Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Control Group Justification
2.2. Serum Protein Measurement
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Relative Leukocyte Telomere Length
3.3. The Genotyping of TERT rs2736098, rs401681, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639 and TRF2 rs251796
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wai, L.K. Telomeres, telomerase, and tumorigenesis—A review. MedGenMed 2004, 6, 19. [Google Scholar] [PubMed]
- Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; de Lange, T. Mammalian Telomeres End in a Large Duplex Loop. Cell 1999, 97, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundblad, V.; Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 1989, 57, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; O’Connor, M.S.; Qin, J.; Songyang, Z. Telosome, a Mammalian Telomere-associated Complex Formed by Multiple Telomeric Proteins. J. Biol. Chem. 2004, 279, 51338–51342. [Google Scholar] [CrossRef] [Green Version]
- Blasco, M.A. Mammalian telomeres and telomerase: Why they matter for cancer and aging. Eur. J. Cell Biol. 2003, 82, 441–446. [Google Scholar] [CrossRef]
- Broccoli, D.; Smogorzewska, A.; Chong, L.; de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 1997, 17, 231–235. [Google Scholar] [CrossRef]
- Chong, L.; van Steensel, B.; Broccoli, D.; Erdjument-Bromage, H.; Hanish, J.; Tempst, P.; de Lange, T. A Human Telomeric Protein. Science 1995, 270, 1663–1667. [Google Scholar] [CrossRef]
- Smith, S.; de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 2000, 10, 1299–1302. [Google Scholar] [CrossRef] [Green Version]
- Doksani, Y.; Wu, J.Y.; de Lange, T.; Zhuang, X. Super-Resolution Fluorescence Imaging of Telomeres Reveals TRF2-Dependent T-loop Formation. Cell 2013, 155, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, J.; Cech, T.R. Finding the end: Recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 2013, 14, 69–82. [Google Scholar] [CrossRef]
- Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008, 42, 301–334. [Google Scholar] [CrossRef] [Green Version]
- Hockemeyer, D.; Palm, W.; Else, T.; Daniels, J.-P.; Takai, K.K.; Ye, J.Z.-S.; Keegan, C.E.; de Lange, T.; Hammer, G.D. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat. Struct. Mol. Biol. 2007, 14, 754–761. [Google Scholar] [CrossRef]
- Churikov, D.; Price, C.M. Pot1 and cell cycle progression cooperate in telomere length regulation. Nat. Struct. Mol. Biol. 2008, 15, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Deng, Y.; Lin, Y.; Cosme-Blanco, W.; Chan, S.; He, H.; Yuan, G.; Brown, E.J.; Chang, S. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 2007, 26, 4709–4719. [Google Scholar] [CrossRef]
- Bae, N.S.; Baumann, P. A RAP1/TRF2 complex inhibits non-homologous end-joining at human telomeric DNA ends. Mol. Cell 2007, 26, 323–334. [Google Scholar] [CrossRef]
- Sarthy, J.; Bae, N.S.; Scrafford, J.; Baumann, P. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J. 2009, 28, 3390–3399. [Google Scholar] [CrossRef] [Green Version]
- Sfeir, A.; Kabir, S.; van Overbeek, M.; Celli, G.B.; de Lange, T. Loss of Rap1 Induces Telomere Recombination in the Absence of NHEJ or a DNA Damage Signal. Science 2010, 327, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Aubert, G.; Lansdorp, P. Telomeres and aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef] [Green Version]
- Proctor, C.J.; Kirkwood, T.B. Modelling telomere shortening and the role of oxidative stress. Mech. Ageing Dev. 2002, 123, 351–363. [Google Scholar] [CrossRef]
- Von Zglinicki, T.; Martin-Ruiz, C.M. Telomeres as biomarkers for ageing and age-related diseases. Curr. Mol. Med. 2005, 5, 197–203. [Google Scholar] [CrossRef]
- Sidorov, I.; Kimura, M.; Yashin, A.; Aviv, A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Exp. Hematol. 2009, 37, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Telomere states and cell fates. Nature 2000, 408, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007, 3, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Huang, W.-Y.; Wong, J.Y.; Chatterjee, N.; Reding, D.; Crawford, E.D.; De Vivo, I.; Hayes, R.B.; Savage, S.A. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell 2009, 8, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlà, M.; Busquets, X.; Pons, J.; Sauleda, J.; MacNee, W.; Agusti, A. Telomere shortening in smokers with and without COPD. Eur. Respir. J. 2006, 27, 525–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.C.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- Barthel, F.P.; Wei, W.; Tang, M.; Martinez-Ledesma, E.; Hu, X.; Amin, S.B.; Akdemir, K.C.; Seth, S.; Song, X.; Wang, Q.; et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 2017, 49, 349–357. [Google Scholar] [CrossRef]
- Benetos, A.; Gardner, J.P.; Zureik, M.; Labat, C.; Xiaobin, L.; Adamopoulos, C.; Temmar, M.; Bean, K.E.; Thomas, F.; Aviv, A. Short Telomeres Are Associated With Increased Carotid Atherosclerosis in Hypertensive Subjects. Hypertension 2004, 43, 182–185. [Google Scholar] [CrossRef]
- Brouilette, S.; Singh, R.K.; Thompson, J.R.; Goodall, A.H.; Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Panossian, L.A.; Porter, V.R.; Valenzuela, H.F.; Zhu, X.; Reback, E.; Masterman, D.; Cummings, J.L.; Effros, R.B. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol. Aging 2003, 24, 77–84. [Google Scholar] [CrossRef]
- Weng, X.; Zhang, H.; Kan, M.; Ye, J.; Liu, F.; Wang, T.; Deng, J.; Tan, Y.; He, L.; Liu, Y. Leukocyte telomere length is associated with advanced age-related macular degeneration in the Han Chinese population. Exp. Gerontol. 2015, 69, 36–40. [Google Scholar] [CrossRef]
- Sunness, J.S.; Rubin, G.S.; Applegate, C.A.; Bressler, N.M.; Marsh, M.J.; Hawkins, B.S.; Haselwood, D. Visual Function Abnormalities and Prognosis in Eyes with Age-related Geographic Atrophy of the Macula and Good Visual Acuity. Ophthalmology 1997, 104, 1677–1691. [Google Scholar] [CrossRef] [Green Version]
- Lindblad, A.S.; Lloyd, P.C.; E Clemons, T.; Gensler, G.R.; Ferris, F.; Klein, R.; Armstrong, J.R. Change in Area of Geographic Atrophy in the Age-Related Eye Disease Study: AREDS report number 26. Arch. Ophthalmol. 2009, 127, 1168–1174. [Google Scholar]
- Liutkeviciene, R.; Vilkeviciute, A.; Streleckiene, G.; Kriauciuniene, L.; Chaleckis, R.; Deltuva, V.P. Associations of cholesteryl ester transfer protein (CETP) gene variants with predisposition to age-related macular degeneration. Gene 2017, 636, 30–35. [Google Scholar] [CrossRef]
- Gedvilaite, G.; Vilkeviciute, A.; Kriauciuniene, L.; Banevičius, M.; Liutkeviciene, R. The relationship between leukocyte telomere length and TERT, TRF1 single nucleotide polymorphisms in healthy people of different age groups. Biogerontology 2020, 21, 57–67. [Google Scholar] [CrossRef]
- Blackburn, E.H. Telomeres and telomerase: The means to the end (Nobel lecture). Angew. Chem. Int. Ed. Engl. 2010, 49, 7405–7421. [Google Scholar] [CrossRef]
- Immonen, I.; Seitsonen, S.; Saionmaa, O.; Fyhrquist, F. Leucocyte telomere length in age-related macular degeneration. Acta Ophthalmol. 2013, 91, 453–456. [Google Scholar] [CrossRef]
- Lee, J.H.; Anver, M.; Kost-Alimova, M.; Protopopov, A.; DePinho, R.A.; Rane, S.G. Telomere dysfunction suppresses multiple endo-crine neoplasia in mice. Genes Cancer 2014, 5, 306–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaspina, D.; Dracxler, R.; Walsh-Messinger, J.; Harlap, S.; Goetz, R.R.; Keefe, D.; Perrin, M.C. Telomere length, family history, and paternal age in schizophrenia. Mol. Genet. Genom. Med. 2014, 2, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Müezzinler, A.; Zaineddin, A.K.; Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013, 12, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Martin-Ruiz, C.M.; Takayama, M.; Abe, Y.; Takebayashi, T.; Koyasu, S.; Suematsu, M.; Hirose, N.; von Zglinicki, T. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. eBioMedicine 2015, 2, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Goglin, S.E.; Farzaneh-Far, R.; Epel, E.S.; Lin, J.; Blackburn, E.H.; Whooley, M.A. Change in leukocyte telomere length predicts mor-tality in patients with stable coronary heart; disease from the heart and soul study. PLoS ONE 2016, 11, e0160748. [Google Scholar]
- Mons, U.; Müezzinler, A.; Schöttker, B.; Dieffenbach, A.K.; Butterbach, K.; Schick, M.; Peasey, A.; De Vivo, I.; Trichopoulou, A.; Boffetta, P.; et al. Leukocyte Telomere Length and All-Cause Mortality, Cardiovascular Disease, and Cancer Mortality: Results from Individual-Participant-Data Meta-Analysis of 2 Large Prospective Cohort Studies. Am. J. Epidemiol. 2017, 185, 1317–1326. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.M.; Lee, X.W.; Wang, X. Telomere shortening in human diseases. FEBS J. 2013, 280, 3180–3193. [Google Scholar] [CrossRef]
- Armanios, M.Y.; Chen, J.J.-L.; Cogan, J.D.; Alder, J.K.; Ingersoll, R.G.; Markin, C.; Lawson, W.E.; Xie, M.; Vulto, I.; Phillips, J.A.; et al. Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis. New Engl. J. Med. 2007, 356, 1317–1326. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, P.M.; Tufvesson, H.; Leosdottir, M.; Melander, O. Telomeres and cardiovascular disease risk: An update 2013. Transl. Res. 2013, 162, 371–380. [Google Scholar] [CrossRef]
- Adnot, S.; Amsellem, V.; Boyer, L.; Marcos, E.; Saker, M.; Houssaini, A.; Kebe, K.; Dagouassat, M.; Lipskaia, L.; Boczkowski, J. Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential. Pharmacol. Ther. 2015, 153, 125–134. [Google Scholar] [CrossRef]
- Valdes, A.M.; Richards, J.B.; Gardner, J.P.; Swaminathan, R.; Kimura, M.; Xiaobin, L.; Aviv, A.; Spector, T.D. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos. Int. 2007, 18, 1203–1210. [Google Scholar] [CrossRef]
- Deleidi, M.; Jaggle, M.; Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015, 9, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccardi, V.; Pelini, L.; Ercolani, S.; Ruggiero, C.; Mecocci, P. From cellular senescence to Alzheimer’s disease: The role of telomere shortening. Ageing Res. Rev. 2015, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet. 2005, 6, 611–622. [Google Scholar] [CrossRef]
- Zarbin, M.A. Current Concepts in the Pathogenesis of Age-Related Macular Degeneration. Arch. Ophthalmol. 2004, 122, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Drigeard Desgarnier, M.C.; Zinflou, C.; Mallet, J.D.; Gendron, S.P.; Méthot, S.J.; Rochette, P.J. Telomere Length Measurement in Different Ocular Structures: A Potential Implication in Corneal Endothelium Pathogenesis. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5547–5555. [Google Scholar] [CrossRef] [Green Version]
- Bell, W.R.; Meeker, A.K.; Rizzo, A.; Rajpara, S.; Rosenthal, I.M.; Bellver, M.F.; Domingo, S.A.; Zhong, X.; Barber, J.R.; Joshu, C.E.; et al. A unique telomere DNA expansion phenotype in human retinal rod photoreceptors associated with aging and disease. Brain Pathol. 2019, 29, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Asp. Med. 2012, 33, 295–317. [Google Scholar] [CrossRef] [Green Version]
- Blasiak, J. Senescence in the pathogenesis of age-related macular degeneration. Cell. Mol. Life Sci. 2020, 77, 789–805. [Google Scholar] [CrossRef]
- Blasiak, J.; Szczepanska, J.; Fila, M.; Pawlowska, E.; Kaarniranta, K. Potential of Telomerase in Age-Related Macular Degeneration—Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int. J. Mol. Sci. 2021, 22, 7194. [Google Scholar] [CrossRef]
- Pallini, R.; Sorrentino, A.; Pierconti, F.; Maggiano, N.; Faggi, R.; Montano, N.; Maira, G.; Larocca, L.M.; Levi, A.; Falchetti, M.L. Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int. J. Cancer 2006, 118, 2158–2167. [Google Scholar] [CrossRef]
- Martin-Ruiz, C.M.; Gussekloo, J.; van Heemst, D.; von Zglinicki, T.; Westendorp, R.G. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: A population-based study. Aging Cell 2005, 4, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Matarazzi, M.; Greenhalf, W.; Bijlsma, M.; Saum, K.-U.; Pasquali, C.; Van Laarhoven, H.; Szentesi, A.; Federici, F.; Vodička, P.; et al. Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. Int. J. Cancer 2019, 144, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly Recurrent TERT Promoter Mutations in Human Melanoma. Science 2013, 339, 957–959. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhao, J.; Xu, J.; Liu, F.; Xu, Y.; Bu, X.; Dai, C.; Song, C. Genetic variations in the TERT and CLPTM1L gene region and gastrointestinal stromal tumors risk. Oncotarget 2015, 6, 31360–31367. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Cheng, G.; Yu, J.; Zheng, S.; Sun, C.; Sun, Q.; Li, K.; Lin, Z.; Liu, T.; Li, P.; et al. The TERT promoter mutation incidence is modified by germline TERT rs2736098 and rs2736100 polymorphisms in hepatocellular carcinoma. Oncotarget 2017, 8, 23120–23129. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Jiang, B.; Xiong, M.; Zhu, X. Association Between TERT rs2736098 Polymorphisms and Cancer Risk-A Meta-Analysis. Front. Physiol. 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Li, Y.; Yin, M.; Sun, J.; Liu, L.; Qin, Q.; Li, X.; Long, L.; Nie, S.; Wei, S. TERT-CLPTM1L Polymorphism rs401681 Contributes to Cancers Risk: Evidence from a Meta-Analysis Based on 29 Publications. PLoS ONE 2012, 7, e50650. [Google Scholar] [CrossRef]
- Hosgood, H.D., 3rd; Cawthon, R.; He, X.; Chanock, S.; Lan, Q. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility. Lung Cancer 2009, 66, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Han, D.; Zhang, J.; Li, X. Expression of telomere repeat binding factor 1 and TRF2 in Alzheimer’s disease and correlation with clinical parameters. Neurol. Res. 2019, 41, 504–509. [Google Scholar] [CrossRef]
- Shi, J.-M.; Huang, H.; Chen, Q.-F.; Lin, M.-F. A study of the relationship between expression level of TRF1 protein and telomerase activity in human acute leukemia. J. Zhejiang Univ. Sci. B 2006, 7, 154–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Gu, J.; Lu, C.; Spitz, M.R.; Wu, X. Expression of Telomere-Associated Genes as Prognostic Markers for Overall Survival in Patients with Non–Small Cell Lung Cancer. Clin. Cancer Res. 2006, 12, 5720–5725. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Early AMD Group n = 177 | Control Group I n = 177 | p-Value | Exudative AMD Group n = 165 | Control Group II n = 118 | p-Value |
---|---|---|---|---|---|---|
Gender, n (%) | 0.002 * | 0.121 * | ||||
Males | 79 (28.8) | 79 (44.6) | 54 (34.8) | 52 (44.1) | ||
Females | 126 (71.2) | 98 (55.4) | 101 (65.2) | 66 (55.9) | ||
Age, median (IQR), years | 70 (14) | 73 (13) | 0.104 ** | 77 (10) | 74 (11) | 0.081 ** |
Polymorphism | Control Group I | HWE * p Value | Early AMD | * p Value |
---|---|---|---|---|
TERTrs2736098 | ||||
C/C | 98 (55.4) | 0.213 | 101 (57.1) | 0.837 |
C/T | 63 (35.6) | 63 (35.6) | ||
T/T | 16 (9.0) | 13 (7.3) | ||
Total | 177 (100) | 177 (100) | ||
C | 259 (73.2) | 265 (74.9) | 0.607 | |
T | 95 (26.8) | 89 (25.1) | ||
TERTrs401681 | ||||
C/C | 62 (35.0) | 0.647 | 63 (35.6) | 0.976 |
C/T | 83 (46.9) | 81 (45.8) | ||
T/T | 32 (18.1) | 33 (18.6) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 1.000 | |||
C | 207 (58.5) | 207 (58.5) | ||
T | 147 (41.5) | 147 (41.5) | ||
TRF1rs1545827 | ||||
C/C | 67 (37.9) | 0.969 | 65 (36.7) | 0.517 |
C/T | 84 (47.5) | 78 (44.1) | ||
T/T | 26 (14.7) | 34 (19.2) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 0.443 | |||
C | 218 (61.6) | 208 (58.8) | ||
T | 136 (38.4) | 146 (41.2) | ||
TRF1rs10107605 | ||||
A/A | 138 (78.0) | <0.001 | 150 (84.7) | 0.068 |
A/C | 28 (15.8) | 24 (13.6) | ||
C/C | 11 (6.2) | 3 (1.7) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 0.018 | |||
A | 304 (85.9) | 324 (91.5) | ||
C | 50 (14.1) | 30 (8.5) | ||
TNKS2rs10509637 | ||||
A/A | 119 (67.2) | 0.913 | 125 (70.6) | 0.539 |
A/G | 52 (29.4) | 49 (27.7) | ||
G/G | 6 (3.4) | 3 (1.7) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 0.366 | |||
A | 290 (81.9) | 299 (84.5) | ||
G | 64 (18.1) | 55 (15.5) | ||
TNKS2rs10509639 | ||||
A/A | 147 (83.1) | 0.737 | 153 (86.4) | 0.451 |
A/G | 29 (16.4) | 24 (13.6) | ||
G/G | 1 (0.6) | 0 (0) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 0.326 | |||
A | 323 (91.2) | 330 (93.2) | ||
G | 31 (8.8) | 24 (6.8) | ||
TRF2rs251796 | ||||
A/A | 89 (50.3) | 0.445 | 94 (53.1) | 0.624 |
A/G | 70 (39.5) | 70 (39.5) | ||
G/G | 18 (10.2) | 13 (7.3) | ||
Total | 177 (100) | 177 (100) | ||
Allele | 0.405 | |||
A | 248 (70.1) | 258 (72.9) | ||
G | 106 (29.9) | 96 (27.1) |
Polymorphism | Control Group II | HWE * p Value | Exudative AMD | * p Value |
---|---|---|---|---|
TERTrs2736098 | ||||
C/C | 63 (53.4) | 0.881 | 89 (57.4) | 0.518 |
C/T | 46 (39.0) | 59 (38.1) | ||
T/T | 9 (7.6) | 7 (4.5) | ||
Total | 118 (100) | 155 (100) | ||
C | 0.340 | |||
T | 172 (72.9) | 237 (76.5) | ||
TERTrs401681 | ||||
C/C | 43 (36.4) | 0.574 | 59 (38.1) | 0.804 |
C/T | 54 (45.8) | 73 (47.1) | ||
T/T | 21 (17.8) | 23 (14.8) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.587 | |||
C | 140 (59.3) | 191 (61.6) | ||
T | 96 (40.3) | 119 (38.4) | ||
TRF1rs1545827 | ||||
C/C | 46(39.0) | 0.743 | 53 (34.2) | 0.672 |
C/T | 54 (45.8) | 74 (47.7) | ||
T/T | 18 (15.3) | 28 (18.1) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.310 | |||
C | 146 (61.9) | 180 (58.1) | ||
T | 90 (38.1) | 130 (41.9) | ||
TRF1rs10107605 | ||||
A/A | 93 (78.8) | <0.001 | 135 (87.1) | 0.004 |
A/C | 17 (14.4) | 20 (12.9) | ||
C/C | 8 (6.8) | 0 (0.0) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.003 | |||
A | 203 (86.0) | 290 (93.5) | ||
C | 33 (14.0) | 20 (6.5) | ||
TNKS2rs10509637 | ||||
A/A | 82 (69.5) | 0.356 | 106 (68.4) | 0.957 |
A/G | 31 (26.3) | 43 (27.7) | ||
G/G | 5 (4.2) | 6 (3.9) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.911 | |||
A | 195 (82.6) | 255 (82.3) | ||
G | 41 (17.4) | 55 (17.7) | ||
TNKS2rs10509639 | ||||
A/A | 100 (84.7) | 0.770 | 129 (83.2) | 0.456 |
A/G | 17 (14.4) | 26 (16.8) | ||
G/G | 1 (0.8) | 0 (0.0) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.887 | |||
A | 217 (91.9) | 284 (91.6) | ||
G | 19 (8.1) | 26 (8.4) | ||
TRF2rs251796 | ||||
A/A | 60 (50.8) | 0.685 | 83 (53.5) | 0.855 |
A/G | 47 (39.8) | 60 (38.7) | ||
G/G | 11 (9.3) | 12 (7.7) | ||
Total | 118 (100) | 155 (100) | ||
Allele | 0.581 | |||
A | 167 (70.8) | 226 (72.9) | ||
G | 69 (29.2) | 84 (27.1) |
Model | Genotype/Allele | * OR (95% CI) | p | AIC |
---|---|---|---|---|
Early AMD | ||||
TRF1rs10107605 | ||||
Codominant | A/C vs. A/A C/C vs. A/A | 0.789 (0.436–1.426) 0.251 (0.069–0.918) | 0.432 0.037 | 489.080 |
Recessive | C/C vs. A/A+A/C | 0.260 (0.071–0.949) | 0.041 | 487.700 |
Additive | C | 0.632 (0.410–0.974) | 0.038 | 488.234 |
Exudative AMD | ||||
TRF1rs10107605 | ||||
Additive | C | 0.490 (0.285–0.844) | 0.010 | 368.362 |
Polymorphism | Long Telomeres | Short Telomeres | * p Value |
---|---|---|---|
TERTrs2736098 | |||
C/C | 145 (57.3) | 143 (56.3) | 0.969 |
C/T | 91 (36.0) | 93 (36.3) | |
T/T | 17 (6.7) | 18 (7.1) | |
Total | 253 (100) | 254 (100) | |
Allele | |||
C | 381 (75.3) | 379 (74.6) | 0.800 |
T | 125 (24.7) | 129 (25.4) | |
TERTrs401681 | |||
C/C | 91 (36.0) | 92 (36.2) | 0.754 |
C/T | 115 (45.5) | 121(47.6) | |
T/T | 47 (18.6) | 41 (16.1) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.663 | ||
C | 297 (58.7) | 305 (60.0) | |
T | 209 (41.3) | 203 (40.0) | |
TRF1rs1545827 | |||
C/C | 104 (41.1) | 80 (31.5) | 0.075 |
C/T | 107 (42.3) | 128 (50.4) | |
T/T | 42 (16.6) | 46 (18.1) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.071 | ||
C | 315 (62.3) | 288 (56.7) | |
T | 191 (37.7) | 220 (43.3) | |
TRF1rs10107605 | |||
A/A | 215 (85.0) | 206 (81.1) | 0.400 |
A/C | 33 (13.0) | 39 (15.4) | |
C/C | 5 (2.0) | 9 (3.5) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.146 | ||
A | 463 (91.5) | 451 (88.8) | |
C | 43 (8.5) | 57 (11.2) | |
TNKS2rs10509637 | |||
A/A | 172 (68.0) | 176 (69.3) | 0.895 |
A/G | 74 (29.2) | 70 (27.6) | |
G/G | 7 (2.8) | 8 (3.1) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.845 | ||
A | 418 (82.6) | 422 (83.1) | |
G | 88 (17.4) | 86 (16.9) | |
TNKS2rs10509639 | |||
A/A | 210 (83.0) | 217 (85.4) | 0.420 |
A/G | 43 (17.0) | 36 (14.2) | |
G/G | 0 (0) | 1 (0.4) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.550 | ||
A | 463 (91.5) | 470 (92.5) | |
G | 43 (8.5) | 38 (7.5) | |
TRF2rs251796 | |||
A/A | 145 (57.3) | 120 (47.2) | 0.043 |
A/G | 92 (36.4) | 107 (42.1) | |
G/G | 16 (6.3) | 27 (10.6) | |
Total | 253 (100) | 254 (100) | |
Allele | 0.011 | ||
A | 382 (75.5) | 347 (68.3) | |
G | 124 (24.5) | 161 (31.7) |
Model | Genotype/Allele | * OR (95% CI) | p | AIC |
---|---|---|---|---|
TRF2 rs251796 | ||||
Codominant | A/G vs. A/A G/G vs. A/A | 1.405 (0.972–2.033) 2.039 (1.050–3.961) | 0.071 0.035 | 700.512 |
Dominant | A/G+G/G vs. A/A | 1.499 (1.056–2.128) | 0.023 | 699.690 |
Additive | G | 1.418 (1.078–1.866) | 0.013 | 698.517 |
TRF1rs1545827 | ||||
Codominant | C/T vs. C/C T/T vs. C/C | 1.555 (1.055–2.293) 1.424 (0.855–2.371) | 0.026 0.174 | 701.651 |
Dominant | C/T+T/T vs. C/C | 1.518 (1.054–2.186) | 0.025 | 699.775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilkeviciute, A.; Gedvilaite, G.; Banevicius, M.; Kriauciuniene, L.; Zaliuniene, D.; Dobiliene, O.; Liutkeviciene, R. Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells 2022, 11, 3847. https://doi.org/10.3390/cells11233847
Vilkeviciute A, Gedvilaite G, Banevicius M, Kriauciuniene L, Zaliuniene D, Dobiliene O, Liutkeviciene R. Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells. 2022; 11(23):3847. https://doi.org/10.3390/cells11233847
Chicago/Turabian StyleVilkeviciute, Alvita, Greta Gedvilaite, Mantas Banevicius, Loresa Kriauciuniene, Dalia Zaliuniene, Olivija Dobiliene, and Rasa Liutkeviciene. 2022. "Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration" Cells 11, no. 23: 3847. https://doi.org/10.3390/cells11233847
APA StyleVilkeviciute, A., Gedvilaite, G., Banevicius, M., Kriauciuniene, L., Zaliuniene, D., Dobiliene, O., & Liutkeviciene, R. (2022). Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells, 11(23), 3847. https://doi.org/10.3390/cells11233847