Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Collection of Subcutaneous Adipose Tissue Biopsies
2.3. Derivation of MetS Status and siMS Score
2.4. Immunohistochemistry
2.5. RNA Extraction, cDNA Synthesis, and Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)
2.6. DNA Constructs and Mutagenesis
2.7. Cell Culture, DNA Transfections, and Reporter Assays
2.8. Chromatin Immunoprecipitation (ChIP) Assays
2.9. Small Interfering RNA (siRNA) Transfection and Western Blotting
2.10. Pyrosequencing and Sanger Sequencing
3. Results
3.1. MetS Score Correlates with CAV1 Transcript and Protein Levels in Human AT
3.2. CAV1 rs1997623 Alters the Transcription Factor Binding Site Motif and Mediates EBF1 Binding
3.3. CAV1 rs1997623 Causes Induced Promoter Activity at its Locus
3.4. EBF1 siRNA Reduces the Expression of CAV1 in PreAdipocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shvets, E.; Ludwig, A.; Nichols, B.J. News from the caves: Update on the structure and function of caveolae. Curr. Opin. Cell Biol. 2014, 29, 99–106. [Google Scholar] [CrossRef]
- Haddad, D.; al Madhoun, A.; Nizam, R.; Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell. Longev. 2020, 2020, 9761539. [Google Scholar] [CrossRef] [Green Version]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Silva, C.; Rotellar, F.; Gil, M.J.; Cienfuegos, J.A.; Salvador, J.; Frühbeck, G. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin. Endocrinol. 2008, 68, 213–219. [Google Scholar] [CrossRef]
- De Souza, G.M.; Borborema, M.E.d.; de Lucena, T.M.C.; Santos, A.F.d.; de Lima, B.R.; de Oliveira, D.C.; Silva, J.d. Caveolin-1 (CAV-1) up regulation in metabolic syndrome: All roads leading to the same end. Mol. Biol. Rep. 2020, 47, 9245–9250. [Google Scholar] [CrossRef]
- Boopathi, E.; Gomes, C.M.; Goldfarb, R.; John, M.; Srinivasan, V.G.; Alanzi, J.; Malkowicz, S.B.; Kathuria, H.; Zderic, S.A.; Wein, A.J.; et al. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings. Am. J. Pathol. 2011, 178, 2236–2251. [Google Scholar] [CrossRef] [Green Version]
- Park, D.S.; Lee, H.; Riedel, C.; Hulit, J.; Scherer, P.E.; Pestell, R.G.; Lisanti, M.P. Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J. Biol. Chem. 2001, 276, 48389–48397. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Tian, J.; Liu, Y.; Ye, Z.; Xu, M.; Huang, R.; Song, X. TLR4-Myd88 pathway upregulated caveolin-1 expression contributes to coronary artery spasm. Vasc. Pharmacol. 2022, 142, 106947. [Google Scholar] [CrossRef]
- Poy, M.N.; Hausser, J.; Trajkovski, M.; Braun, M.; Collins, S.; Rorsman, P.; Zavolan, M.; Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 2009, 106, 5813–5818. [Google Scholar] [CrossRef] [Green Version]
- Kassan, M.; Vikram, A.; Kim, Y.R.; Li, Q.; Kassan, A.; Patel, H.H.; Kumar, S.; Gabani, M.; Liu, J.; Jacobs, J.S.; et al. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress. Sci. Rep. 2017, 7, 42265. [Google Scholar] [CrossRef] [Green Version]
- Trajkovski, M.; Hausser, J.; Soutschek, J.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474, 649–653. [Google Scholar] [CrossRef]
- Baudrand, R.; Goodarzi, M.O.; Vaidya, A.; Underwood, P.C.; Williams, J.S.; Jeunemaitre, X.; Hopkins, P.N.; Brown, N.; Raby, B.A.; Lasky-Su, J.; et al. A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metab. Clin. Exp. 2015, 64, 1674–1681. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, X.; Wang, J.; Zhao, Y.; Wang, D.; Tan, C.; Fa, J.; Zhang, R.; Wang, F.; Xu, C.; et al. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis 2016, 246, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Mora-García, G.; Gómez-Camargo, D.; Alario, Á.; Gómez-Alegría, C. A common variation in the caveolin 1 gene is associated with high serum triglycerides and metabolic syndrome in an admixed Latin American population. Metab. Syndr. Relat. Dis. 2018, 16, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Abaj, F.; Saeedy, S.A.G.; Mirzaei, K. Mediation role of body fat distribution (FD) on the relationship between CAV1 rs3807992 polymorphism and metabolic syndrome in overweight and obese women. BMC Med. Genom. 2021, 14, 202. [Google Scholar] [CrossRef]
- Nizam, R.; Al-Ozairi, E.; Goodson, J.M.; Melhem, M.; Davidsson, L.; Alkhandari, H.; al Madhoun, A.; Shamsah, S.; Qaddoumi, M.; Alghanim, G.; et al. Caveolin-1 variant is associated with the metabolic syndrome in Kuwaiti children. Front. Genet. 2018, 9, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Madhoun, A.; Hebbar, P.; Nizam, R.; Haddad, D.; Melhem, M.; Abu-Farha, M.; Thanaraj, T.A.; Al-Mulla, F. Caveolin-1 rs1997623 variant and adult metabolic syndrome-Assessing the association in three ethnic cohorts of Arabs, South Asians and South East Asians. Front. Genet. 2022, 13, 1034892. [Google Scholar] [CrossRef]
- Holt, E.H.; Lane, M.D. Downregulation of repressive CUP/AP-2 isoforms during adipocyte differentiation. Biochem. Biophys. Res. Commun. 2001, 288, 752–756. [Google Scholar] [CrossRef]
- Gao, H.; Mejhert, N.; Fretz, J.A.; Arner, E.; Lorente-Cebrián, S.; Ehrlund, A.; Dahlman-Wright, K.; Gong, X.; Strömblad, S.; Douagi, I.; et al. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab. 2014, 19, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef]
- Kochumon, S.; Al-Rashed, F.; Abu-Farha, M.; Devarajan, S.; Tuomilehto, J.; Ahmad, R. Adipose tissue expression of CCL19 chemokine is positively associated with insulin resistance. Diabetes Metab. Res. Rev. 2019, 35, e3087. [Google Scholar] [CrossRef]
- Al-Roub, A.; al Madhoun, A.; Akhter, N.; Thomas, R.; Miranda, L.; Jacob, T.; Al-Ozairi, E.; Al-Mulla, F.; Sindhu, S.; Ahmad, R. IL-1beta and TNFalpha cooperativity in regulating IL-6 expression in adipocytes depends on CREB binding and H3K14 acetylation. Cells 2021, 10, 3228. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, S.; Kochumon, S.; Thomas, R.; Bennakhi, A.; Al-Mulla, F.; Ahmad, R. Enhanced adipose expression of interferon regulatory factor (IRF)-5 associates with the signatures of metabolic inflammation in diabetic obese patients. Cells 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. J. Br. Diabet. Assoc. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Soldatovic, I.; Vukovic, R.; Culafic, D.; Gajic, M.; Dimitrijevic-Sreckovic, V. siMS score: Simple method for quantifying metabolic syndrome. PLoS ONE 2016, 11, e0146143. [Google Scholar] [CrossRef]
- Ahmad, R.; Al-Mass, A.; Atizado, V.; Al-Hubail, A.; Al-Ghimlas, F.; Al-Arouj, M.; Bennakhi, A.; Dermime, S.; Behbehani, K. Elevated expression of the toll like receptors 2 and 4 in obese individuals: Its significance for obesity-induced inflammation. J Inflamm. 2012, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Gil-Recio, C.; Montori, S.; al Demour, S.; Ababneh, M.A.; Ferrés-Padró, E.; Marti, C.; Ferrés-Amat, E.; Barajas, M.; al Madhoun, A.; Atari, M. Chemically defined conditions mediate an efficient induction of dental pulp pluripotent-like stem cells into hepatocyte-like cells. Stem Cells Int. 2021, 2021, 5212852. [Google Scholar] [CrossRef]
- Al Madhoun, A.; Haddad, D.; al Tarrah, M.; Jacob, S.; Al-Ali, W.; Nizam, R.; Miranda, L.; Al-Rashed, F.; Sindhu, S.; Ahmad, R.; et al. Microarray analysis reveals ONC201 mediated differential mechanisms of CHOP gene regulation in metastatic and nonmetastatic colorectal cancer cells. Sci. Rep. 2021, 11, 11893. [Google Scholar] [CrossRef]
- Ali, H.; Al-Yatama, M.K.; Abu-Farha, M.; Behbehani, K.; al Madhoun, A. Multi-lineage differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers. PLoS ONE 2015, 10, e0122465. [Google Scholar] [CrossRef]
- Kochumon, S.; al Madhoun, A.; Al-Rashed, F.; Thomas, R.; Sindhu, S.; Al-Ozairi, E.; Al-Mulla, F.; Ahmad, R. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci. Rep. 2020, 10, 16364. [Google Scholar] [CrossRef]
- Al Madhoun, A.; Marafie, S.K.; Haddad, D.; Melhem, M.; Abu-Farha, M.; Ali, H.; Sindhu, S.; Atari, M.; Al-Mulla, F. Comparative proteomic analysis identifies EphA2 as a specific cell surface marker for Wharton’s jelly-derived mesenchymal stem cells. Int. J. Mol. Sci. 2020, 21, 6437. [Google Scholar] [CrossRef]
- Al Madhoun, A.S.; Mehta, V.; Li, G.; Figeys, D.; Wiper-Bergeron, N.; Skerjanc, I.S. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C. EMBO J. 2011, 30, 2477–2489. [Google Scholar] [CrossRef] [Green Version]
- Al Madhoun, A.S.; Voronova, A.; Ryan, T.; Zakariyah, A.; McIntire, C.; Gibson, L.; Shelton, M.; Ruel, M.; Skerjanc, I.S. Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J. Mol. Cell. Cardiol. 2013, 60, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Voronova, A.; Fischer, A.; Ryan, T.; al Madhoun, A.; Skerjanc, I.S. Ascl1/Mash1 is a novel target of Gli2 during Gli2-induced neurogenesis in P19 EC cells. PLoS ONE 2011, 6, e19174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voronova, A.; Coyne, E.; al Madhoun, A.; Fair, J.V.; Bosiljcic, N.; St-Louis, C.; Li, G.; Thurig, S.; Wallace, V.A.; Wiper-Bergeron, N.; et al. Hedgehog signaling regulates MyoD expression and activity. J. Biol. Chem. 2013, 288, 4389–4404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaaswarkhanth, M.; Melhem, M.; Sharma, P.; Nizam, R.; al Madhoun, A.; Chaubey, G.; Alsmadi, O.; AlOzairi, E.; Al-Mulla, F. Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. Appl. Clin. Genet. 2019, 12, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, T.; Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 1999, 15, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Rojo, M.A.; Ramm, G.A. Caveolin-1 function in liver physiology and disease. Trends Mol. Med. 2016, 22, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef]
- Akerblad, P.; Lind, U.; Liberg, D.; Bamberg, K.; Sigvardsson, M. Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol. Cell Biol. 2002, 22, 8015–8025. [Google Scholar] [CrossRef] [Green Version]
- Bitar, M.S.; Abdel-Halim, S.M.; Al-Mulla, F. Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: Implications for evidence-based therapy of delayed wound healing in diabetes. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E951–E963. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Madhoun, A.; Haddad, D.; Nizam, R.; Miranda, L.; Kochumon, S.; Thomas, R.; Thanaraj, T.A.; Ahmad, R.; Bitar, M.S.; Al-Mulla, F. Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells 2022, 11, 3937. https://doi.org/10.3390/cells11233937
Al Madhoun A, Haddad D, Nizam R, Miranda L, Kochumon S, Thomas R, Thanaraj TA, Ahmad R, Bitar MS, Al-Mulla F. Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells. 2022; 11(23):3937. https://doi.org/10.3390/cells11233937
Chicago/Turabian StyleAl Madhoun, Ashraf, Dania Haddad, Rasheeba Nizam, Lavina Miranda, Shihab Kochumon, Reeby Thomas, Thangavel Alphonse Thanaraj, Rasheed Ahmad, Milad S. Bitar, and Fahd Al-Mulla. 2022. "Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression" Cells 11, no. 23: 3937. https://doi.org/10.3390/cells11233937
APA StyleAl Madhoun, A., Haddad, D., Nizam, R., Miranda, L., Kochumon, S., Thomas, R., Thanaraj, T. A., Ahmad, R., Bitar, M. S., & Al-Mulla, F. (2022). Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells, 11(23), 3937. https://doi.org/10.3390/cells11233937