Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma
Abstract
:1. Introduction
2. Methods
2.1. Construct Design and Generation of CD19 and CD22 CAR-T Cell Cocktail
2.2. Successful CD19 and CD22 CAR-T Manufacture for Clinical Application
2.3. Study Design and Procedures
2.4. Endpoints and Assessments
2.5. Ethics
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Manufacturing and Infusion of CAR19 and CAR22 T-Cells
3.3. Patients Who Received Humanized CAR T-Cells Achieved a Higher CR Than Those Treated with the Murinized CAR-T, Even among TP53 Mutation-Positive Patients
3.4. Patients in the Humanized Group Had a Longer PFS Than Those in the Murinized Group
3.5. Most CRS and ICANS Were Low-Grade and Reversible
3.6. High-Grade CRS Was Associated with Higher Levels of Cytokines in Vivo
3.7. Humanized CAR T-Cells Proliferated More and Persisted Longer Compared to Murinized CAR T-Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimericantigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Q.; Liang, X.; Chen, Z.; Zhang, X.; Zhou, X.; Li, M.; Tu, H.; Liu, Y.; Tu, S.; et al. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front. Immunol. 2019, 10, 2664. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lu, X.-A.; Yang, J.; Zhang, G.; Li, J.; Song, L.; Su, Y.; Shi, Y.; Zhang, M.; He, J.; et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020, 4, 2325–2338. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.C.; Hu, Z.-H.; Curran, K.; Laetsch, T.; Locke, F.; Rouce, R.; Pulsipher, M.A.; Phillips, C.L.; Keating, A.; Frigault, M.J.; et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020, 4, 5414–5424. [Google Scholar] [CrossRef] [PubMed]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, J.; Naqvi, A.; Luo, M.; Wertheim, G.; Paessler, M.; Thomas-Tikhonenko, A.; Rheingold, S.R.; Pillai, V. Heterogeneity of surface CD19 and CD22 expression in B lymphoblastic leukemia. Am. J. Hematol. 2018, 93, E352–E355. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozani, P.S.; Kozani, P.S.; O’Connor, R.S. Humanized Chimeric Antigen Receptor (CAR) T cells. J. Cancer Immunol. (Wilmington) 2021, 3, 183–187. [Google Scholar] [PubMed]
- Qian, L.; Li, D.; Ma, L.; He, T.; Qi, F.; Shen, J.; Lu, X.-A. The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing. Cell. Immunol. 2016, 304–305, 49–54. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov. 2021, 20, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Z.F.; Wang, X.; Wu, H.; Zhang, J.; Yang, J.; Zhang, F.; Liu, L.; Long, J.; Lu, P.; et al. Treatment with humanized selective CD19CAR-T Cells shows efcacy in highly treated B-ALL Patients who have relapsed after receiving murine-based CD19CAR-T therapies. Clin. Cancer Res. 2019, 25, 5595–5607. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, J.; Zhang, X.; Fanyong, L.V.; Guo, X.; Wang, Q.; Wang, L.; Chen, D.; Zhou, X.; Ren, J.; et al. A Feasibility and Safety Study of CD19 and CD22 Chimeric Antigen Receptors-Modified T Cell Cocktail for Therapy of B Cell Acute Lymphoblastic Leukemia. Blood 2018, 132 (Suppl. 1), 277. [Google Scholar] [CrossRef]
- Nicholson, I.C.; Lenton, K.A.; Little, D.J.; Decorso, T.; Lee, F.T.; Scott, A.; Zola, H.; Hohmann, A.W. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol. Immunol. 1997, 34, 1157–1165. [Google Scholar] [CrossRef]
- Wang, X.; Chang, W.-C.; Wong, C.W.; Colcher, D.; Sherman, M.; Ostberg, J.R.; Forman, S.J.; Riddell, S.R.; Jensen, M.C. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 2011, 118, 1255–1263. [Google Scholar] [CrossRef]
- Awan, F.T.; Lapalombella, R.; Trotta, R.; Butchar, J.P.; Yu, B.; Benson, D.M.; Roda, J.M.; Cheney, C.; Mo, X.; Lehman, A.; et al. CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain–engineered monoclonal antibody. Blood 2010, 115, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Ho, M.; Zhu, Z.; Pastan, I.; Dimitrov, D.S. Identification and characterization of fully human anti-CD22 monoclonal antibodies. mAbs 2009, 1, 297–303. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.A.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.C.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapyassessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Curran, K.J.; Margossian, S.P.; Kernan, N.A.; Silverman, L.B.; Williams, D.A.; Shukla, N.; Kobos, R.; Forlenza, C.J.; Steinherz, P.; Prockop, S.; et al. Toxicity and response after CD19-specifific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 2019, 134, 2361–2368. [Google Scholar] [CrossRef]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor–modifified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Turtle, C.J.; Hanafifi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defifined CD41:CD81 composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defifined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Wang, N.; Hu, X.; Cao, W.; Li, C.; Xiao, Y.; Cao, Y.; Gu, C.; Zhang, S.; Chen, L.; Cheng, J.; et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood 2020, 135, 17–27. [Google Scholar] [CrossRef]
- Myers, R.M.; Li, Y.; Leahy, A.B.; Barrett, D.M.; Teachey, D.T.; Callahan, C.; Fasano, C.C.; Rheingold, S.R.; DiNofia, A.; Wray, L.; et al. Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults with Relapsed or Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2021, 39, 3044–3055. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, C.A.; Locke, F.L.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term survival and gradual recovery of B cells in patients with refractory large B cell lymphoma treated with axicabtagene ciloleucel (AxiCel). Blood 2020, 136 (Suppl. 1), 40–42. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Dickinson, M.; Munoz, J.; Ulrickson, M.L.; Thieblemont, C.; Oluwole, O.O.; Herrera, A.F.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: The phase 2 ZUMA-12 trial. Nat. Med. 2022, 28, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell 2009, 137, 413–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, M.; Cao, X.; Devidas, M.; Yang, W.; Cheng, C.; Dai, Y.; Carroll, A.; Heerema, N.A.; Zhang, H.; Moriyama, T.; et al. TP53 Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. J. Clin. Oncol. 2018, 36, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, J.; Li, J.; Li, W.; Song, D.; Lu, X.-A.; Wu, F.; Li, J.; Chen, D.; Li, X.; et al. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunol. Immunother. 2021, 71, 689–703. [Google Scholar] [CrossRef]
- Chiappella, A.; Martelli, M.; Angelucci, E.; Brusamolino, E.; Evangelista, A.; Carella, A.M.; Stelitano, C.; Rossi, G.; Balzarotti, M.; Merli, F.; et al. Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04): Final results of a multicentre, open-label, randomised, controlled, phase 3 study. Lancet Oncol. 2017, 18, 1076–1088. [Google Scholar] [CrossRef]
- Chiappella, A.; Diop, F.; Agostinelli, C.; Novo, M.; Nassi, L.; Evangelista, A.; Ciccone, G.; Di Rocco, A.; Martelli, M.; Melle, F.; et al. Prognostic impact of TP53 mutation in newly diagnosed diffuse large B-cell lymphoma patients treated in the FIL-DLCL04 trial. Br. J. Haematol. 2021, 196, 1184–1193. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Hong, R.; Zhao, H.; Wei, G.; Wu, W.; Xu, H.; Cui, J.; Zhang, Y.; Chang, A.H.; et al. A retrospective comparison of CD19 single and CD19/CD22 bispecific targeted chimeric antigen receptor T cell therapy in patients with relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 2020, 10, 105. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; An, F.; Wu, F.; Tao, Q.; Li, Y.; Ruan, Y.; Zhai, Z. CD4+CD25+CD127low regulatory T cells associated with the effect of CD19 CAR-T therapy for relapsed/refractory B-cell acute lymphoblastic leukemia. Int. Immunopharmacol. 2021, 96, 107742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, W.; Liang, C.-L.; Chen, Y.; Liu, H.; Qiu, F.; Dai, Z. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front. Immunol. 2018, 9, 2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imura, Y.; Ando, M.; Kondo, T.; Ito, M.; Yoshimura, A. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. J. Clin. Investig. 2020, 5. [Google Scholar] [CrossRef] [PubMed]
Characters | Murinized Group (n = 14) No. (%) | Humanized Group (n = 12) No. (%) |
---|---|---|
Diagnosis | ||
DLBCL | 10 (71.4) | 10 (83.3) |
BL | 2 (14.3) | 2 (16.7) |
FL | 2 (14.3) | 0 (0.0) |
Gender | ||
Male | 11 (78.6) | 9 (75.0) |
Female | 3 (21.4) | 3 (25.0) |
Median age years, (range) | 50.5 (29–66) | 46 (4–75) |
≤18 | 0 (0.0) | 2 (16.7) |
>18 | 14 (100.0) | 10 (83.3) |
Prior lines of chemotherapy | ||
≤2 | 6 (42.9) | 3 (25.0) |
>2 | 8 (57.1) | 9 (75.0) |
History of prior radiotherapy | ||
Yes | 3 (21.4) | 5 (41.7) |
No | 11 (78.6) | 7 (58.3) |
History of prior CD19 CAR-T | ||
Yes | 0 (0.0) | 4 (33.3) |
No | 14 (100.0) | 8 (66.7) |
IPI | ||
2 | 4 (28.6) | 0 (0.0) |
3 | 4 (28.6) | 9 (75.0) |
4 or 5 | 6 (42.8) | 3 (25.0) |
Transplant Status | ||
Relapsed from transplant | 1 (7.1) | 1 (8.3) |
No previous transplant | 13 (92.9) | 11 (91.7) |
High-risk factors | ||
Double hit | 3 (21.4) | 4 (33.3) |
TP53 mutation | 6 (42.9) | 5 (41.7) |
Bulky disease (≥7.5 cm) | 9 (64.3) | 2 (16.7) |
Murinized Group (n = 14), No. of Patients (%) | Humanized Group (n = 12), No. of Patients (%) | |||||
---|---|---|---|---|---|---|
Type of Event | Any Grade | Grade 3 | Grade 4 | Any Grade | Grade 3 | Grade 4 |
CRS | 13 (92.8) | 1 (7.1) | 0 (0.0) | 12 (100) | 1 (8.3) | 0 (0.0) |
ICANS | 2 (14.3) | 2 (14.3) | 0 (0.0) | 2 (16.7) | 0 (0.0) | 0 (0.0) |
Detail Adverse Events | ||||||
Renal disorder | 2 (14.3) | 0 (0.0) | 0 (0.0) | 2 (16.7) | 0 (0.0) | 0 (0.0) |
Coagulopathy | 10 (71.4) | 2 (14.3) | 0 (0.0) | 9 (75.0) | 1 (8.3) | 0 (0.0) |
Prothrombin time prolonged | 10 (71.4) | 0 (0.0) | 0 (0.0) | 9 (75.0) | 1 (8.3) | 0 (0.0) |
Activated partial thromboplastin time prolonged | 1 (7.1) | 0 (0.0) | 0 (0.0) | 4 (33.3) | 1 (8.3) | 0 (0.0) |
Fibrinogen decreased | 5 (35.7) | 1 (7.1) | 0 (0.0) | 8 (66.7) | 0 (0.0) | 0 (0.0) |
General conditions | ||||||
Hypertension | 8 (57.1) | 0 (0.0) | 0 (0.0) | 7 (58.3) | 0 (0.0) | 0 (0.0) |
Hypotension | 4 (28.6) | 0 (0.0) | 0 (0.0) | 2 (16.7) | 0 (0.0) | 0 (0.0) |
Hypoxia | 9 (64.3) | 0 (0.0) | 0 (0.0) | 8 (66.7) | 0 (0.0) | 0 (0.0) |
Laboratory values | ||||||
AST increase | 9 (64.3) | 0 (0.0) | 0 (0.0) | 8 (66.7) | 3 (25) | 0 (0.0) |
ALT increase | 9 (64.3) | 0 (0.0) | 0 (0.0) | 11 (91.7) | 2 (16.7) | 0 (0.0) |
Hematologic event | ||||||
Myelosuppression | 14 (100) | 0 (0.0) | 14 (100) | 12 (100) | 0 (0.0) | 12 (100) |
Neutropenia | 14 (100) | 2 (14.3) | 12 (85.7) | 12 (100) | 1 (8.3) | 11 (91.7) |
Lymphopenia | 14 (100) | 0 (0.0) | 14 (100) | 12 (100) | 0 (0.0) | 12 (100) |
Thrombocytopenia | 14 (100) | 6 (42.9) | 8 (57.1) | 12 (100) | 6 (50.0) | 6 (50.0) |
Anemia | 14 (100) | 8 (57.1) | 3 (21.4) | 12 (100) | 8 (66.7) | 3 (25) |
Gastrointestinal event | ||||||
Diarrhea | 5 (35.7) | 0 (0.0) | 0 (0.0) | 9 (75.0) | 0 (0.0) | 0 (0.0) |
Cardiovascular event | ||||||
Heart failure | 8 (57.1) | 0 (0.0) | 0 (0.0) | 7 (58.3) | 1 (8.3) | 0 (0.0) |
Infection | ||||||
Lung infection | 4 (28.6) | 0 (0.0) | 0 (0.0) | 7 (58.3) | 1 (8.3) | 0 (0.0) |
Metabolism and nutrition disorders | ||||||
Hyponatremia | 7 (50.0) | 0 (0.0) | 0 (0.0) | 12 (100) | 0 (0.0) | 0 (0.0) |
Hypokalemia | 9 (64.3) | 0 (0.0) | 0 (0.0) | 11 (91.7) | 0 (0.0) | 0 (0.0) |
Hypocalcemia | 11 (78.6) | 0 (0.0) | 0 (0.0) | 12 (100) | 0 (0.0) | 0 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Li, J.; Yang, J.; Zhang, X.; Zhang, M.; He, J.; Zhang, G.; Li, W.; Wang, H.; Li, J.; et al. Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma. Cells 2022, 11, 4085. https://doi.org/10.3390/cells11244085
Huang L, Li J, Yang J, Zhang X, Zhang M, He J, Zhang G, Li W, Wang H, Li J, et al. Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma. Cells. 2022; 11(24):4085. https://doi.org/10.3390/cells11244085
Chicago/Turabian StyleHuang, Lefu, Jingjing Li, Junfang Yang, Xian Zhang, Min Zhang, Jiujiang He, Gailing Zhang, Wenqian Li, Hui Wang, Jianqiang Li, and et al. 2022. "Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma" Cells 11, no. 24: 4085. https://doi.org/10.3390/cells11244085
APA StyleHuang, L., Li, J., Yang, J., Zhang, X., Zhang, M., He, J., Zhang, G., Li, W., Wang, H., Li, J., & Lu, P. (2022). Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma. Cells, 11(24), 4085. https://doi.org/10.3390/cells11244085