGTTGAACGTCTACGGTTACTC (sense) |
Reverse primer | CCTTCACGCGGTCCATAAA (antisense) |
Probe | TCGCAGATTGTTGGCTTCCGCTAT (sense) |
gmhD | |
Forward primer | ATGATCATCGTTACCGGCGGC |
Reverse primer | TTATGCGTCGCGATTCAGCCA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, L.; Urbán, P.; Makszin, L.; Sándor, V.; Kilár, A.; Ábrahám, H.; Albert, B.; Kocsis, B.; Kilár, F. The Effect of Mutation in Lipopolysaccharide Biosynthesis on Bacterial Fitness. Cells 2022, 11, 3249. https://doi.org/10.3390/cells11203249
Nagy L, Urbán P, Makszin L, Sándor V, Kilár A, Ábrahám H, Albert B, Kocsis B, Kilár F. The Effect of Mutation in Lipopolysaccharide Biosynthesis on Bacterial Fitness. Cells. 2022; 11(20):3249. https://doi.org/10.3390/cells11203249
Chicago/Turabian StyleNagy, Laura, Péter Urbán, Lilla Makszin, Viktor Sándor, Anikó Kilár, Hajnalka Ábrahám, Beáta Albert, Béla Kocsis, and Ferenc Kilár. 2022. "The Effect of Mutation in Lipopolysaccharide Biosynthesis on Bacterial Fitness" Cells 11, no. 20: 3249. https://doi.org/10.3390/cells11203249
APA StyleNagy, L., Urbán, P., Makszin, L., Sándor, V., Kilár, A., Ábrahám, H., Albert, B., Kocsis, B., & Kilár, F. (2022). The Effect of Mutation in Lipopolysaccharide Biosynthesis on Bacterial Fitness. Cells, 11(20), 3249. https://doi.org/10.3390/cells11203249