Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances
Abstract
:1. Introduction
2. Mammary Hierarchy
2.1. Mammary Stem Cells
2.1.1. Estrogen Receptor
2.1.2. Progesterone Receptor
3. Structural and Functional Development of the Bovine Mammary Gland
3.1. Morphological and Molecular Events during Different Stages of Bovine Mammary Gland Development and Their Regulation
3.1.1. Embryogenesis
3.1.2. Prepubertal Mammary Gland Development
3.1.3. Pubertal Mammary Gland Development
3.1.4. Pregnant Mammary Gland Development
3.1.5. Lactating Mammary Gland Development
3.1.6. Involutory Mammary Gland Development
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Medina, D. The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mammary Gland Biol. Neoplasia 1996, 1, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.W. Cooperation of signaling pathways in embryonic mammary gland development. Nat. Rev. 2007, 8, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cai, C.; Dong, X.; Yu, Q.C.; Zhang, X.; Yang, L.; Zeng, Y.A. Identification of multipotent mammary stemcells by protein C receptor expression. Nature 2014, 517, 81. [Google Scholar] [CrossRef] [PubMed]
- Visvader, J.E.; Stingl, J. Mammary stem cells and the differentiation hierarchy, current status and perspectives. Genes Dev. 2014, 28, 143–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauner, G.; Leviav, A.; Mavor, E.; Barash, I. Development of foreign mammary epithelial morphology in the stroma of immunodeficient mice. PLoS ONE 2013, 8, e68637. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, S.C.; Akers, R.M. Mammary gland anatomy. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; Volume 3, pp. 328–337. [Google Scholar]
- Gudjonsson, T.; Adriance, M.C.; Sternlicht, M.D.; Petersen, O.W.; Bissell, M.J. Myoepithelial cells: Their origin and function in breast morphogenesis and neoplasia. J. Mammary Gland Biol. Neoplasia 2005, 10, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, G.K.; Folley, S.J. Oxytocin as stimulator for the release of prolactin from the anterior pituitary. Nature 1956, 177, 700. [Google Scholar] [CrossRef]
- Sernia, C.; Thomas, W.G.; Gemmell, R.T. Oxytocin receptors in the mammary gland and reproductive tract of a marsupial, the brushtail possum (Trichosurus vulpecula). Biol. Reprod. 1991, 45, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.M.; Vogl, A.W.; Baimbridge, K.E.N.N.E.T.H.; Emerman, J.T. Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBD-phallacidin. J. Cell Sci. 1987, 88, 563–569. [Google Scholar] [CrossRef]
- Lincoln, D.W.; Paisley, A.C. Neuroendocrine control of milk ejection. Reproduction 1982, 65, 571–586. [Google Scholar] [CrossRef]
- Kwon, O.J.; Valdez, J.; Zhang, L.; Zhang, B.; Wei, X.; Su, Q.; Ittmann, M.M.; Creighton, C.J.; Xin, L. Increased Notch signaling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nat. Commun. 2014, 5, 4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biteau, B.; Hochmuth, C.E.; Jasper, H. Maintaining tissue homeostasis, dynamic control of somatic stem cell activity. Cell Stem Cell 2011, 9, 402–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauner, G.; Barash, I. Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS ONE 2012, 7, e30113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodilla, V.; Dasti, A.; Huyghe, M.; Lafkas, D.; Laurent, C.; Reyal, F.; Fre, S. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development. PLoS Biol. 2015, 13, e1002069. [Google Scholar] [CrossRef] [PubMed]
- Martignani, E.; Eirew, P.; Accornero, P.; Eaves, C.J.; Baratta, M. Human milk protein production in xenografts of genetically engineered bovine mammary epithelial stem cells. PLoS ONE 2010, 5, e13372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, R.B.; Howell, A.; Potten, C.S.; Anderson, E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997, 57, 4987–4991. [Google Scholar] [PubMed]
- Connor, E.E.; Meyer, M.J.; Li, R.W.; Van Amburgh, M.E.; Boisclair, Y.R.; Capuco, A.V. Regulation of Gene Expression in the Bovine Mammary Gland by Ovarian Steroids. J. Dairy Sci. 2007, 90, E55–E65. [Google Scholar] [CrossRef] [Green Version]
- Zielniok, K.; Motyl, T.; Gajewska, M. Functional interactions between 17β-estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. BioMed Res. Int. 2014, 2014, 382653. [Google Scholar] [CrossRef] [Green Version]
- Helguero, L.A.; Faulds, M.H.; Gustafsson, J.Å.; Haldosen, L.A. Estrogen receptors alfa (ER [alpha]) and beta (ER [beta]) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 2005, 24, 6605–6616. [Google Scholar] [CrossRef] [Green Version]
- Schams, D.; Kohlenberg, S.; Amselgruber, W.; Berisha, B.; Pfaffl, M.W.; Sinowatz, F. Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution. J. Endocrinol. 2003, 177, 305–317. [Google Scholar] [CrossRef]
- Ewan, K.B.; Oketch-Rabah, H.A.; Ravani, S.A.; Shyamala, G.; Moses, H.L.; Barcellos-Hoff, M.H. Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am. J. Pathol. 2005, 167, 409–417. [Google Scholar] [CrossRef]
- Schneider, W.; Ramachandran, C.; Satyaswaroop, P.G.; Shyamala, G. Murine progesterone receptor exists predominantly as the 83-kilodalton ‘A’ form. J. Steroid Biochem. Mol. Biol. 1991, 38, 285–291. [Google Scholar] [CrossRef]
- Nickel, R.; Schummer, A.; Seiferle, E.; Frewein, J.; Wilkens, H.; Wille, K.H.; Siller, W.G.; Stokoe, W.M. The Anatomy of the Domestic Animals. Volume 1. The locomotor system of the domestic mammals. Verlag Paul Parey: Berlin, Germany, 1986. [Google Scholar]
- Porter, J.C. Hormonal Regulation of breast development and activity. J. Investig. Dermatol. 1974, 63, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borellini, F.; Oka, T. Growth Control and Differentiation in Mammary Epithelial Cells. Environ. Health Perspect. 1989, 80, 85–99. [Google Scholar] [CrossRef]
- Cadar, M.; Mireşan, V.; Lujerdean, A.; Răducu, C. Mammary gland histological structure in relation with milk production in sheep. Sci. Pap. Sci. Biotechnol. 2012, 45, 146–148. [Google Scholar]
- Gjorevski, N.; Nelson, C.M. Integrated morphodynamic signaling of the mammary gland. Mol. Cell Biol. 2011, 12, 581–593. [Google Scholar]
- Yart, L.; Lollivier, V.; Marnet, P.G.; Dessauge, F. Role of ovarian secretions in mammary gland development and function in ruminants. Animal 2014, 8, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Inman, J.L.; Robertson, C.; Mott, J.D.; Bissell, M.J. Mammary gland development, cell fate specification, stem cells and the microenvironment. Development 2015, 142, 1028–1042. [Google Scholar] [CrossRef] [Green Version]
- Cowin, P.; Wysolmerski, J. Molecular Mechanisms Guiding Embryonic Mammary Gland Development. Cold Spring Harb. Perspect. Biol. 2010, 2, a003251. [Google Scholar] [CrossRef] [Green Version]
- Oftedal, O.T.; Dhouailly, D. Evo-devo of the mammary gland. J. Mammary Gland Biol. Neoplasia 2013, 18, 105–120. [Google Scholar] [CrossRef]
- Turner, C.W. The Mammary Gland. I. The Anatomy of the Udder of Cattle and Domestic Animals; Lucas Brothers: Columbia, MI, USA, 1952. [Google Scholar]
- Rudmann, D.; Cardiff, R.; Chouinard, L.; Goodman, D.; Küttler, K.; Marxfeld, H.; Molinolo, A.; Treumann, S.; Yoshizawa, K.; INHAND Mammary, Zymbal’s, Preputial, and Clitoral Gland Organ Working Group. Proliferative and non-proliferative lesions of the rat and mouse mammary, Zymbal’s, preputial, and clitoral glands. Toxicol. Pathol. 2012, 40, 7S–39S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macias, H.; Hinck, L. Mammary gland development. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 533–557. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.W.; Karpf, A.C.; Kratochwil, K. Regulation of mammary gland development by tissue interaction. J. Mammary Gland Biol. Neoplasia 1999, 4, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Veltmaat, J.M.; Van Veelen, W.; Thiery, J.P.; Bellusci, S. Identification of the mammary line in mouse by Wnt10b expression. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2004, 229, 349–356. [Google Scholar]
- Sejrsen, K. Relationships between nutrition, puberty and mammary development in cattle. Proc. Nutr. Soc. 1994, 53, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, Y.N.; Tucker, H.A. Mammary Development and Heifers from Birth through the Estrous Cycle. J. Dairy Sci. 1969, 52, 507–512. [Google Scholar] [CrossRef]
- Sejrsen, K.; Huber, J.T.; Tucker, H.A.; Akers, R.M. Influence of nutrition on mammary development in pre-and postpubertal heifers. J. Dairy Sci. 1982, 65, 793–800. [Google Scholar] [CrossRef]
- Berry, S.D.K.; Jobst, P.M.; Ellis, S.E.; Howard, R.D.; Capuco, A.V.; Akers, R.M. Mammary epithelial proliferation and estrogen receptor α expression in prepubertal heifers: Effects of ovariectomy and growth hormone. J. Dairy Sci. 2003, 86, 2098–2105. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.M.; Daniel, C.W. Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 1983, 97, 274–290. [Google Scholar] [CrossRef]
- Ferguson, D.J.P. Ultrastructural characterisation of the proliferative (stem?) cells within the parenchyma of the normal “resting” breast. Virchows Arch. A 1985, 407, 379–385. [Google Scholar] [CrossRef]
- Lydon, J.P.; DeMayo, F.J.; Funk, C.R.; Mani, S.K.; Hughes, A.R.; Montgomery, C.A.; Shyamala, G.; Conneely, O.M.; O’Malley, B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995, 9, 2266–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternlicht, M.D. Key stages in mammary gland development, the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 2006, 8, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallepell, S.; Krust, A.; Chambon, P.; Brisken, C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. USA 2006, 103, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Bonadeo, N.; Becu-Villalobos, D.; Cristina, C.; Lacau-Mengido, I.M. The Notch system during pubertal development of the bovine mammary gland. Sci. Rep. 2019, 9, 8899. [Google Scholar] [CrossRef] [Green Version]
- Flint, D.J.; Knight, C.H. Interactions of prolactin and growth hormone (GH) in the regulation of mammary gland function and epithelial cell survival. J. Mammary Gland Biol. Neoplasia 1997, 2, 41–48. [Google Scholar] [CrossRef]
- Plath-Gabler, A.; Gabler, C.; Sinowatz, F.; Berisha, B.; Schams, D. The expression of the IGF family and GH receptor in the bovine mammary gland. J. Endocrinol. 2001, 168, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Incassati, A.; Chandramouli, A.; Eelkema, R.; Cowin, P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res. 2010, 12, 213. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.W.; Robinson, S.D. Regulation of mammary growth and function by TGF-β. Mol. Reprod. Dev. 1992, 32, 145–151. [Google Scholar] [CrossRef]
- Fata, J.E.; Werb, Z.; Bissell, M.J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2003, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, B.S.; Sternlicht, M.D.; Lund, L.R.; Alexander, C.M.; Mott, J.; Bissell, M.J.; Soloway, P.; Itohara, S.; Werb, Z. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 2003, 162, 1123–1133. [Google Scholar] [CrossRef]
- Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 1997, 139, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Lo, A.T.; Inman, J.L.; Alcaraz, J.; Ghajar, C.M.; Mott, J.D.; Nelson, C.M.; Chen, C.S.; Zhang, H.; Bascom, J.L.; et al. Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Development 2013, 140, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.M.; Rudolph, M.C.; McManaman, J.L.; Neville, M.C. Key stages in mammary gland development. Secretory activation in the mammary gland, it’s not just about milk protein synthesis! Breast Cancer Res. 2007, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, S.; Anand, V.; Ali, S.A.; Jena, M.K.; Kumar, S.; Kaushik, J.K.; Mohanty, A.K. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J. 2021, 35, 21621. [Google Scholar] [CrossRef] [PubMed]
- Henricks, D.M.; Dickey, J.F.; Hill, J.R.; Johnston, W.E. Plasma estrogen and progesterone levels after mating, and during late pregnancy and postpartum in cows. Endocrinology 1972, 90, 1336–1342. [Google Scholar] [CrossRef]
- Hoffmann, B.; De Pinho, T.G.; Schuler, G. Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy. Exp. Clin. Endocrinol. Diabetes 1997, 105, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.C.; Pandey, R.S. Changes in peripheral plasma concentrations of progesterone, estradiol-17β, and luteinizing hormone during pregnancy and around parturition in the buffalo (Bubalus bubalis). Gen. Comp. Endocrinol. 1982, 48, 403–410. [Google Scholar] [CrossRef]
- Oluwatayo, B.O.; Ebomoyi, M.I.; Obika, L.F.O.; Okeke, L.A. Progesterone and 17β-Estradiol Levels during Normal Pregnancy and the Puerperium among Women Attending a Tertiary Health Facility Clinic in Jos, Plateau State, Nigeria. Int. Blood Res. Rev. 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Delouis, C.; Djiane, J.; Houdebine, L.M.; Terqui, M. Relation between hormones and mammary gland function. J. Dairy Sci. 1980, 63, 1492–1513. [Google Scholar] [CrossRef]
- Adelakoun, V.; Matton, P.; Dufour, J.J. Steroid hormone levels in beef cows during pregnancy terminating in normal calving or abortion and with single or multiple ovulation. Can. J. Anim. Sci. 1978, 58, 345–354. [Google Scholar] [CrossRef]
- Huang, J.G.; Gao, X.J.; Li, Q.Z.; Lu, L.M.; Liu, R.; Luo, C.C.; Wang, J.L.; Bin, Q.; Jin, X. Proteomic analysis of the nuclear phosphorylated proteins in dairy cow mammary epithelial cells treated with estrogen. Vitr. Cell. Dev. Biol.-Anim. 2012, 48, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Beesley, R.D.; Johnson, J.V. The breast during pregnancy and lactation. Glob. Libr. Women’s Med. 2008. [Google Scholar] [CrossRef]
- Hilton, H.N.; Graham, J.D.; Clarke, C.L. Minireview: Progesterone regulation of proliferation in the normal human breast and in breast cancer: A tale of two scenarios? Mol. Endocrinol. 2015, 29, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, R.; Wu, Z.; Hou, Y.; Bazer, F.W.; Wu, G. Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth. J. Anim. Sci. Biotechnol. 2016, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakes, S.R.; Hilton, H.N.; Ormandy, C.J. The alveolar switch, coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.J.; Haslam, S.Z.; Conrad, S.E. Estrogen and progesterone are critical regulators of Stat5a expression in the mouse mammary gland. Endocrinology 2007, 149, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obr, A.E.; Grimm, S.L.; Bishop, K.A.; Pike, J.W.; Lydon, J.P.; Edwards, D.P. Progesterone receptor and Stat5 signaling cross talk through RANKL in mammary epithelial cells. Mol. Endocrinol. 2013, 27, 1808–1824. [Google Scholar] [CrossRef] [Green Version]
- Turkington, R.W.; Hill, R.L. Lactose synthetase: Progesterone inhibition of the induction of α-lactalbumin. Science 1969, 163, 1458–1460. [Google Scholar] [CrossRef]
- Rosen, J.M.; O’Neal, D.L.; McHugh, J.E.; Comstock, J.P. Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry 1978, 17, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Rios, A.C.; Fu, N.Y.; Jamieson, P.R.; Pal, B.; Whitehead, L.; Nicholas, K.R.; Lindeman, G.J.; Visvader, J.E. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat. Commun. 2016, 7, 11400. [Google Scholar] [CrossRef] [Green Version]
- Holst, B.D.; Hurley, W.L.; Nelson, D.R. Involution of the bovine mammary gland: Histological and ultrastructural changes. J. Dairy Sci. 1987, 70, 935–944. [Google Scholar] [CrossRef]
- Pollard, J.W.; Hennighausen, L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl. Acad. Sci. USA 1994, 91, 9312–9316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormandy, C.J.; Binart, N.; Kelly, P.A. Mammary gland development in prolactin receptor knockout mice. J. Mammary Gland Biol. Neoplasia 1997, 2, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Hennighausen, L.; Robinson, G.W.; Wagner, K.U.; Liu, X. Prolactin signaling in mammary gland development. J. Biol. Chem. 1997, 272, 7567–7569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapes, J.; Li, Q.; Kannan, A.; Anandan, L.; Laws, M.; Lydon, J.P.; Bagchi, I.C.; Bagchi, M.K. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet. 2017, 13, e1006654. [Google Scholar] [CrossRef] [Green Version]
- Lewis, U.J.; Singh, R.N.; Lewis, L.J.; Seavey, B.K.; Sinha, Y.N. Glycosylated ovine prolactin. Proc. Natl. Acad. Sci. USA 1984, 81, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaka, T.; Umemura, S.; Kakimoto, K.; Koizumi, H.; Osamura, Y.R. Expression of Prolactin mRNA in Rat Mammary Gland during Pregnancy and Lactation. J. Histochem. Cytochem. 2000, 48, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Convey, E.M. Serum hormone concentration in ruminants during mammary growth, lactogenesis, and lactation: A review. J. Dairy Sci. 1974, 57, 905–917. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, X.; Shi, K.; Yan, Z.; Wang, Z. Bovine mammary gene expression profiling during the onset of lactation. PLoS ONE 2013, 8, e70393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Lu, L.; Qiao, B.; Liu, R.; Wang, J.; Pan, H.; Li, Q.; Gao, X. Proteomic Analysis of Nuclear Phosphorylated Proteins in Dairy Cow Mammary Epithelial Cells Treated with Prolactin. J. Northeast Agric. Univ. 2013, 20, 31–39. [Google Scholar]
- Doppler, W.; Groner, B.; Ball, R.K. Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci. USA 1989, 86, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Flint, D.J. Regulation of milk secretion and composition by growth hormone and prolactin. In Intercellular Signaling in the Mammary Gland; Springer: Boston, MA, USA, 1989; pp. 131–140. [Google Scholar]
- Johnson, T.L.; Tomanek, L.; Peterson, D.G. A proteomic analysis of the effect of growth hormone on mammary alveolar cell-T (MAC-T) cells in the presence of lactogenic hormones. Domest. Anim. Endocrinol. 2013, 44, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Loor, J.J. Gene Networks Driving Bovine Mammary Protein Synthesis during the Lactation Cycle. Bioinform. Biol. Insights 2011, 5, 83–98. [Google Scholar] [CrossRef]
- Menzies, K.K.; Lefèvre, C.; Macmillan, K.L.; Nicholas, K.R. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct. Integr. Genom. 2009, 9, 197–217. [Google Scholar] [CrossRef]
- Soule, H.D.; Maloney, T.M.; Wolman, S.R.; Peterson, W.D.; Brenz, R.; McGrath, C.M.; Russo, J.; Pauley, R.J.; Jones, R.F.; Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50, 6075–6086. [Google Scholar] [PubMed]
- Ball, R.K.; Friis, R.R.; Schoenenberger, C.A.; Doppler, W.; Groner, B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. Eur. Mol. Biol. Organ. J. 1988, 7, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Dogra, N.; Singh, S.; Kumar, S.N.; Jena, M.K.; Malakar, D.; Dang, A.K.; Mishra, B.P.; Mukhopadhyay, T.K.; Kaushik, J.K.; et al. Establishment and Characterization of a Buffalo (Bubalus bubalis) Mammary Epithelial Cell Line. PLoS ONE 2012, 7, e40469. [Google Scholar] [CrossRef] [Green Version]
- Huynh, H.T.; Robitaille, G.; Turner, J.D. Establishment of bovine mammary epithelial cells (MAC-T): An in vitro model for bovine lactation. Exp. Cell Res. 1991, 197, 191–199. [Google Scholar] [CrossRef]
- Fu, M.; Chen, Y.; Xiong, X.; Lan, D.; Li, J. Establishment of mammary gland model in vitro, Culture and Evaluation of a Yak Mammary Epithelial Cell Line. PLoS ONE 2014, 9, e113669. [Google Scholar] [CrossRef] [Green Version]
- Jaswal, S.; Anand, V.; Kumar, S.; Bathla, S.; Dang, A.K.; Kaushik, J.K.; Mohanty, A.K. In-depth proteome analysis of more than 12,500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation. Sci. Rep. 2020, 10, 4834. [Google Scholar] [CrossRef] [Green Version]
- Kubista, M.; Rosner, M.; Kubista, E.; Bernaschek, G.; Hengstschläger, M. Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene 2002, 21, 4747–4756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlyonsky, V.; Goolaerts, A.; Van Beneden, R.; Sariban-Sohraby, S. Differentiation of epithelial Na+ channel function an in vitro model. J. Biol. Chem. 2005, 280, 24181–24187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Pawliwec, A.; Feng, Z.; Yasruel, Z.; Lebrun, J.J.; Ali, S. Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway. Stem Cell Res. 2015, 15, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, C.M. Cell Organization and Responsiveness to Hormones in Vitro, Genesis of Domes in Mammary Cell Cultures. Am. Zool. 1975, 15, 231–236. [Google Scholar] [CrossRef]
- Zettl, K.S.; Sjaastad, M.D.; Riskin, P.M.; Parry, G.; Machen, T.E.; Firestone, G.L. Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc. Natl. Acad. Sci. USA 1992, 89, 9069–9073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchi, I.; Bini, L.; Albani, D.; Valaperta, R.; Liberatori, S.; Raggiaschi, R.; Montagna, C.; Susani, L.; Barbieri, O.; Pallini, V.; et al. Dome formation in cell cultures as expression of an early stage of lactogenic differentiation of the mammary gland. Proc. Natl. Acad. Sci. USA 2002, 99, 8660–8665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesling, C.; Lopez, J.; Fattet, L.; Gonzalo, P.; Treilleux, I.; Blanchard, D.; Losson, R.; Goffin, V.; Pigat, N.; Puisieux, A.; et al. Tif1γ is essential for the terminal differentiation of mammary alveolar epithelial cells and for lactation through SMAD4 inhibition. Development 2013, 140, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, P.; Cregan, M. Lactogenesis and the effects of insulin-dependent diabetes mellitus and prematurity. J. Nutr. 2001, 131, 3016S–3020S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, D.B.; Kent, J.C.; Casey, T.M.; Owens, R.A.; Hartmann, P.E. Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: Endocrine relationships. Exp. Physiol. 1999, 84, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C.; Morton, J.; Umemura, S. Lactogenesis, the transition from pregnancy to lactation. Pediatric Clin. North Am. 2001, 48, 35–52. [Google Scholar] [CrossRef]
- Hadsell, D.L.; Olea, W.; Lawrence, N.; George, J.; Torres, D.; Kadowaki, T.; Lee, A.V. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J. Endocrinol. 2007, 194, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillay, J.; Davis, T.J. Physiology, Lactation. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2019. [Google Scholar]
- Nguyen, D.A.D.; Neville, M.C. Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 1998, 3, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Delamaire, E.; Guinard-Flament, J. Increasing milking intervals decreases the mammary blood flow and mammary uptake of nutrients in dairy cows. J. Dairy Sci. 2006, 89, 3439–3446. [Google Scholar] [CrossRef] [Green Version]
- Finucane, K.A.; McFadden, T.B.; Bond, J.P.; Kennelly, J.J.; Zhao, F.Q. Onset of lactation in the bovine mammary gland: Gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct. Integr. Genom. 2008, 8, 251–264. [Google Scholar] [CrossRef]
- Janjanam, J.; Singh, S.; Jena, M.K.; Varshney, N.; Kola, S.; Kumar, S.; Kaushik, J.K.; Grover, S.; Dang, A.K.; Mukesh, M.; et al. Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield. PLoS ONE 2014, 9, e102515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Zhu, W.; Qiu, L.; Zhang, G.; Zhang, Y.; Miao, Y. Elongase of very long chain fatty acids 6 (ELOVL6) promotes lipid synthesis in buffalo mammary epithelial cells. J. Anim. Physiol. Anim. Nutr. 2022, 106, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Z.; Li, R.; Guo, S.; Qiu, Y.; Gao, X. Proteomic Analysis Reveals Proteins and Pathways Associated with Lactation in Bovine Mammary Epithelial Cell-Derived Exosomes. J Proteome Res. 2020, 19, 3211–3219. [Google Scholar] [CrossRef]
- Verma, A.K.; Ali, S.A.; Singh, P.; Kumar, S.; Mohanty, A.K. Transcriptional Repression of MFG-E8 Causes Disturbance in the Homeostasis of Cell Cycle Through DOCK/ZP4/STAT Signaling in Buffalo Mammary Epithelial Cells. Front. Cell Dev. Biol. 2021, 9, 568660. [Google Scholar] [CrossRef]
- Pahlman, S.; Lund, L.R.; Jogi, A. Differential HIF-1α and HIF-2α Expression in Mammary Epithelial Cells during Fat Pad Invasion, Lactation, and Involution. PLoS ONE 2015, 10, e0125771. [Google Scholar] [CrossRef] [Green Version]
- Jena, M.K.; Janjanam, J.; Naru, J.; Kumar, S.; Kumar, S.; Singh, S.; Mohapatra, S.K.; Kola, S.; Anand, V.; Jaswal, S.; et al. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis), lactating vis-a-vis heifer. J. Proteom. 2015, 119, 100–111. [Google Scholar] [CrossRef]
- Peng, L.; Rawson, P.; McLauchlan, D.; Lehnert, K.; Snell, R.; Jordan, T.W. Proteomic analysis of microsomes from lactating bovine mammary gland. J. Proteome Res. 2008, 7, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Baik, C.M.; Etchebarne, B.E.; Bong, J.; VandeHaar, M.J. Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy. J. Anim. Sci. 2009, 22, 871–884. [Google Scholar] [CrossRef]
- Dai, W.T.; Wang, Q.J.; Zou, Y.X.; White, R.R.; Liu, J.X.; Liu, H.Y. Comparative proteomic analysis of the lactating and nonlactating bovine mammary gland. J. Dairy Sci. 2017, 100, 5928–5935. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Periasamy, K.; Rodriguez-Zas, S.L.; Hurley, W.L.; Loor, J.J. A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: Validation using the bovine mammary transcriptome. PLoS ONE 2012, 7, e32455. [Google Scholar] [CrossRef]
- Feuermann, Y.; Mabjeesh, S.J.; Niv-Spector, L.; Levin, D.; Shamay, A. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J. Endocrinol. 2006, 191, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals 2021, 11, 2506. [Google Scholar] [CrossRef]
- Knight, C.H. Lactation and gestation in dairy cows: Flexibility avoids nutritional extremes. Proc. Nutr. Soc. 2001, 60, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.M.; Li, Q.Z.; Huang, J.G.; Gao, X.J. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis. Molecules 2012, 18, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Gao, X.; Li, Q.; Huang, J.; Liu, R.; Li, H. Comparative phosphoproteomics analysis of the effects of L-methionine on dairy cow mammary epithelial cells. Can. J. Anim. Sci. 2012, 92, 433–442. [Google Scholar] [CrossRef]
- Zheng, X.; Ning, C.; Dong, Y.; Zhao, P.; Li, J.; Fan, Z.; Li, J.; Yu, Y.; Mrode, R.; Liu, J.F. Quantitative proteome analysis of bovine mammary gland reveals protein dynamic changes involved in peak and late lactation stages. Biochem. Biophys. Res. Commun. 2017, 494, 292–297. [Google Scholar] [CrossRef]
- Janjanam, J.; Jamwal, M.; Singh, S.; Kumar, S.; Panigrahi, A.K.; Hariprasad, G.; Jena, M.K.; Anand, V.; Kumar, S.; Kaushik, J.K.; et al. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk. Proteomics 2013, 13, 3189–3204. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.V.V.; Ganesan, S.; Wickramasinghe, H.K.J.P.; Stepanchenko, N.; Kaya, C.A.; Beitz, D.C.; Appuhamy, J.A.D.R.N. Effects of branched-chain amino acids on glucose uptake and lactose synthesis rates in bovine mammary epithelial cells and lactating mammary tissue slices. J. Dairy Sci. 2022, 105, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Tang, S.; Tan, Z.; Han, X.; Zhou, C.; Kang, J.; Wang, M. Proteomic analysis of isolated plasma membrane fractions from the mammary gland in lactating cows. J. Agric. Food Chem. 2015, 63, 7388–7398. [Google Scholar] [CrossRef] [PubMed]
- Van Altena, S.E.C.; De Klerk, B.; Hettinga, K.A.; Van Neerven, R.J.J.; Boeren, S.; Savelkoul, H.F.J.; Tijhaar, E.J. A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet. Immunol. Immunopathol. 2016, 174, 11–18. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q. Comparative proteome analysis reveals VPS28 regulates milk fat synthesis through ubiquitylation in bovine mammary epithelial cells. PeerJ 2020, 8, e9542. [Google Scholar] [CrossRef]
- Lund, L.R.; Romer, J.; Thomasset, N.; Solberg, H.; Pyke, C.; Bissell, M.J.; Dano, K.; Werb, Z. Two distinct phases of apoptosis in mammary gland involution, proteinase-independent and dependent pathways. Development 1996, 122, 181–193. [Google Scholar] [CrossRef]
- Shamay, A.; Shapiro, F.; Leitner, G.; Silanikove, N. Infusions of casein hydrolyzates into the mammary gland disrupt tight junction integrity and induce involution in cows. J. Dairy Sci. 2003, 86, 1250–1258. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Anug, A.M.; Merin, U.; Silanikove, N. Pregnancy obstructs involution stage II of the mammary gland in cows: General biological implication. Nat. Preced. 2007. [Google Scholar] [CrossRef]
- Shamay, A.; Shapiro, F.; Mabjeesh, S.J.; Silanikove, N. Casein-derived phosphopeptides disrupt tight junction integrity, and precipitously dry up milk secretion in goats. Life Sci. 2002, 70, 2707–2719. [Google Scholar] [CrossRef]
- Silanikove, N.; Shamay, A.; Shinder, D.; Moran, A. Stress down regulates milk yield in cows by plasmin induced β-casein product that blocks K+ channels on the apical membranes. Life Sci. 2000, 67, 2201–2212. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M. Mammary involution in dairy animals. J. Mammary Gland. Biol. Neoplasia 1999, 4, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Vetharaniam, I.; Dobson, J.M.; Prewitz, M.; Oden, K.; Murney, R.; Swanson, K.M.; McDonald, R.; Henderson, H.V.; Stelwagen, K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J. Dairy Sci. 2016, 99, 7523–7543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonner, E.; Allan, G.; Shkreta, L.; Webster, J.; Bruce, C.; Whitelaw, A.; Flint, D.J. Insulin-like growth factor binding protein-5 (IGFBP-5) potentially regulates programmed cell death and plasminogen activation in the mammary gland. In Biology of the Mammary Gland; Springer Science & Business Media: Boston, MA, USA, 2002; Volume 480, pp. 45–53. [Google Scholar]
- Radisky, D.C.; Hartmann, L.C. Mammary involution and breast cancer risk: Transgenic models and clinical studies. J. Mammary Gland Biol. Neoplasia 2009, 14, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, K.D.; Lindeman, G.J.; Visvader, J.E. The Molecular Culprits Underlying Precocious Mammary Gland Involution. J. Mammary Gland Biol Neoplasia 2007, 12, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Leitner, G.; Merin, U.; Lavi, Y.; Egber, A.; Silanikove, N. Aetiology of intramammary infection and its effect on milk composition in goat flocks. J. Dairy Res. 2007, 74, 186. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.; Streuli, C.H. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int. J. Biochem. Cell Biol. 2007, 39, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Green, K.A.; Streuli, C.H. Apoptosis regulation in the mammary gland. Cell. Mol. Life Sci. 2004, 61, 1867–1883. [Google Scholar] [CrossRef]
- Monks, J.; Rosner, D.; Geske, F.J.; Lehman, L.; Hanson, L.; Neville, M.C.; Fadok, V.A. Epithelial cells as phagocytes: Apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ. 2005, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Fornetti, J.; Flanders, K.C.; Henson, P.M.; Tan, A.C.; Borges, V.F.; Schedin, P. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization. Cell Death Differ. 2016, 23, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Tatarczuch, L.; Philip, C.; Bischof, R.; Lee, C.S. Leucocyte phenotypes in involuting and fully involuted mammary glandular tissues and secretions of sheep. J. Anat. 2000, 196, 313–326. [Google Scholar] [CrossRef]
- Silanikove, N.; Shapiro, F.; Shamay, A.; Leitner, G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: Manipulation with casein hydrolyzates. Free Radic. Biol. Med. 2005, 38, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, T.A.; Lippolis, J.D. Characterization of bovine mammary gland dry secretions and their proteome from the end of lactation through day 21 of the dry period. J. Proteom. 2020, 223, 103831. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M.; Smith, J.J. Mammary growth in Holstein cows during the dry period: Quantification of nucleic acids and histology. J. Dairy Sci. 1997, 80, 477–487. [Google Scholar] [CrossRef]
- Kuhn, M.T.; Hutchison, J.L.; Norman, H.D. Minimum days dry to maximize milk yield in subsequent lactation. Anim. Res. 2005, 54, 351–367. [Google Scholar] [CrossRef]
- Caja, G.; Salama, A.A.K.; Such, X. Omitting the dry-off period negatively affects colostrum and milk yield in dairy goats. J. Dairy Sci. 2006, 89, 4220–4228. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.; Jaswal, S.; Singh, S.; Kumar, S.; Jena, M.K.; Verma, A.K.; Yadav, M.L.; Janjanam, J.; Lotfan, M.; Malakar, D.; et al. Functional characterization of Mammary Gland Protein-40, a Chitinase-like glycoprotein expressed during mammary gland apoptosis. Apoptosis 2015, 21, 209–224. [Google Scholar] [CrossRef]
- Singh, S.; Choudhary, S.; Anand, V.; Jaswal, S.; Verma, A.K.; Kumar, S.; Kaushik, J.K.; Mohanty, A.K. New insights into the catalytic inactivity of mammary gland protein-40, a chitinase-like protein expressed during mammary gland involution. Mol. Biol. Rep. 2019, 46, 2243–2257. [Google Scholar] [CrossRef]
- Sargeant, T.J.; Lloyd-Lewis, B.; Resemann, H.K.; Ramos-Montoya, A.; Skepper, J.; Watson, C.J. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 2014, 16, 1057–1068. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.R.; Tarullo, S.E.; Crump, L.S.; Lyons, T.R. Studies of postpartum mammary gland involution reveal novel pro-metastatic mechanisms. J. Cancer Metastasis Treat. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Bierie, B.; Gorska, A.E.; Stover, D.G.; Moses, H.L. TGF-β promotes cell death and suppresses lactation during the second stage of mammary involution. J. Cell. Physiol. 2009, 219, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, K.; Watson, C.J. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int. J. Mol. Sci. 2018, 19, 1695. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaswal, S.; Jena, M.K.; Anand, V.; Jaswal, A.; Kancharla, S.; Kolli, P.; Mandadapu, G.; Kumar, S.; Mohanty, A.K. Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells 2022, 11, 3325. https://doi.org/10.3390/cells11203325
Jaswal S, Jena MK, Anand V, Jaswal A, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells. 2022; 11(20):3325. https://doi.org/10.3390/cells11203325
Chicago/Turabian StyleJaswal, Shalini, Manoj Kumar Jena, Vijay Anand, Avinash Jaswal, Sudhakar Kancharla, Prachetha Kolli, Gowtham Mandadapu, Sudarshan Kumar, and Ashok Kumar Mohanty. 2022. "Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances" Cells 11, no. 20: 3325. https://doi.org/10.3390/cells11203325
APA StyleJaswal, S., Jena, M. K., Anand, V., Jaswal, A., Kancharla, S., Kolli, P., Mandadapu, G., Kumar, S., & Mohanty, A. K. (2022). Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells, 11(20), 3325. https://doi.org/10.3390/cells11203325