A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats
Abstract
:1. Introduction
2. The Advantage of Rodent Models
3. Choosing the Best Species for a Given Experiment
4. Surgical LTx Procedure
4.1. Rat Donor Organ Procurement
4.2. Cuff Technique for Anastomosis
4.3. Transplantation
4.4. LTx in Mice—Similarities and Differences to the Rat Model
5. Common Complications during and after Orthotopic Left LTx
6. Recent Findings in LTx on Rodent Models
6.1. Ischemia–Reperfusion Injury (IRI) and Ex Vivo Lung Perfusion (EVLP)
6.2. Immune Rejection and Immunosuppression Regimens
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, D.C.; Zuckermann, A.; Cherikh, W.S.; Harhay, M.O.; Hayes, D., Jr.; Hsich, E.; Khush, K.K.; Potena, L.; Sadavarte, A.; Singh, T.P.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th Adult Lung Transplantation Report—2020; Focus on Deceased Donor Characteristics. J. Heart Lung Transplant. 2020, 39, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Bos, S.; Vos, R.; van Raemdonck, D.E.; Verleden, G.M. Survival in Adult Lung Transplantation: Where Are We in 2020? Curr. Opin. Organ. Transplant. 2020, 25, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Bribriesco, A.C.; Li, W.; Nava, R.G.; Spahn, J.H.; Kreisel, D. Experimental models of lung transplantation. Front. Biosci. 2013, E5, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, G.A.; Cooper, J.D.; Dark, J.H.; Jones, M.T. Experimental and Clinical Double Lung Transplantation. J. Thorac. Cardiovasc. Surg. 1988, 95, 70–74. [Google Scholar] [CrossRef]
- Shuimacker, H.B. A Surgeon to Remember: Notes About Vladimir Demikhov. Ann. Thorac. Surg. 1994, 58, 1196–1198. [Google Scholar] [CrossRef]
- Liu, Q.; Dwyer, G.K.; Zhao, Y.; Li, H.; Mathews, L.R.; Chakka, A.B.; Chandran, U.R.; Demetris, J.A.; Alcorn, J.F.; Robinson, K.M.; et al. Il-33-Mediated Il-13 Secretion by St2+ Tregs Controls Inflammation after Lung Injury. JCI Insight 2019, 4, e123919. [Google Scholar] [CrossRef] [Green Version]
- Masopust, D.; Sivula, C.P.; Jameson, S.C. Of Mice, Dirty Mice, and Men: Using Mice to Understand Human Immunology. J. Immunol. 2017, 199, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Maxey, T.S.; Enelow, R.I.; Gaston, B.; Kron, I.L.; Laubach, V.E.; Doctor, A. Tumor Necrosis Factor-Alpha from Resident Lung Cells Is a Key Initiating Factor in Pulmonary Ischemia-Reperfusion Injury. J. Thorac. Cardiovasc. Surg. 2004, 127, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Pilny, A.A. Clinical Hematology of Rodent Species. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 523–533. [Google Scholar] [CrossRef]
- Dolgin, E. The Knockout Rat Pack. Nat. Med. 2010, 16, 254–257. [Google Scholar] [CrossRef]
- Hashimoto, K.; Yamane, M.; Sugimoto, S.; Hirano, Y.; Kurosaki, T.; Otani, S.; Miyoshi, K.; Ohara, T.; Okazaki, M.; Yoshimura, T.; et al. Negative Impact of Recipient Spred2 Deficiency on Transplanted Lung in a Mouse Model. Transpl. Immunol. 2019, 57, 101242. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sugimoto, S.; Lai, J.; Patterson, G.A.; Gelman, A.E.; Krupnick, A.S.; Kreisel, D. Orthotopic Vascularized Right Lung Transplantation in the Mouse. J. Thorac. Cardiovasc. Surg. 2010, 139, 1637–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vleeschauwer, S.; Jungraithmayr, W.; Wauters, S.; Willems, S.; Rinaldi, M.; Vaneylen, A.; Verleden, S.; Willems-Widyastuti, A.; Bracke, K.; Brusselle, G.; et al. Chronic Rejection Pathology after Orthotopic Lung Transplantation in Mice: The Development of a Murine Bos Model and Its Drawbacks. PLoS ONE 2012, 7, e29802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, L.B. Modeling Human Lung Disease in Animals. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L149–L150. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Vandermeulen, E.; Heigl, T.; Somers, J.; Vaneylen, A.; Verleden, S.E.; Bellon, H.; de Vleeschauwer, S.; Verbeken, E.K.; van Raemdonck, D.E.; et al. The Role of Recipient Derived Interleukin-17a in a Murine Orthotopic Lung Transplant Model of Restrictive Chronic Lung Allograft Dysfunction. Transpl. Immunol. 2016, 39, 10–17. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschauwer, S.; Vanaudenaerde, B.; Vos, R.; Meers, C.; Wauters, S.; Dupont, L.; van Raemdonck, D.; Verleden, G. The Need for a New Animal Model for Chronic Rejection after Lung Transplantation. Transplant. Proc. 2011, 43, 3476–3485. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Ge, J.; Inci, I.; Hillinger, S.; Markus, C.; Korom, S.; Weder, W. Simplified Rat Lung Transplantation by Using a Modified Cuff Technique. J. Investig. Surg. 2008, 21, 33–37. [Google Scholar] [CrossRef]
- Saito, M.; Chen-Yoshikawa, T.F.; Takahashi, M.; Kayawake, H.; Yokoyama, Y.; Kurokawa, R.; Hirano, S.I.; Date, H. Protective Effects of a Hydrogen-Rich Solution During Cold Ischemia in Rat Lung Transplantation. J. Thorac. Cardiovasc. Surg. 2020, 159, 2110–2118. [Google Scholar] [CrossRef]
- Arni, S.; Maeyashiki, T.; Citak, N.; Opitz, I.; Inci, I. Subnormothermic Ex Vivo Lung Perfusion Temperature Improves Graft Preservation in Lung Transplantation. Cells 2021, 10, 748. [Google Scholar] [CrossRef]
- Miyamoto, E.; Motoyama, H.; Sato, M.; Aoyama, A.; Menju, T.; Shikuma, K.; Sowa, T.; Yoshizawa, A.; Saito, M.; Takahagi, A.; et al. Association of Local Intrapulmonary Production of Antibodies Specific to Donor Major Histocompatibility Complex Class I with the Progression of Chronic Rejection of Lung Allografts. Transplantation 2017, 101, e156–e165. [Google Scholar] [CrossRef]
- Rajab, T.K.; Okamoto, T.; Ren, X.; Mathisen, D.J.; Ott, H.C. Intralipid Improves Oxygenation after Orthotopic Rat Lung Transplantation. J. Heart Lung Transplant. 2019, 38, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Kenkel, D.; Yamada, Y.; Weiger, M.; Jungraithmayr, W.; Wurnig, M.C.; Boss, A. Magnetization Transfer as a Potential Tool for the Early Detection of Acute Graft Rejection after Lung Transplantation in Mice. J. Magn. Reson. Imaging 2016, 44, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, T.; Kawaguchi, A.; Nakahara, K.; Kawashima, Y. Simplified Rat Lung Transplantation Using a Cuff Technique. J. Thorac. Cardiovasc. Surg. 1989, 97, 578–581. [Google Scholar] [CrossRef]
- Guo, H.; Nie, J.; Fan, K.; Zheng, Z.; Qiao, X.; Li, J.; Wang, J.; Jiang, K. Improvements of Surgical Techniques in a Rat Model of an Orthotopic Single Lung Transplant. Eur. J. Med. Res. 2013, 18, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Shiiya, H.; Sato, M.; Nakajima, J. Rat Lung Transplantation Model: Modifications of the Cuff Technique. Ann. Transl. Med. 2020, 8, 407. [Google Scholar] [CrossRef] [PubMed]
- Curtin, L.I.; Grakowsky, J.A.; Suarez, M.; Thompson, A.C.; DiPirro, J.M.; Martin, L.B.; Kristal, M.B. Evaluation of Buprenorphine in a Postoperative Pain Model in Rats. Comp. Med. 2009, 59, 60–71. [Google Scholar] [PubMed]
- Ohsumi, A.; Marseu, K.; Slinger, P.; McRae, K.; Kim, H.; Guan, Z.; Hwang, D.M.; Liu, M.; Keshavjee, S.; Cypel, M. Sevoflurane Attenuates Ischemia-Reperfusion Injury in a Rat Lung Transplantation Model. Ann. Thorac. Surg. 2017, 103, 1578–1586. [Google Scholar] [CrossRef] [Green Version]
- Schossleitner, K.; Habertheuer, A.; Finsterwalder, R.; Friedl, H.P.; Rauscher, S.; Groger, M.; Kocher, A.; Wagner, C.; Wagner, S.N.; Fischer, G.; et al. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation. PLoS ONE 2015, 10, e0142115. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.M.; Fernandez, R.; Tanaka, S.; Li, W.; Spahn, J.H.; Chiu, S.; Akbarpour, M.; Ruiz-Perez, D.; Wu, Q.; Turam, C.; et al. Spleen-Derived Classical Monocytes Mediate Lung Ischemia-Reperfusion Injury through Il-1beta. J. Clin. Investig. 2018, 128, 2833–2847. [Google Scholar] [CrossRef]
- Ohsumi, A.; Kanou, T.; Ali, A.; Guan, Z.; Hwang, D.M.; Waddell, T.K.; Juvet, S.; Liu, M.; Keshavjee, S.; Cypel, M. A Method for Translational Rat Ex Vivo Lung Perfusion Experimentation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L61–L70. [Google Scholar] [CrossRef]
- Clarysse, M.; Accarie, A.; Gunst, J.; Farré, R.; Vanuytsel, T.; Ceulemans, L.; Pirenne, J. P-01: Rat Model of Intestinal Ischemia-Reperfusion Injury: Impact of Anesthetic Method. Transplantation 2021, 105, S48. [Google Scholar]
- Rajab, T.K. Techniques for Lung Transplantation in the Rat. Exp. Lung Res. 2019, 45, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Habertheuer, A.; Kocher, A.; Laufer, G.; Petzelbauer, P.; Andreas, M.; Aharinejad, S.; Ehrlich, M.; Wiedemann, D. Innovative, Simplified Orthotopic Lung Transplantation in Rats. J. Surg. Res. 2013, 185, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Marck, K.W.; Wildevuur, C.R. Lung Transplantation in the Rat: I. Technique and Survival. Ann. Thorac. Surg. 1982, 34, 74–80. [Google Scholar] [CrossRef]
- Mizobuchi, T.; Sekine, Y.; Yasufuku, K.; Fujisawa, T.; Wilkes, D.S. Comparison of Surgical Procedures for Vascular and Airway Anastomoses That Utilize a Modified Non-Suture External Cuff Technique for Experimental Lung Transplantation in Rats. J. Heart Lung Transplant. 2004, 23, 889–893. [Google Scholar] [CrossRef]
- Rodriguez, N.S.; Santisteban, P.L.; Garcia, A.L.; Clavo, B.; Gonzalez, M.A.P.; Bermejo, J.C.R.; Castellano, J.M.G.; Herrera, R.G.; Zerecero, K.; Caballero, J.A.R.; et al. Technical Modifications of the Orthotopic Lung Transplantation Model in Rats with Brain-Dead Donors. Arch. Bronconeumol. 2011, 47, 488–494. [Google Scholar] [CrossRef]
- Sugimoto, R.; Nakao, A.; Nagahiro, I.; Kohmoto, J.; Sugimoto, S.; Okazaki, M.; Yamane, M.; Inokawa, H.; Oto, T.; Tahara, K.; et al. Experimental Orthotopic Lung Transplantation Model in Rats with Cold Storage. Surg. Today 2009, 39, 641–645. [Google Scholar] [CrossRef]
- Ruiz-Pérez, D.; Largo, C.; García-Río, F. Technical Aspects and Benefits of Experimental Mouse Lung Transplantation. Arch. Bronconeumol. 2016, 52, 596–604. [Google Scholar] [CrossRef]
- Richardson, J.; Sabanathan, S.; Mearns, A.J.; Evans, C.S.; Bembridge, J.; Fairbrass, M. Efficacy of Pre-Emptive Analgesia and Continuous Extrapleural Intercostal Nerve Block on Post-Thoracotomy Pain and Pulmonary Mechanics. J. Cardiovasc. Surg. 1994, 35, 219–228. [Google Scholar]
- Krupnick, A.S.; Lin, X.; Li, W.; Okazaki, M.; Lai, J.; Sugimoto, S.; Richardson, S.B.; Kornfeld, C.G.; Garbow, J.R.; Patterson, G.A.; et al. Orthotopic Mouse Lung Transplantation as Experimental Methodology to Study Transplant and Tumor Biology. Nat. Protoc. 2009, 4, 86–93. [Google Scholar] [CrossRef]
- Jungraithmayr, W.M.; Korom, S.; Hillinger, S.; Weder, W. A Mouse Model of Orthotopic, Single-Lung Transplantation. J. Thorac. Cardiovasc. Surg. 2009, 137, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, T.; Momozane, T.; Sanosaka, M.; Sugimura, K.; Iida, O.; Fuchino, H.; Funaki, S.; Shintani, Y.; Inoue, M.; Minami, M.; et al. Carnosol Is a Potent Lung Protective Agent: Experimental Study on Mice. Transplant. Proc. 2015, 47, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Oishi, H.; Juvet, S.C.; Martinu, T.; Sato, M.; Medin, J.A.; Liu, M.; Keshavjee, S. A Novel Combined Ex Vivo and in Vivo Lentiviral Interleukin-10 Gene Delivery Strategy at the Time of Transplantation Decreases Chronic Lung Allograft Rejection in Mice. J. Thorac. Cardiovasc. Surg. 2018, 156, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Jungraithmayr, W.; Weder, W. The Technique of Orthotopic Mouse Lung Transplantation as a Movie-Improved Learning by Visualization. Am. J. Transplant. 2012, 12, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, W.; Lai, J.; Okazaki, M.; Sugimoto, S.; Yamamoto, S.; Wang, X.; Gelman, A.E.; Kreisel, D.; Krupnick, A.S. Five-Year Update on the Mouse Model of Orthotopic Lung Transplantation: Scientific Uses, Tricks of the Trade, and Tips for Success. J. Thorac. Dis. 2012, 4, 247–258. [Google Scholar]
- Lee, J.C.; Christie, J.D. Primary Graft Dysfunction. Proc. Am. Thorac. Soc. 2009, 6, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Lunardi, F.; Zampieri, D.; Vadori, M.; Bernardini, D.; Vuljan, S.E.; Nannini, N.; Rea, F.; Cozzi, E.; Calabrese, F. Overexpression of Hypoxia-Inducible Factor-1alpha in Primary Graft Dysfunction Developing in an Orthotopic Lung Transplantation Rat Model. Transplant. Proc. 2017, 49, 722–725. [Google Scholar] [CrossRef]
- Kaczorowski, D.J.; Tsung, A.; Billiar, T.R. Innate Immune Mechanisms in Ischemia/Reperfusion. Front. Biosci. 2009, 1, 91–98. [Google Scholar]
- Emtiazjoo, A.M.; Hu, H.; Lu, L.; Brantly, M.L. Alpha-1 Antitrypsin Attenuates Acute Lung Allograft Injury in a Rat Lung Transplant Model. Transplant. Direct 2019, 5, e458. [Google Scholar] [CrossRef]
- Cosio, M.G.; Bazzan, E.; Rigobello, C.; Tine, M.; Turato, G.; Baraldo, S.; Saetta, M. Alpha-1 Antitrypsin Deficiency: Beyond the Protease/Antiprotease Paradigm. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S4), S305–S310. [Google Scholar] [CrossRef]
- Li, C.; Patel, K.; Tu, Z.; Yang, X.; Kulik, L.; Alawieh, A.; Allen, P.; Cheng, Q.; Wallace, C.; Kilkenny, J.; et al. A Novel Injury Site-Natural Antibody Targeted Complement Inhibitor Protects against Lung Transplant Injury. Am. J. Transplant. 2021, 21, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Parapanov, R.; Debonneville, A.; Wang, Y.; Abdelnour-Berchtold, E.; Gonzalez, M.; Gronchi, F.; Perentes, J.Y.; Ris, H.B.; Eckert, P.; et al. Treatment with 3-Aminobenzamide During Ex Vivo Lung Perfusion of Damaged Rat Lungs Reduces Graft Injury and Dysfunction after Transplantation. Am. J. Transplant. 2020, 20, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Lonati, C.; Battistin, M.; Dondossola, D.E.; Bassani, G.A.; Brambilla, D.; Merighi, R.; Leonardi, P.; Carlin, A.; Meroni, M.; Zanella, A.; et al. Ndp-Msh Treatment Recovers Marginal Lungs During Ex Vivo Lung Perfusion (Evlp). Peptides 2021, 141, 170552. [Google Scholar] [CrossRef]
- Liu, A.B.; Zhang, C.Y.; Zhang, L.Y. Cellular Immune Rejection Response of Lung Xenotransplantation. Int. J. Immunol. 2018, 41, 105–107. [Google Scholar]
- Pezzuto, F.; Lunardi, F.; Vadori, M.; Zampieri, D.; Casiraghi, F.; Azzollini, N.; Vuljan, S.E.; Mammana, M.; Vedovelli, L.; Schiavon, M.; et al. Chronic Lung Allograft Pathology Lesions in Two Rat Strain Combinations. J. Thorac. Dis. 2021, 13, 2833–2843. [Google Scholar] [CrossRef]
- Hirschburger, M.; Greschus, S.; Kuchenbuch, T.; Plotz, C.; Obert, M.; Traupe, H.; Padberg, W.; Grau, V. Lung Transplantation in the Fischer 344 → Wistar Kyoto Rat Strain Combination Is Not Suitable to Study Bronchiolitis Obliterans. J. Heart Lung Transplant. 2007, 26, 390–398. [Google Scholar] [CrossRef]
- Yamane, M.; Sano, Y.; Nagahiro, I.; Aoe, M.; Date, H.; Ando, A.; Shimizu, N. Humoral Immune Responses During Acute Rejection in Rat Lung Transplantation. Transpl. Immunol. 2003, 11, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Neujahr, D.C.; Larsen, C.P. Regulatory T Cells in Lung Transplantation—An Emerging Concept. Semin. Immunopathol. 2011, 33, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; LaPar, D.J.; Zhao, Y.; Li, L.; Lau, C.L.; Kron, I.L.; Iwakura, Y.; Okusa, M.D.; Laubach, V.E. Natural Killer T Cell-Derived Il-17 Mediates Lung Ischemia-Reperfusion Injury. Am. J. Respir. Crit. Care Med. 2011, 183, 1539–1549. [Google Scholar] [CrossRef]
- Naohiko, F.; Ramachandran, S.; Saini, D.; Walter, M.; Chapman, W.; Patterson, G.A.; Mohanakumar, T. Antibodies to Mhc Class I Induce Autoimmunity: Role in the Pathogenesis of Chronic Rejection. J. Immunol. 2009, 182, 309–318. [Google Scholar]
- Fan, L.; Benson, H.L.; Vittal, R.; Mickler, E.A.; Presson, R.; Fisher, A.J.; Cummings, O.W.; Heidler, K.M.; Keller, M.R.; Burlingham, W.J.; et al. Neutralizing Il-17 Prevents Obliterative Bronchiolitis in Murine Orthotopic Lung Transplantation. Am. J. Transplant. 2011, 11, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A. A Need for Targeted Immunosuppression after Lung Transplantation. Am. J. Respir. Cell. Mol. Biol. 2019, 61, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Takahagi, A.; Shindo, T.; Chen-Yoshikawa, T.F.; Yoshizawa, A.; Gochi, F.; Miyamoto, E.; Saito, M.; Tanaka, S.; Motoyama, H.; Aoyama, A.; et al. Trametinib Attenuates Delayed Rejection and Preserves Thymic Function in Rat Lung Transplantation. Am. J. Respir. Cell. Mol. Biol. 2019, 61, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Tsuchiya, T.; Shimoyama, K.; Shimizu, A.; Akita, S.; Yukawa, H.; Baba, Y.; Nagayasu, T. Adipose-Derived Mesenchymal Stem Cells Attenuate Rejection in a Rat Lung Transplantation Model. J. Surg. Res. 2018, 227, 17–27. [Google Scholar] [CrossRef] [PubMed]
Large Animal Models | Small Animal Models | ||
---|---|---|---|
Porcine | Rats | Mice | |
Size | Large size: 40–50 kg | Medium size: 250–300 g | Smaller size: 20–30 g |
Surgical complexity | Demanding surgical skills | Microsurgery training required | |
Cost | High costs: purchase, housing | Lower costs | |
Facility | Large facility, equipment, and housing | Easier to house, although surgical microscope required for procedure | |
Anatomy | Closest related to humans | Larger evolutionary gap between rodents and humans | |
Lifespan | Long lifespan | Short lifespan, fast metabolism rate, short gestation time | |
Application | Surgical training, ex vivo lung perfusion, artificial lung | Complex applications: ex vivo lung perfusion, re-transplantation | Genetic modification: knock-out, knock-in, transgenic strains, etc. |
Year | Author | Animal Strains | Sequence | Cuff/Suture | Transplantation Duration (min) | Survival |
---|---|---|---|---|---|---|
2013 | Habertheuer et al. [33] | Male 250–300 g Fischer F344 rats to 320–350 g Wistar Kyoto rats | B-A-V | 1 mm body 1 mm tail (PA&PV) 2 interrupted stabilization sutures (B) | 90 ± 5 | 70–100% 2 w |
2020 | Tian et al. [25] | 250–300 g Lewis or Brown Norway donor rats to Lewis rats | B-A-V | 1.0 mm body, 1.5 mm tail | 48.0 ± 2.8 | 97.2% 2 w |
1982 | Marck et al. [34] | 250–300 g inbred Wistar Albino Glaxo and Brown Norway rats | V-A-B | Total interrupted sutures | 87 (52–149) | 40% 2 w |
2004 | Mizobuchi et al. [35] | male 250–300 g Fischer 344 rats to Wistar Kyoto rats | V-B-A | 2.5 mm Body 1.5 mm Tail | 84.8 ± 0.6 | 95.6% 2 w |
2011 | Rodríguez et al. [36] | male 300–400 g Sprague-Dawley consanguineous rats | A-B-V | 1.5 mm Body 1.5 mm Tail | 59.2 ± 4.2 | 80% 90-day |
PV/V—pulmonary vein; B—bronchus; PA/A—pulmonary artery |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Kaes, J.; Van Slambrouck, J.; Inci, I.; Arni, S.; Geudens, V.; Heigl, T.; Jansen, Y.; Carlon, M.S.; Vos, R.; et al. A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats. Cells 2022, 11, 480. https://doi.org/10.3390/cells11030480
Jin X, Kaes J, Van Slambrouck J, Inci I, Arni S, Geudens V, Heigl T, Jansen Y, Carlon MS, Vos R, et al. A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats. Cells. 2022; 11(3):480. https://doi.org/10.3390/cells11030480
Chicago/Turabian StyleJin, Xin, Janne Kaes, Jan Van Slambrouck, Ilhan Inci, Stephan Arni, Vincent Geudens, Tobias Heigl, Yanina Jansen, Marianne S. Carlon, Robin Vos, and et al. 2022. "A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats" Cells 11, no. 3: 480. https://doi.org/10.3390/cells11030480
APA StyleJin, X., Kaes, J., Van Slambrouck, J., Inci, I., Arni, S., Geudens, V., Heigl, T., Jansen, Y., Carlon, M. S., Vos, R., Van Raemdonck, D., Zhang, Y., Vanaudenaerde, B. M., & Ceulemans, L. J. (2022). A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats. Cells, 11(3), 480. https://doi.org/10.3390/cells11030480