Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies
Abstract
:1. Introduction
2. ITPA: A Crucial Metabolic Enzyme
3. ITPA Mutations and Association with Clinical Disease
4. ITPA Mutations and Therapeutic Implications
4.1. Infantile Encephalopathy
4.2. Cancer Chemotherapy (Thiopurine Treatment)
4.3. Tuberculosis Treatment
4.4. Hepatitis C Treatment
4.5. Antiviral Treatment-Driven Anaemia
5. ITPA Variants/Mutants: A Disease Range
6. Final Remarks
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bierau, J.; Lindhout, M.; Bakker, J.A. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics 2007, 8, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, J.H.; Meyers, H.; Henderson, J.F.; Brox, L.W.; McCoy, E.E. Individual variation in inosine triphosphate accumulation in human erythrocytes. Clin. Biochem. 1975, 8, 353–364. [Google Scholar] [CrossRef]
- Vanderheiden, B.S. ITP pyrophosphohydrolase and idp phosphohydrolase in rat tissue. J. Cell. Physiol. 1975, 86, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Burgis, N.E. A disease spectrum for ITPA variation: Advances in biochemical and clinical research. J. Biomed. Sci. 2016, 23, 73. [Google Scholar] [CrossRef] [Green Version]
- Holmes, S.L.; Turner, B.M.; Hirschhorn, K. Human inosine triphosphatase: Catalytic properties and population studies. Clin. Chim. Acta 1979, 97, 143–153. [Google Scholar] [CrossRef]
- Vanderheiden, B.S. Human erythrocyte “ITPase”: An ITP pyrophosphohydrolase. Biochim. Biophys. Acta-Gen. Subj. 1970, 215, 555–558. [Google Scholar] [CrossRef]
- Vanderheiden, B.S. Purification and properties of human erythrocyte inosine triphosphate pyrophosphohydrolase. J. Cell. Physiol. 1979, 98, 41–47. [Google Scholar] [CrossRef]
- Burgis, N.E.; Cunningham, R.P. Substrate Specificity of RdgB Protein, a Deoxyribonucleoside Triphosphate Pyrophosphohydrolase. J. Biol. Chem. 2007, 282, 3531–3538. [Google Scholar] [CrossRef] [Green Version]
- Porta, J.; Kolar, C.; Kozmin, S.G.; Pavlov, Y.I.; Borgstahl, G.E.O. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, P.; Kursula, P.; Flodin, S.; Gräslund, S.; Landry, R.; Nordlund, P.; Schüler, H. Crystal Structure of Human Inosine Triphosphatase: Substrate Binding and Implication of the Inosine Triphosphatase Deficiency Mutation P32t. J. Biol. Chem. 2007, 282, 3182–3187. [Google Scholar] [CrossRef] [Green Version]
- Kevelam, S.H.; Salvarinova, R.; Agrawal, S.; Visser, D.; Weiss, M.M.; Abbink, T.E.M.; Waisfisz, Q.; Bierau, J.; Honzík, T.; Salomons, G.S.; et al. Recessive ITPA mutations cause an early infantile encephalopathy. Ann. Neurol. 2015, 78, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.; Duley, J.; Sumi, S.; Sanderson, J.; Marinaki, A. The ITPA c. 94C > A and g. IVS2 + 21A > C sequence variants contribute to missplicing of the ITPA gene. Biochim. Biophys. Acta-Mol. Basis Dis. 2007, 1772, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herting, G.; Barber, K.; Zappala, M.R.; Cunningham, R.P.; Burgis, N.E. Quantitative in vitro and in vivo characterization of the human P32T mutant ITPase. Biochim. Biophys. Acta-Mol. Basis Dis. 2010, 1802, 269. [Google Scholar] [CrossRef]
- Shipkova, M.; Franz, J.; Abe, M.; Klett, C.; Wieland, E.; Andus, T. Association Between Adverse Effects Under Azathioprine Therapy and Inosine Triphosphate Pyrophosphatase Activity in Patients with Chronic Inflammatory Bowel Disease. Ther. Drug Monit. 2011, 33, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Zamzami, M.A.; Duley, J.A.; Price, G.R.; Venter, D.J.; Yarham, J.W.; Taylor, R.W.; Catley, L.P.; Florin, T.H.; Marinaki, A.M.; Bowling, F. Inosine Triphosphate Pyrophosphohydrolase (ITPA) polymorphic sequence variants in adult hematological malignancy patients and possible association with mitochondrial DNA defects. J. Hematol. Oncol. 2013, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, S.; King, C.R.; Ahluwalia, R.; McLeod, H.L. Distribution of ITPA P32T alleles in multiple world populations. J. Hum. Genet. 2004, 49, 579–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadli, Z.; Kerkeni, E.; Hannachi, I.; Chouchene, S.; Ben Fredj, N.; Boughattas, N.A.; Aouam, K.; Chaabane, A. Distribution of Genetic Polymorphisms of Genes Implicated in Thiopurine Drugs Metabolism. Ther. Drug Monit. 2018, 40, 655–659. [Google Scholar] [CrossRef]
- Honda, K.; Kobayashi, A.; Niikura, T.; Hasegawa, T.; Saito, Z.; Ito, S.; Sasaki, T.; Komine, K.; Ishizuka, S.; Motoi, Y.; et al. Neutropenia related to an azathioprine metabolic disorder induced by an inosine triphosphate pyrophosphohydrolase (ITPA) gene mutation in a patient with PR3-ANCA-positive microscopic polyangiitis. Clin. Nephrol. 2018, 90, 363–369. [Google Scholar] [CrossRef]
- Rembeck, K.; Waldenström, J.; Hellstrand, K.; Nilsson, S.; Nyström, K.; Martner, A.; Lindh, M.; Norkrans, G.; Westin, J.; Pedersen, C.; et al. Variants of the inosine triphosphate pyrophosphatase gene are associated with reduced relapse risk following treatment for HCV genotype 2/3. Hepatology 2014, 59, 2131–2139. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Neethukrishna, K.; Kumble, A.; Girisha, K.M.; Shukla, A. Identification of a novel homozygous variant confirms ITPA as a developmental and epileptic encephalopathy gene. Am. J. Med. Genet. Part A 2019, 179, 857–861. [Google Scholar] [CrossRef]
- Scala, M.; Wortmann, S.B.; Kaya, N.; Stellingwerff, M.D.; Pistorio, A.; Glamuzina, E.; van Karnebeek, C.D.; Skrypnyk, C.; Iwanicka-Pronicka, K.; Piekutowska-Abramczuk, D.; et al. Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency. Hum. Mutat. 2022. [Google Scholar] [CrossRef]
- Koga, Y.; Tsuchimoto, D.; Hayashi, Y.; Abolhassani, N.; Yoneshima, Y.; Sakumi, K.; Nakanishi, H.; Toyokuni, S.; Nakabeppu, Y. Neural stem cell–specific ITPA deficiency causes neural depolarization and epilepsy. JCI Insight 2020, 5, e140229. [Google Scholar] [CrossRef] [PubMed]
- Behmanesh, M.; Sakumi, K.; Abolhassani, N.; Toyokuni, S.; Oka, S.; Ohnishi, Y.N.; Tsuchimoto, D.; Nakabeppu, Y. ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ. 2009, 16, 1315–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Ahsen, N.; Armstrong, V.W.; Behrens, C.; von Tirpitz, C.; Stallmach, A.; Herfarth, H.; Stein, J.; Bias, P.; Adler, G.; Shipkova, M.; et al. Association of Inosine Triphosphatase 94C > A and Thiopurine S-Methyltransferase Deficiency with Adverse Events and Study Drop-Outs under Azathioprine Therapy in a Prospective Crohn Disease Study. Clin. Chem. 2005, 51, 2282–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, M.R.; Waisertreiger, I.S.-R.; Lopez-Bertoni, H.; Luo, X.; Pavlov, Y.I. Pivotal Role of Inosine Triphosphate Pyrophosphatase in Maintaining Genome Stability and the Prevention of Apoptosis in Human Cells. PLoS ONE 2012, 7, e32313. [Google Scholar] [CrossRef] [Green Version]
- Waisertreiger, I.S.-R.; Menezes, M.R.; Randazzo, J.; Pavlov, Y.I. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant. J. Nucleic Acids 2010, 2010, 872180. [Google Scholar] [CrossRef] [Green Version]
- Zelinkova, Z.; Derijks, L.J.; Stokkers, P.C.; Vogels, E.W.; van Kampen, A.H.; Curvers, W.L.; Cohn, D.; van Deventer, S.J.; Hommes, D.W. Inosine Triphosphate Pyrophosphatase and Thiopurine S-Methyltransferase Genotypes Relationship to Azathioprine-Induced Myelosuppression. Clin. Gastroenterol. Hepatol. 2006, 4, 44–49. [Google Scholar] [CrossRef]
- Matimba, A.; Li, F.; Livshits, A.; Cartwright, C.S.; Scully, S.; Fridley, B.L.; Jenkins, G.; Batzler, A.; Wang, L.; Weinshilboum, R.; et al. Thiopurine pharmacogenomics: Association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics 2014, 15, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Koren, G.; Ferrazini, G.; Sulh, H.; Langevin, A.M.; Kapelushnik, J.; Klein, J.; Giesbrecht, E.; Soldin, S.; Greenberg, M. Systemic Exposure to Mercaptopurine as a Prognostic Factor in Acute Lymphocytic Leukemia in Children. N. Engl. J. Med. 2010, 323, 17–21. [Google Scholar] [CrossRef]
- Charbgoo, F.; Behmanesh, M.; Nikkhah, M.; Kane, E.G. RNAi mediated gene silencing of ITPA using a targeted nanocarrier: Apoptosis induction in SKBR3 cancer cells. Clin. Exp. Pharmacol. Physiol. 2017, 44, 888–894. [Google Scholar] [CrossRef]
- Derijks, L.; Wong, D.R. Pharmacogenetics of Thiopurines in Inflammatory Bowel Disease. Curr. Pharm. Des. 2010, 16, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Nakauchi, A.; Wong, J.H.; Mahasirimongkol, S.; Yanai, H.; Yuliwulandari, R.; Mabuchi, A.; Liu, X.; Mushiroda, T.; Wattanapokayakit, S.; Miyagawa, T.; et al. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum. Genome Var. 2016, 3, 15067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Wang, M.; Pan, Y.; Jiang, J.; Jiang, T.; Yan, H.; Wu, R.; Wang, X.; Gao, X.; Niu, J. Inosine triphosphate pyrophosphatase polymorphisms are predictors of anemia in Chinese patients with chronic hepatitis C during therapy with ribavirin and interferon. J. Gastroenterol. Hepatol. 2020, 35, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Tenor, D.; Garcia-Alvarez, M.; Jimenez-Sousa, M.A.; Vazquez-Moron, S.; Resino, S. Relationship between ITPA polymorphisms and hemolytic anemia in HCV-infected patients after ribavirin-based therapy: A meta-analysis. J. Transl. Med. 2015, 13, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavanchy, D. The global burden of hepatitis C. Liver Int. 2009, 29 (Suppl. 1), 74–81. [Google Scholar] [CrossRef]
- Chen, S.H.; Peng, C.Y.; Lai, H.C.; Su, W.P.; Lin, C.H.; Li, Y.F.; Chuang, P.H.; Chen, C.H. An Index to Predict Ribavirin-Induced Anemia in Asian Patients with Chronic Genotype 1 Hepatitis C. Zahedan J. Res. Med. Sci. 2015, 15, e27148. [Google Scholar] [CrossRef] [Green Version]
- Ampuero, J.; Romero-Gómez, M. Pharmacogenetics of ribavirin-induced anemia in hepatitis C. Pharmacogenomics 2016, 17, 1587–1594. [Google Scholar] [CrossRef]
- Thompson, A.J.; Fellay, J.; Patel, K.; Tillmann, H.L.; Naggie, S.; Ge, D.; Urban, T.J.; Shianna, K.V.; Muir, A.J.; Fried, M.W.; et al. Variants in the ITPA Gene Protect Against Ribavirin-Induced Hemolytic Anemia and Decrease the Need for Ribavirin Dose Reduction. Gastroenterology 2010, 139, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Vanderheiden, B.S. Genetic studies of human erythrocyte inosine triphosphatase. Biochem. Genet. 1969, 3, 289–297. [Google Scholar] [CrossRef]
- Maeda, T.; Sumi, S.; Ueta, A.; Ohkubo, Y.; Ito, T.; Marinaki, A.M.; Kurono, Y.; Hasegawa, S.; Togari, H. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency in the Japanese population. Mol. Genet. Metab. 2005, 85, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Vanderheiden, B.S. Inosine Triphosphate in Human Erythrocytes: A Genetic Trait. In International Society of Blood Transfusion; Karger Publishers: Basel, Switzerland, 1965; Volume 23, pp. 540–548. [Google Scholar] [CrossRef]
- Fellay, J.; Thompson, A.J.; Ge, D.; Gumbs, C.E.; Urban, T.J.; Shianna, K.V.; Little, L.D.; Qiu, P.; Bertelsen, A.H.; Watson, M.; et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 2010, 464, 405–408. [Google Scholar] [CrossRef] [PubMed]
SNP ID | Variation | Clinical Significance | Biological Significance | Location |
---|---|---|---|---|
rs7270101 | SNP | ADR | Poor splicing efficiency | c.124 + 21A > C (g.IVS2 + 21A > C) |
rs1127354 | SNP | ADR | Reduced expression, stability, catalysis | c.94C > A (p.Pro32Thr) |
NA | SNP | Encephalopathy | Altered substrate specificity, poor solubility | c.532C > T (p.Arg178Cys) |
rs13830 | SNP | Tuberculosis | 3′UTR variation, altered mRNA metabolism/translation | g.19176G > A |
NA | Nonsense | Encephalopathy | Nonsense RNA-mediated decay | c.452G > A (p.Trp151Stop) |
rs863225424 | Duplication | Encephalopathy | Frameshift, non-functional protein | c.359_366dupTCAGCACC (p.Gly123Serfs) |
NA | Deletion | Encephalopathy | 1874 bp deletion, frameshift, non-functional protein | c.264-607_295 + 1267del1906 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamzami, M.A. Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells 2022, 11, 384. https://doi.org/10.3390/cells11030384
Zamzami MA. Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells. 2022; 11(3):384. https://doi.org/10.3390/cells11030384
Chicago/Turabian StyleZamzami, Mazin A. 2022. "Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies" Cells 11, no. 3: 384. https://doi.org/10.3390/cells11030384
APA StyleZamzami, M. A. (2022). Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells, 11(3), 384. https://doi.org/10.3390/cells11030384