Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations
Abstract
:1. Introduction
2. Chondrocytes in Their Native Niche: Healthy and Diseased
3. The ACI Procedure
4. Chondrocytes Expansion and the De-Differentiation Effect
5. Chondrocytes in Two and Three-Dimensional Culture Compared to Native Tissue
6. The Biophysical Aspects of Monolayer Expansion and De-Differentiation
6.1. Integrin Profile Changes during Expansion
6.2. Chondrocyte Nuclear Shape and Biomechanical Response to Substrate Rigidity
6.3. Nuclear Lamins, Hetrochromatin and Euchromatin
7. Conclusions: Mapping Nuclear Structural Changes to Understand De-Differentiation
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Hersch, N.; Wolters, B.; Dreissen, G.; Springer, R.; Kirchgeßner, N.; Merkel, R.; Hoffmann, B. The constant beat: Cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open 2013, 2, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malek, A.M.; Izumo, S. Control of endothelial cell gene expression by flow. J. Biomech. 1995, 28, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Kääb, M.; Richards, R.; Ito, K.; ap Gwynn, I.; Nötzli, H. Deformation of Chondrocytes in Articular Cartilage under Compressive Load: A Morphological Study. Cells Tissues Organs 2003, 175, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, K.; Holinski, B.J.; Everaert, D.G.; Stein, R.B.; Etienne-Cummings, R.; Mushahwar, V.K. Feed forward and feedback control for over-ground locomotion in anaesthetized cats. J. Neural Eng. 2012, 9, 026003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkkinen, J.J.; Lammi, M.J.; Helminen, H.J.; Tammi, M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J. Orthop. Res. 1992, 10, 610–620. [Google Scholar] [CrossRef]
- Chapski, D.; Rosa-Garrido, M.; Hua, N.; Alber, F.; Vondriska, T.M. Spatial Principles of Chromatin Architecture Associated With Organ-Specific Gene Regulation. Front. Cardiovasc. Med. 2019, 5, 186. [Google Scholar] [CrossRef]
- Hildebrand, E.M.; Dekker, J. Mechanisms and Functions of Chromosome Compartmentalization. Trends Biochem. Sci. 2020, 45, 385–396. [Google Scholar] [CrossRef]
- Benya, P.D.; Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982, 30, 215–224. [Google Scholar] [CrossRef]
- Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Benya, P.D. Modulation and Reexpression of the Chondrocyte Phenotype; Mediation by Cell Shape and Microfilament Modification. Pathol. Immunopathol. Res. 1988, 7, 51–54. [Google Scholar] [CrossRef]
- Hall, B.K. Cartilage. In Bones and Cartilage; Elsevier: San Diego, CA, USA, 2005; pp. 33–47. [Google Scholar] [CrossRef]
- Carter, D.R.; Wong, M. Modelling cartilage mechanobiology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1461–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sport. Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mow, V.C.; Bachrach, N.M.; Setton, L.A.; Guilak, F. Stress, strain, pressure and flow fields in Articular cartilage and chondrocytes. In Cell Mechanics and Cellular Engineering; Springer: New York, NY, USA, 1994; pp. 345–379. [Google Scholar] [CrossRef]
- Sanchez-Adams, J.; Leddy, H.A.; McNulty, A.L.; O’Conor, C.J.; Guilak, F. The Mechanobiology of Articular Cartilage: Bearing the Burden of Osteoarthritis. Curr. Rheumatol. Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.L.; Widmyer, M.R.; Leddy, H.A.; Utturkar, G.M.; Spritzer, C.E.; Moorman, C.T.; Guilak, F.; DeFrate, L.E. Diurnal variations in articular cartilage thickness and strain in the human knee. J. Biomech. 2013, 46, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, F.; Tieschky, M.; Faber, S.; Englmeier, K.-H.; Reiser, M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat. Embryol. 1999, 200, 419–424. [Google Scholar] [CrossRef]
- Säämänen, A.-M.; Tammi, M.; Jurvelin, J.; Kiviranta, I.; Helminen, H.J. Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J. Orthop. Res. 1990, 8, 863–873. [Google Scholar] [CrossRef]
- Mansfield, J.; Bell, J.; Winlove, C. The micromechanics of the superficial zone of articular cartilage. Osteoarthr. Cartil. 2015, 23, 1806–1816. [Google Scholar] [CrossRef] [Green Version]
- Maroudas, A. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 1976, 260, 808–809. [Google Scholar] [CrossRef]
- Yu, J.; Urban, J.P.G. The elastic network of articular cartilage: An immunohistochemical study of elastin fibres and microfibrils. J. Anat. 2010, 216, 533–541. [Google Scholar] [CrossRef]
- Yeh, A.T.; Hammer-Wilson, M.J.; Van Sickle, D.C.; Benton, H.P.; Zoumi, A.; Tromberg, B.J.; Peavy, G.M. Nonlinear optical microscopy of articular cartilage. Osteoarthr. Cartil. 2005, 13, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, J.; Yu, J.; Attenburrow, D.; Moger, J.; Tirlapur, U.; Urban, J.; Cui, Z.; Winlove, P. The elastin network: Its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J. Anat. 2009, 215, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Chondrons and the Pericellular Matrix of Chondrocytes. Tissue Eng. Part B Rev. 2015, 21, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.; Moger, J.; Green, E.; Moger, C.; Winlove, C.P. Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J. Biophotonics 2013, 6, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.B.; Youn, I.; Cao, L.; Leddy, H.A.; Gilchrist, C.L.; Setton, L.A.; Guilak, F. Zonal changes in the three-dimensional morphology of the chondron under compression: The relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J. Biomech. 2007, 40, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.; Zauscher, S.; Guilak, F. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 2006, 14, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, L.G.; Haider, M.; Vail, T.P.; Guilak, F. Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis. J. Biomech. Eng. 2003, 125, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Wilusz, R.E.; Sanchez-Adams, J.; Guilak, F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014, 39, 25–32. [Google Scholar] [CrossRef]
- Nguyen, B.V.; Wang, Q.; Kuiper, N.J.; El Haj, A.J.; Thomas, C.R.; Zhang, Z. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression. Biotechnol. Lett. 2009, 31, 803–809. [Google Scholar] [CrossRef]
- Leddy, H.A.; Christensen, S.E.; Guilak, F. Microscale Diffusion Properties of the Cartilage Pericellular Matrix Measured Using 3D Scanning Microphotolysis. J. Biomech. Eng. 2008, 130, 061002. [Google Scholar] [CrossRef] [Green Version]
- Guilak, F.; Nims, R.J.; Dicks, A.; Wu, C.-L.; Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018, 71–72, 40–50. [Google Scholar] [CrossRef]
- Poole, C.A. Review. Articular cartilage chondrons: Form, function and failure. J. Anat. 1997, 191, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.; Nam, J. The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis. BioMed Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassner, R.; Buckley, M.J.; Georgescu, H.; Studer, R.; Stefanovich-Racic, M.; Piesco, N.P.; Evans, C.H.; Agarwal, S. Cyclic tensile stress exerts antiinflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. J. Immunol. 1999, 163, 2187–2192. [Google Scholar] [PubMed]
- Yamamoto, K.; Troeberg, L.; Scilabra, S.D.; Pelosi, M.; Murphy, C.L.; Strickland, D.K.; Nagase, H. LRP-1-mediated endocytosis regulates extracellular activity of ADAMTS-5 in articular cartilage. FASEB J. 2012, 27, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Owen, K.; Parker, A.E.; Scilabra, S.D.; Dudhia, J.; Strickland, D.K.; Troeberg, L.; Nagase, H. Low Density Lipoprotein Receptor-related Protein 1 (LRP1)-mediated Endocytic Clearance of a Disintegrin and Metalloproteinase with Thrombospondin Motifs-4 (ADAMTS-4). J. Biol. Chem. 2014, 289, 6462–6474. [Google Scholar] [CrossRef] [Green Version]
- Gomoll, A.H.; Farr, J.; Gillogly, S.D.; Kercher, J.; Minas, T. Surgical management of articular cartilage defects of the knee. J. Bone Jt. Surg. 2010, 92, 2470–2490. [Google Scholar]
- Grande, D.A.; Singh, I.J.; Pugh, J. Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat. Rec. 1987, 218, 142–148. [Google Scholar] [CrossRef]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef]
- Foldager, C.B.; Gomoll, A.H.; Lind, M.; Spector, M. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair. Cartilage 2012, 3, 108–117. [Google Scholar] [CrossRef]
- Samuelson, E.M.; Brown, D.E. Cost-Effectiveness Analysis of Autologous Chondrocyte Implantation. Am. J. Sport. Med. 2012, 40, 1252–1258. [Google Scholar] [CrossRef]
- Leja, L.; Minas, T. Periosteum-covered ACI (ACI-P) versus collagen membrane ACI (ACI-C): A single-surgeon, large cohort analysis of clinical outcomes and graft survivorship. J. Cartil. Jt. Preserv. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Gomoll, A.H.; Probst, C.; Farr, J.; Cole, B.J.; Minas, T. Use of a Type I/III Bilayer Collagen Membrane Decreases Reoperation Rates for Symptomatic Hypertrophy after Autologous Chondrocyte Implantation. Am. J. Sport. Med. 2009, 37, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Al-Masawa, M.-E.; Zaman, W.S.W.K.; Chua, K.-H. Biosafety evaluation of culture-expanded human chondrocytes with growth factor cocktail: A preclinical study. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Bader, D.; Knight, M. Measuring the biomechanical properties of cartilage cells. In Regenerative Medicine and Biomaterials for the Repair of Connective Tissues; Elsevier: Cambridge, UK, 2010; pp. 106–136. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Dedifferentiation: Inspiration for devising engineering strategies for regenerative medicine. npj Regen. Med. 2020, 5, 1–11. [Google Scholar] [CrossRef]
- Shafaei, H.; Bagernezhad, H.; Bagernajad, H. Importance of Floating Chondrons in Cartilage Tissue Engineering. World J. Plast. Surg. 2017, 6, 62–67. [Google Scholar]
- Charlier, E.; Deroyer, C.; Ciregia, F.; Malaise, O.; Neuville, S.; Plener, Z.; Malaise, M.; de Seny, D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem. Pharmacol. 2019, 165, 49–65. [Google Scholar] [CrossRef]
- Mayne, R.; Vail, M.S.; Mayne, P.M.; Miller, E.J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA 1976, 73, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Von Der Mark, K.; Gauss, V.; Von Der Mark, H.; Müller, P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977, 267, 531–532. [Google Scholar] [CrossRef]
- Duan, L.; Ma, B.; Liang, Y.; Chen, J.; Zhu, W.; Li, M.; Wang, D. Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy. Am. J. Transl. Res. 2015, 7, 194–208. [Google Scholar]
- Adam, M.; Deyl, Z. Altered expression of collagen phenotype in osteoarthrosis. Clin. Chim. Acta 1983, 133, 25–32. [Google Scholar] [CrossRef]
- Hosseininia, S.; Weis, M.; Rai, J.; Kim, L.; Funk, S.; Dahlberg, L.; Eyre, D. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthr. Cartil. 2016, 24, 1029–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aigner, T.; Reichenberger, E.; Bertling, W.; Kirsch, T.; Stöß, H.; von der Mark, K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch. B 1993, 63, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Hoffman, T.; Wu, A.; Kohn, J. An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. Cartilage 2017, 9, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, W.; Li, X.; Zhong, D.; Li, Y.; Li, J.; Jin, R. Strategies to Modulate the Redifferentiation of Chondrocytes. Front. Bioeng. Biotechnol. 2021, 9, 764193. [Google Scholar] [CrossRef]
- Schulze-Tanzil, G. Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair. Ann. Anat. 2009, 191, 325–338. [Google Scholar] [CrossRef]
- Mueller, A.J.; Tew, S.R.; Vasieva, O.; Clegg, P.D.; Canty-Laird, E.G. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes. Sci. Rep. 2016, 6, 33956. [Google Scholar] [CrossRef] [Green Version]
- Caron, M.M.J.; Emans, P.J.; Coolsen, M.M.E.; Voss, L.; Surtel, D.A.M.; Cremers, A.; van Rhijn, L.W.; Welting, T.J.M. Redifferentiation of dedifferentiated human articular chondrocytes: Comparison of 2D and 3D cultures. Osteoarthr. Cartil. 2012, 20, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, M.; Hunziker, E.; Kim, Y.; Grodzinsky, A. Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J. Cell Sci. 1996, 109, 499–508. [Google Scholar] [CrossRef]
- Leipzig, N.D.; Athanasiou, K.A. Static Compression of Single Chondrocytes Catabolically Modifies Single-Cell Gene Expression. Biophys. J. 2008, 94, 2412–2422. [Google Scholar] [CrossRef] [Green Version]
- Nava, M.; Miroshnikova, Y.A.; Biggs, L.; Whitefield, D.B.; Metge, F.; Boucas, J.; Vihinen, H.; Jokitalo, E.; Li, X.; Arcos, J.M.G.; et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell 2020, 181, 800–817. [Google Scholar] [CrossRef]
- Damodaran, K.; Venkatachalapathy, S.; Alisafaei, F.; Radhakrishnan, A.V.; Jokhun, D.S.; Shenoy, V.B.; Shivashankar, G.V. Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Mol. Biol. Cell 2018, 29, 3039–3051. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, D.A. Integrin activation. J. Cell Sci. 2004, 117, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramage, L. Integrins and extracellular matrix in mechanotransduction. Cell Health Cytoskelet. 2011, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [Green Version]
- Mason, B.N.; Califano, J.P.; Reinhart-King, C.A. Matrix stiffness: A regulator of cellular behavior and tissue formation. In Engineering Biomaterials for Regenerative Medicine; Springer: New York, NY, USA, 2012; pp. 19–37. [Google Scholar] [CrossRef]
- Iwamoto, D.V.; Calderwood, D.A. Regulation of integrin-mediated adhesions. Curr. Opin. Cell Biol. 2015, 36, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Handorf, A.M.; Zhou, Y.A.; Halanski, M.; Li, W.-J. Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression. Organogenesis 2015, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Woods, V.L.; Schreck, P.J.; Gesink, D.S.; Pacheco, H.O.; Amiel, D.; Akeson, W.H.; Lotz, M. Integrin expression by human articular chondrocytes. Arthritis Care Res. 1994, 37, 537–544. [Google Scholar] [CrossRef]
- Zeltz, C.; Gullberg, D. The integrin-collagen connection-a glue for tissue repair? J. Cell Sci. 2016, 129, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Loeser, R.F. Integrins and chondrocyte–matrix interactions in articular cartilage. Matrix Biol. 2014, 39, 11–16. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Husari, A.; Rolauffs, B.; Steinberg, T.; Tomakidi, P. Integrins, cadherins and channels in cartilage mechanotransduction: Perspectives for future regeneration strategies. Expert Rev. Mol. Med. 2021, 23, 1–20. [Google Scholar] [CrossRef]
- Schiller, H.B.; Fässler, R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013, 14, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carley, E.; Stewart, R.M.; Zieman, A.; Jalilian, I.E.; King, D.; Zubek, A.; Lin, S.; Horsley, V.; King, M.C. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 2021, 10, e58541. [Google Scholar] [CrossRef]
- Elosegui-Artola, A.; Bazellières, E.; Allen, M.D.; Andreu, I.; Oria, R.; Sunyer, R.; Gomm, J.J.; Marshall, J.F.; Jones, J.L.; Trepat, X.; et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 2014, 13, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006, 16, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lovett, D.B.; Shekhar, N.; Nickerson, J.A.; Roux, K.J.; Lele, T.P. Modulation of Nuclear Shape by Substrate Rigidity. Cell Mol. Bioeng. 2013, 6, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Khilan, A.A.; Al-Maslamani, N.A.; Horn, H.F. Cell stretchers and the LINC complex in mechanotransduction. Arch. Biochem. Biophys. 2021, 702, 108829. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Y.; Zhao, H. The effect of matrix stiffness on biomechanical properties of chondrocytes. Acta Biochim. Biophys. Sin. 2016, 48, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Schuh, E.; Kramer, J.; Rohwedel, J.; Notbohm, H.; Müller, R.; Gutsmann, T.; Rotter, N. Effect of Matrix Elasticity on the Maintenance of the Chondrogenic Phenotype. Tissue Eng. Part A 2010, 16, 1281–1290. [Google Scholar] [CrossRef]
- Zhang, T.; Gong, T.; Xie, J.; Lin, S.; Liu, Y.; Zhou, T.; Lin, Y. Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS Appl. Mater. Interfaces 2016, 8, 22884–22891. [Google Scholar] [CrossRef]
- Kumar, D.; Lassar, A.B. The Transcriptional Activity of Sox9 in Chondrocytes Is Regulated by RhoA Signaling and Actin Polymerization. Mol. Cell Biol. 2009, 29, 4262–4273. [Google Scholar] [CrossRef] [Green Version]
- Piltti, J.; Bygdell, J.; Fernández-Echevarría, C.; Marcellino, D.; Lammi, M.J. Rho-kinase inhibitor Y-27632 and hypoxia synergistically enhance chondrocytic phenotype and modify S100 protein profiles in human chondrosarcoma cells. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, A.; Beier, F.; Wu, Y.; Sugiyama, T.; Kowalczykowski, S.C. RhoA/ROCK Signaling Regulates Chondrogenesis in a Context-dependent Manner. J. Biol. Chem. 2006, 281, 13134–13140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, J.; Ivanovska, I.L.; Buxboim, A.; Harada, T.; Dingal, P.C.D.P.; Pinter, J.; Pajerowski, J.D.; Spinler, K.R.; Shin, J.-W.; Tewari, M.; et al. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science 2013, 341, 1240104. [Google Scholar] [CrossRef] [Green Version]
- Bermeo, S.; Vidal, C.; Zhou, H.; Duque, G. Lamin A/C Acts as an Essential Factor in Mesenchymal Stem Cell Differentiation Through the Regulation of the Dynamics of the Wnt/β-Catenin Pathway. J. Cell Biochem. 2015, 116, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Swift, J.; Discher, D.E. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 2014, 127, 3005–3015. [Google Scholar] [CrossRef] [Green Version]
- Meinke, P.; Nguyen, T.D.; Wehnert, M.S. The LINC complex and human disease. Biochem. Soc. Trans. 2011, 39, 1693–1697. [Google Scholar] [CrossRef] [Green Version]
- Dechat, T.; Adam, S.A.; Taimen, P.; Shimi, T.; Goldman, R.D. Nuclear Lamins. Cold Spring Harb. Perspect. Biol. 2010, 2, a000547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammerding, J.; Fong, L.G.; Ji, J.Y.; Reue, K.; Stewart, C.L.; Young, S.G.; Lee, R.T. Lamins A and C but Not Lamin B1 Regulate Nuclear Mechanics. J. Biol. Chem. 2006, 281, 25768–25780. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ivanovska, I.; Vashisth, M.; Discher, D.E. Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioeng. 2022, 6, 021504. [Google Scholar] [CrossRef]
- Dahl, K.N.; Ribeiro, A.J.; Lammerding, J. Nuclear Shape, Mechanics, and Mechanotransduction. Circ. Res. 2008, 102, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Maass, P.G.; Barutcu, A.R.; Rinn, J.L. Interchromosomal interactions: A genomic love story of kissing chromosomes. J. Cell Biol. 2018, 218, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorkin, D.U.; Leung, D.; Ren, B. The 3D Genome in Transcriptional Regulation and Pluripotency. Cell Stem Cell 2014, 14, 762–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, J.E.; Corces, V.G. CTCF: Master Weaver of the Genome. Cell 2009, 137, 1194–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, A.; Ren, B. Genome organization and long-range regulation of gene expression by enhancers. Curr. Opin. Cell Biol. 2013, 25, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Dechat, T.; Adam, S.A.; Goldman, R.D. Nuclear lamins and chromatin: When structure meets function. Adv. Enzym. Regul. 2009, 49, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Shevelyov, Y.Y.; Ulianov, S.V. The Nuclear Lamina as an Organizer of Chromosome Architecture. Cells 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Scott, A.K.; Seelbinder, B.; Barthold, J.E.; Martin, B.M.S.; Kaonis, S.; Schneider, S.E.; Henderson, J.T.; Neu, C.P. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys. J. 2021, 121, 131–141. [Google Scholar] [CrossRef]
- Sliogeryte, K.; Botto, L.; Lee, D.; Knight, M. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthr. Cartil. 2015, 24, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Hoshiba, T.; Yamada, T.; Lu, H.; Kawazoe, N.; Tateishi, T.; Chen, G. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes. Biochem. Biophys. Res. Commun. 2008, 374, 688–692. [Google Scholar] [CrossRef]
- Stephens, A.D.; Banigan, E.J.; Adam, S.A.; Goldman, R.D.; Marko, J.F. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell 2017, 28, 1984–1996. [Google Scholar] [CrossRef]
- Miroshnikova, Y.A.; Nava, M.M.; Wickström, S.A. Emerging roles of mechanical forces in chromatin regulation. J. Cell Sci. 2017, 130, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Burke, B.; Stewart, C.L. The nuclear lamins: Flexibility in function. Nat. Rev. Mol. Cell Biol. 2012, 14, 13–24. [Google Scholar] [CrossRef]
- Dechat, T.; Pfleghaar, K.; Sengupta, K.; Shimi, T.; Shumaker, D.K.; Solimando, L.; Goldman, R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008, 22, 832–853. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Tanzil, G.; de Souza, P.; Villegas Castrejon, H.; John, T.; Merker, H.J.; Scheid, A.; Shakibaei, M. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res. 2002, 308, 371–379. [Google Scholar] [CrossRef]
- Martin, I.; Novakovica, G.; Yang, J.; Langer, R.; Freed, L. Mammalian Chondrocytes Expanded in the Presence of Fibroblast Growth Factor 2 Maintain the Ability to Differentiate and Regenerate Three-Dimensional Cartilaginous Tissue. Exp. Cell Res. 1999, 253, 681–688. [Google Scholar] [CrossRef]
- Heo, S.-J.; Thorpe, S.; Driscoll, T.; Duncan, R.L.; Lee, D.; Mauck, R.L. Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells. Sci. Rep. 2015, 5, 16895. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.K.; Casas, E.; Schneider, S.E.; Swearingen, A.R.; Van Den Elzen, C.L.; Seelbinder, B.; Barthold, J.E.; Kugel, J.F.; Stern, J.L.; Foster, K.J. Epigenetic Remodeling During Monolayer Cell Expansion Reduces Therapeutic Potential. Biorxiv 2021, 12, 472696. [Google Scholar] [CrossRef]
- Roberts, S.; McCall, I.W.; Darby, A.J.; Menage, J.; Evans, H.; Harrison, E.P.; Richardson, J.B. Autologous chondrocyte implantation for cartilage repair: Monitoring its success by magnetic resonance imaging and histology. Arthritis Res. Ther. 2003, 5, R60–R73. [Google Scholar] [CrossRef]
Commercial Name (Company) | No. of Cells Provided | Expansion | Recommended Cell Implantation Density |
---|---|---|---|
First ACI procedure by Brittberg and Peterson | 2.5–5 million cells | Monolayer, Flask | - |
Carticel (Genzyme) | 12 million per vial | - | ≥2 × 106/cm2 defect ≤ 7 cm2 |
ChondroCelect (TiGenix) | 4 million cells per vial | Monolayer, Flask | 0.8–1 × 106/cm2 |
Chondrosphere Or Spherox (Co.don) | 200 microliter of isotonic sodium chloride, there are 60 spheroids. (single spheroid contains 200,000 cells) 12 million cells implanted in total | Initially expanded in Monolayer, then transferred into a suspension culture | 10–70 spheroids/cm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Maslamani, N.A.; Oldershaw, R.; Tew, S.; Curran, J.; D’Hooghe, P.; Yamamoto, K.; Horn, H.F. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022, 11, 4011. https://doi.org/10.3390/cells11244011
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells. 2022; 11(24):4011. https://doi.org/10.3390/cells11244011
Chicago/Turabian StyleAl-Maslamani, Noor A., Rachel Oldershaw, Simon Tew, Jude Curran, Pieter D’Hooghe, Kazuhiro Yamamoto, and Henning F. Horn. 2022. "Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations" Cells 11, no. 24: 4011. https://doi.org/10.3390/cells11244011
APA StyleAl-Maslamani, N. A., Oldershaw, R., Tew, S., Curran, J., D’Hooghe, P., Yamamoto, K., & Horn, H. F. (2022). Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells, 11(24), 4011. https://doi.org/10.3390/cells11244011