PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. HCC Cell Lines and Reagents
2.2. Cell Proliferation Assay
2.3. Immunofluorescence Microscopic Analysis
2.4. Reverse Transcription-Polymerase Chain Reaction
2.5. Protein Extraction and Western Blot Analysis
2.6. Analysis of PROX1 Ubiquitination Levels by Immunoprecipitation (IP)
2.7. Animal Studies
2.8. Histology and Immunohistochemistry
2.9. Statistical Analysis
3. Results
3.1. The Proliferation of Huh7 or Hep3B Cells Was Inhibited by Rapamycin
3.2. PROX1 Expression in Huh7 or Hep3B Cells Was Increased by Rapamycin
3.3. Increases in PROX1 Expression by Rapamycin Were Due to an Increase in Protein Half-Life
3.4. PROX1 Ubiquitination Was Decreased by Rapamycin
3.5. PROX1 Played a Key Role in the Anti-Proliferative Effect of Rapamycin on Huh7 or Hep3B Cells
3.6. Xenograft Tumor Growth Was Suppressed and PROX1 Expression Was Increased by Rapamycin In Vivo
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svinka, J.; Mikulits, W.; Eferl, R. STAT3 in Hepatocellular Carcinoma: New Perspectives. Hepatic Oncol. 2014, 1, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Yang, X.-R.; Chung, W.-Y.; Dennison, A.R.; Zhou, J. Targeted Therapy for Hepatocellular Carcinoma. Signal Transduct. Target. Ther. 2020, 5, 146. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Guan, Z.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Yang, T.-S.; Tak, W.Y.; Pan, H.; Yu, S.; et al. Efficacy and Safety of Sorafenib in Patients with Advanced Hepatocellular Carcinoma According to Baseline Status: Subset Analyses of the Phase III Sorafenib Asia–Pacific Trial. Eur. J. Cancer 2012, 48, 1452–1465. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, A.; Kumada, T.; Tada, T.; Tani, J.; Kariyama, K.; Fukunishi, S.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; et al. Efficacy of Lenvatinib for Unresectable Hepatocellular Carcinoma Based on Background Liver Disease Etiology: Multi-Center Retrospective Study. Sci. Rep. 2021, 11, 16663. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. MTOR Signaling at a Glance. J. Cell Sci. 2009, 122, 3589–3594. [Google Scholar] [CrossRef] [Green Version]
- Mita, M.M.; Mita, A.; Rowinsky, E.K. Mammalian Target of Rapamycin: A New Molecular Target for Breast Cancer. Clin. Breast Cancer 2003, 4, 126–137. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, W.; Bertram, P.; Zheng, X.F.; McLeod, H. Pharmacogenomic Profiling of the PI3K/PTEN-AKT-MTOR Pathway in Common Human Tumors. Int. J. Oncol. 2004, 24, 893–900. [Google Scholar] [CrossRef]
- Sahin, F.; Kannangai, R.; Adegbola, O.; Wang, J.; Su, G.; Torbenson, M. MTOR and P70 S6 Kinase Expression in Primary Liver Neoplasms. Clin. Cancer Res. 2004, 10, 8421–8425. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Sakon, M.; Nagano, H.; Hiraoka, N.; Yamamoto, H.; Hayashi, N.; Dono, K.; Nakamori, S.; Umeshita, K.; Ito, Y.; et al. Akt2 Expression Correlates with Prognosis of Human Hepatocellular Carcinoma. Oncol. Rep. 2004, 11, 25–32. [Google Scholar] [CrossRef]
- Davies, S.P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and Mechanism of Action of Some Commonly Used Protein Kinase Inhibitors. Biochem. J. 2000, 351, 95–105. [Google Scholar] [CrossRef]
- Dutcher, J.P. Mammalian Target of Rapamycin (MTOR) Inhibitors. Curr. Oncol. Rep. 2004, 6, 111–115. [Google Scholar] [CrossRef]
- Kahan, B.D. The Limitations of Calcineurin and MTOR Inhibitors: New Directions for Immunosuppressive Strategies. Transplant. Proc. 2002, 34, 130–133. [Google Scholar] [CrossRef]
- Hidalgo, M.; Rowinsky, E.K. The Rapamycin-Sensitive Signal Transduction Pathway as a Target for Cancer Therapy. Oncogene 2000, 19, 6680–6686. [Google Scholar] [CrossRef] [Green Version]
- De Fijter, J.W. Cancer and MTOR Inhibitors in Transplant Recipients. Transplantation 2017, 101, 45–55. [Google Scholar] [CrossRef]
- Wigle, J.T.; Oliver, G. Prox1 Function Is Required for the Development of the Murine Lymphatic System. Cell 1999, 98, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, I.; Hong, Y.-K. Heterogeneity and plasticity of lymphatic endothelial cells. Semin. Thromb. Hemost. 2010, 36, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.; Lee, S.; Hong, Y.-K. The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System. Cold Spring Harb. Perspect. Med. 2012, 2, a006445. [Google Scholar] [CrossRef] [Green Version]
- Elsir, T.; Smits, A.; Lindström, M.S.; Nistér, M. Transcription Factor PROX1: Its Role in Development and Cancer. Cancer Metastasis Rev. 2012, 31, 793–805. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, X.; Zhang, J.-B.; Ouyang, H.; Shen, Z.; Wu, Y.; Wang, W.; Wu, J.; Tao, S.; Yang, X.; et al. PROX1 Promotes Hepatocellular Carcinoma Proliferation and Sorafenib Resistance by Enhancing β-Catenin Expression and Nuclear Translocation. Oncogene 2015, 34, 5524–5535. [Google Scholar] [CrossRef]
- Chang, T.-M.; Hung, W.-C. The Homeobox Transcription Factor Prox1 Inhibits Proliferation of Hepatocellular Carcinoma Cells by Inducing P53-Dependent Senescence-like Phenotype. Cancer Biol. Ther. 2013, 14, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.F.S.D.; de Oliveira Rodini, C.; de Aquino Xavier, F.C.; Paiva, K.B.; Severino, P.; Moyses, R.A.; López, R.M.; DeCicco, R.; Rocha, L.A.; Carvalho, M.B.; et al. PROX1 Gene Is Differentially Expressed in Oral Cancer and Reduces Cellular Proliferation. Medicine 2014, 93, e192. [Google Scholar] [CrossRef]
- Kwon, S.; Jeon, J.-S.; Ahn, C.; Sung, J.-S.; Choi, I. Rapamycin Regulates the Proliferation of Huh7, a Hepatocellular Carcinoma Cell Line, by up-Regulating P53 Expression. Biochem. Biophys. Res. Commun. 2016, 479, 74–79. [Google Scholar] [CrossRef]
- Kwon, S.; Jeon, J.-S.; Kim, S.B.; Hong, Y.-K.; Ahn, C.; Sung, J.-S.; Choi, I. Rapamycin Up-Regulates Triglycerides in Hepatocytes by down-Regulating Prox1. Lipids Health Dis. 2016, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Phung, T.L.; Ziv, K.; Dabydeen, D.; Eyiah-Mensah, G.; Riveros, M.; Perruzzi, C.; Sun, J.; Monahan-Earley, R.A.; Shiojima, I.; Nagy, J.A.; et al. Pathological Angiogenesis Is Induced by Sustained Akt Signaling and Inhibited by Rapamycin. Cancer Cell 2006, 10, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Gianino, S.M.; Gao, F.; Christians, U.; Gutmann, D.H. Interpreting Mammalian Target of Rapamycin and Cell Growth Inhibition in a Genetically-Engineered Mouse Model of Nf1-Deficient Astrocytes. Mol. Cancer Ther. 2011, 10, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Maurya, A.K.; Vinayak, M. Anticarcinogenic Action of Quercetin by Downregulation of Phosphatidylinositol 3-Kinase (PI3K) and Protein Kinase C (PKC) via Induction of P53 in Hepatocellular Carcinoma (HepG2) Cell Line. Mol. Biol. Rep. 2015, 42, 1419–1429. [Google Scholar] [CrossRef]
- Decaens, T.; Luciani, A.; Itti, E.; Hulin, A.; Roudot-Thoraval, F.; Laurent, A.; Zafrani, E.S.; Mallat, A.; Duvoux, C. Phase II Study of Sirolimus in Treatment-Naive Patients with Advanced Hepatocellular Carcinoma. Dig. Liver Dis. 2012, 44, 610–616. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y.-K.; Lim, H.Y.; Poon, R.T.P.; Blanc, J.-F.; Vogel, A.; Chen, C.-L.; et al. Effect of Everolimus on Survival in Advanced Hepatocellular Carcinoma after Failure of Sorafenib: The EVOLVE-1 Randomized Clinical Trial. JAMA 2014, 312, 57–67. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Ban, K.; Hong, Y.-K.; Sung, J.-S.; Choi, I. PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells. Cells 2022, 11, 446. https://doi.org/10.3390/cells11030446
Kwon S, Ban K, Hong Y-K, Sung J-S, Choi I. PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells. Cells. 2022; 11(3):446. https://doi.org/10.3390/cells11030446
Chicago/Turabian StyleKwon, Sora, Kiwon Ban, Young-Kwon Hong, Jung-Suk Sung, and Inho Choi. 2022. "PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells" Cells 11, no. 3: 446. https://doi.org/10.3390/cells11030446
APA StyleKwon, S., Ban, K., Hong, Y. -K., Sung, J. -S., & Choi, I. (2022). PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells. Cells, 11(3), 446. https://doi.org/10.3390/cells11030446