Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications
Abstract
:1. Introduction
2. Integrins: A Brief Overview
3. Role of Integrins in SMC Biology
4. Role of Integrins in Neointimal Hyperplasia
5. Integrin α9- An Overlooked Integrin
6. Role of α9β1 in SMC Proliferation and Neointimal Hyperplasia
7. Role of Cellular Fibronectin Containing EDA Domain in α9 Mediated SMC Activation
8. Anti-Integrin Therapies in SMC Proliferation and Injury-Induced Neointimal Hyperplasia
9. Clinical Perspective
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allahverdian, S.; Chaabane, C.; Boukais, K.; Francis, G.A.; Bochaton-Piallat, M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 2018, 114, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokin, V.; Vickneson, K.; Kofidis, T.; Woo, C.C.; Lin, X.Y.; Foo, R.; Shanahan, C.M. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front. Immunol. 2020, 11, 599415. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Chatterjee, P.; Dave, J.M.; Ostriker, A.C.; Greif, D.M.; Rzucidlo, E.M.; Martin, K.A. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc. Sci. 2021, 2, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Dhanesha, N.; Doddapattar, P.; Nayak, M.K.; Guo, L.; Cornelissen, A.; Lentz, S.R.; Finn, A.V.; Chauhan, A.K. Smooth Muscle Cell-Specific PKM2 (Pyruvate Kinase Muscle 2) Promotes Smooth Muscle Cell Phenotypic Switching and Neointimal Hyperplasia. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1724–1737. [Google Scholar] [CrossRef]
- Jain, M.; Singh, A.; Singh, V.; Maurya, P.; Barthwal, M.K. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation. J. Cardiovasc. Pharmacol. Ther. 2016, 21, 187–200. [Google Scholar] [CrossRef]
- Jain, M.; Singh, A.; Singh, V.; Barthwal, M.K. Involvement of interleukin-1 receptor-associated kinase-1 in vascular smooth muscle cell proliferation and neointimal formation after rat carotid injury. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Shankman, L.S.; Gomez, D.; Cherepanova, O.A.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.; Greene, E.S.; Straub, A.C.; et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 2015, 21, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Thyberg, J.; Blomgren, K.; Roy, J.; Tran, P.K.; Hedin, U. Phenotypic modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. J. Histochem. Cytochem. 1997, 45, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Hedin, U.; Bottger, B.A.; Forsberg, E.; Johansson, S.; Thyberg, J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J. Cell Biol. 1988, 107, 307–319. [Google Scholar] [CrossRef]
- Moiseeva, E.P. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc. Res. 2001, 52, 372–386. [Google Scholar] [CrossRef]
- Lim, I.R.; Kim, C.; Jung, J.W.; Kim, J.H.; Hong, S.J. Inhibition of Smooth Muscle Cell Proliferation and Migration by a Talin Modulator Attenuates Neointimal Formation after Femoral Arterial Injury. Korean Circ. J. 2020, 50, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Zargham, R.; Thibault, G. Alpha 8 integrin expression is required for maintenance of the smooth muscle cell differentiated phenotype. Cardiovasc. Res. 2006, 71, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Bandaru, S.; Ala, C.; Zhou, A.X.; Akyurek, L.M. Filamin A Regulates Cardiovascular Remodeling. Int. J. Mol. Sci. 2021, 22, 6555. [Google Scholar] [CrossRef] [PubMed]
- Mezu-Ndubuisi, O.J.; Maheshwari, A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2021, 89, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Morse, E.M.; Brahme, N.N.; Calderwood, D.A. Integrin cytoplasmic tail interactions. Biochemistry 2014, 53, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, K.; Liu, B.; Kent, K.C. Activation of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. J. Vasc. Surg. 2000, 31, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.M.; Even-Ram, S. Integrin regulation of growth factor receptors. Nat. Cell Biol. 2002, 4, E75–E76. [Google Scholar] [CrossRef]
- Pickering, J.G.; Chow, L.H.; Li, S.; Rogers, K.A.; Rocnik, E.F.; Zhong, R.; Chan, B.M. alpha5beta1 integrin expression and luminal edge fibronectin matrix assembly by smooth muscle cells after arterial injury. Am. J. Pathol. 2000, 156, 453–465. [Google Scholar] [CrossRef]
- Martinez-Lemus, L.A.; Wu, X.; Wilson, E.; Hill, M.A.; Davis, G.E.; Davis, M.J.; Meininger, G.A. Integrins as unique receptors for vascular control. J. Vasc. Res. 2003, 40, 211–233. [Google Scholar] [CrossRef]
- Raines, E.W.; Bornfeldt, K.E. Integrin alpha(7)beta(1) COMPels smooth muscle cells to maintain their quiescence. Circ. Res. 2010, 106, 427–429. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Dev, R.; Doddapattar, P.; Kon, S.; Dhanesha, N.; Chauhan, A.K. Integrin alpha9 regulates smooth muscle cell phenotype switching and vascular remodeling. JCI Insight 2021, 6, e147134. [Google Scholar] [CrossRef] [PubMed]
- Berditchevski, F.; Odintsova, E. Characterization of integrin-tetraspanin adhesion complexes: Role of tetraspanins in integrin signaling. J. Cell Biol. 1999, 146, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.W.; Kuo, A.; Barnathan, E.S.; Okada, S.S. Urokinase receptor-dependent upregulation of smooth muscle cell adhesion to vitronectin by urokinase. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1855–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, B.; Bendeck, M.P. Integrin linked kinase (ILK) expression and function in vascular smooth muscle cells. Cell Adh. Migr. 2009, 3, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Silva, J.C.; Miyakawa, A.A.; Krieger, J.E. Focal adhesion signaling: Vascular smooth muscle cell contractility beyond calcium mechanisms. Clin. Sci. 2021, 135, 1189–1207. [Google Scholar] [CrossRef] [PubMed]
- Eliceiri, B.P. Integrin and growth factor receptor crosstalk. Circ. Res. 2001, 89, 1104–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.A.; Baron, V. Interactions between mitogenic stimuli, or, a thousand and one connections. Curr. Opin. Cell Biol. 1999, 11, 197–202. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Li, M.; Wu, X.; Setrerrahmane, S.; Xu, H. Integrins as attractive targets for cancer therapeutics. Acta Pharm. Sin. B 2021, 11, 2726–2737. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.; Dolce, L.; Cabodi, S.; Bergatto, E.; Boeri Erba, E.; Smeriglio, M.; Turco, E.; Retta, S.F.; Giuffrida, M.G.; Venturino, M.; et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 2002, 277, 9405–9414. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Vlahakis, N.E. Integrin alpha9beta1 mediates enhanced cell migration through nitric oxide synthase activity regulated by Src tyrosine kinase. J. Cell Sci. 2009, 122, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Vlahakis, N.E. Integrin alpha9beta1: Unique signaling pathways reveal diverse biological roles. Cell Adh. Migr. 2010, 4, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivatsa, S.S.; Fitzpatrick, L.A.; Tsao, P.W.; Reilly, T.M.; Holmes, D.R., Jr.; Schwartz, R.S.; Mousa, S.A. Selective alpha v beta 3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury: Evidence for the functional importance of integrin alpha v beta 3 and osteopontin expression during neointima formation. Cardiovasc. Res. 1997, 36, 408–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunni, M.A.; Kramarenko, I.I.; Walker, L.; Raymond, J.R.; Garnovskaya, M.N. Role of integrins in angiotensin II-induced proliferation of vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2011, 300, C647–C656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolas, G.; de Rezende, F.F.; Lorente, C.; Sanz, L.; Eble, J.A.; Calvete, J.J. Inhibitory effects of recombinant RTS-jerdostatin on integrin alpha1beta1 function during adhesion, migration and proliferation of rat aortic smooth muscle cells and angiogenesis. Toxicon 2014, 79, 45–54. [Google Scholar] [CrossRef]
- Zargham, R.; Thibault, G. alpha8beta1 Integrin expression in the rat carotid artery: Involvement in smooth muscle cell migration and neointima formation. Cardiovasc. Res. 2005, 65, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shi, G.P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim. Biophys. Acta 2014, 1842, 2106–2119. [Google Scholar] [CrossRef] [Green Version]
- Dufourcq, P.; Couffinhal, T.; Alzieu, P.; Daret, D.; Moreau, C.; Duplaa, C.; Bonnet, J. Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation. Cardiovasc. Res. 2002, 53, 952–962. [Google Scholar] [CrossRef] [Green Version]
- Duplaa, C.; Couffinhal, T.; Dufourcq, P.; Llanas, B.; Moreau, C.; Bonnet, J. The integrin very late antigen-4 is expressed in human smooth muscle cell. Involvement of alpha 4 and vascular cell adhesion molecule-1 during smooth muscle cell differentiation. Circ. Res. 1997, 80, 159–169. [Google Scholar] [CrossRef]
- Grenache, D.G.; Coleman, T.; Semenkovich, C.F.; Santoro, S.A.; Zutter, M.M. Alpha2beta1 integrin and development of atherosclerosis in a mouse model: Assessment of risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2104–2109. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.T.; Engel, L.; Callow, A.D.; Sun, S.; Trachtenberg, J.; Santoro, S.; Ryan, U.S. Inhibition of neointimal hyperplasia by blocking alpha V beta 3 integrin with a small peptide antagonist GpenGRGDSPCA. J. Vasc. Surg. 1994, 19, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.J.; Li, M.B.; Wu, X.; Wu, S.; Zhu, W.; Chen, D.; Luo, M.; Eitenmuller, I.; Kampmann, A.; Schaper, J.; et al. Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol. Cell. Biochem. 2009, 322, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.P.; Raines, E.W.; Ross, R. Dynamic expression of alpha 1 beta 1 and alpha 2 beta 1 integrin receptors by human vascular smooth muscle cells. Alpha 2 beta 1 integrin is required for chemotaxis across type I collagen-coated membranes. Am. J. Pathol. 1994, 145, 1070–1081. [Google Scholar]
- Azrin, M.A.; Ling, F.S.; Chen, Q.; Pawashe, A.; Migliaccio, F.; Homer, R.; Todd, M.; Ezekowitz, M.D. Preparation, characterization, and evaluation of a monoclonal antibody against the rabbit platelet glycoprotein IIb/IIIa in an experimental angioplasty model. Circ. Res. 1994, 75, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Lumsden, A.B.; Chen, C.; Hughes, J.D.; Kelly, A.B.; Hanson, S.R.; Harker, L.A. Anti-VLA-4 antibody reduces intimal hyperplasia in the endarterectomized carotid artery in nonhuman primates. J. Vasc. Surg. 1997, 26, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Braun, A.; Dofiles, L.; Rousselle, S.; Guerrero, L.; Gunther, J.; Yednock, T.; Stricker-Krongrad, A.; Messersmith, E. Effects of an alpha-4 integrin inhibitor on restenosis in a new porcine model combining endothelial denudation and stent placement. PLoS ONE 2010, 5, e14314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rechenmacher, F.; Steigerwald, K.; Laufer, B.; Neubauer, S.; Kapp, T.G.; Li, L.; Mas-Moruno, C.; Joner, M.; Kessler, H. The integrin ligand c(RGDf(NMe)Nal) reduces neointimal hyperplasia in a polymer-free drug-eluting stent system. ChemMedChem 2014, 9, 1413–1418. [Google Scholar] [CrossRef]
- Kokubo, T.; Uchida, H.; Choi, E.T. Integrin alpha(v)beta(3) as a target in the prevention of neointimal hyperplasia. J. Vasc. Surg. 2007, 45 (Suppl. A), A33–A38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchatcharam, M.; Miriyala, S.; Yang, F.; Leitges, M.; Chrzanowska-Wodnicka, M.; Quilliam, L.A.; Anaya, P.; Morris, A.J.; Smyth, S.S. Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling. Int. J. Biochem. Cell Biol. 2010, 42, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Smyth, S.S.; Reis, E.D.; Zhang, W.; Fallon, J.T.; Gordon, R.E.; Coller, B.S. Beta(3)-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury: Correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation 2001, 103, 2501–2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menendez-Castro, C.; Cordasic, N.; Neureiter, D.; Amann, K.; Marek, I.; Volkert, G.; Stintzing, S.; Jahn, A.; Rascher, W.; Hilgers, K.F.; et al. Under-expression of alpha8 integrin aggravates experimental atherosclerosis. J. Pathol. 2015, 236, 5–16. [Google Scholar] [CrossRef]
- Welser, J.V.; Lange, N.; Singer, C.A.; Elorza, M.; Scowen, P.; Keef, K.D.; Gerthoffer, W.T.; Burkin, D.J. Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling. Circ. Res. 2007, 101, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Raab-Westphal, S.; Marshall, J.F.; Goodman, S.L. Integrins as Therapeutic Targets: Successes and Cancers. Cancers 2017, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Schapira, K.; Lutgens, E.; de Fougerolles, A.; Sprague, A.; Roemen, A.; Gardner, H.; Koteliansky, V.; Daemen, M.; Heeneman, S. Genetic deletion or antibody blockade of alpha1beta1 integrin induces a stable plaque phenotype in ApoE-/- mice. Arterioscler Thromb. Vasc. Biol. 2005, 25, 1917–1924. [Google Scholar] [CrossRef]
- Lee, R.T.; Berditchevski, F.; Cheng, G.C.; Hemler, M.E. Integrin-mediated collagen matrix reorganization by cultured human vascular smooth muscle cells. Circ. Res. 1995, 76, 209–214. [Google Scholar] [CrossRef]
- Obata, H.; Hayashi, K.; Nishida, W.; Momiyama, T.; Uchida, A.; Ochi, T.; Sobue, K. Smooth muscle cell phenotype-dependent transcriptional regulation of the alpha1 integrin gene. J. Biol. Chem. 1997, 272, 26643–26651. [Google Scholar] [CrossRef] [Green Version]
- Pickering, J.G.; Uniyal, S.; Ford, C.M.; Chau, T.; Laurin, M.A.; Chow, L.H.; Ellis, C.G.; Fish, J.; Chan, B.M. Fibroblast growth factor-2 potentiates vascular smooth muscle cell migration to platelet-derived growth factor: Upregulation of alpha2beta1 integrin and disassembly of actin filaments. Circ. Res. 1997, 80, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qin, X.; Wang, H.; Miao, R.; Zhang, Y.; Miao, C.; Wang, Z. Effects of integrin alpha5beta1 on the proliferation and migration of human aortic vascular smooth muscle cells. Mol. Med. Rep. 2016, 13, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurdagul, A., Jr.; Green, J.; Albert, P.; McInnis, M.C.; Mazar, A.P.; Orr, A.W. alpha5beta1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1362–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, J.; Du, Y.; Huang, Y.; Li, J.; Liu, B.; Liu, C.J.; Zhu, Y.; Gao, Y.; Xu, Q.; et al. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ. Res. 2010, 106, 514–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, C.C.; Breuss, J.; Pytela, R.; Kramer, R.H. Functional expression of the alpha 7 integrin receptor in differentiated smooth muscle cells. J. Cell Sci. 1997, 110 Pt 13, 1477–1487. [Google Scholar] [CrossRef]
- Zargham, R.; Touyz, R.M.; Thibault, G. alpha 8 Integrin overexpression in de-differentiated vascular smooth muscle cells attenuates migratory activity and restores the characteristics of the differentiated phenotype. Atherosclerosis 2007, 195, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Tanaka, Y.; Erdman, J.; Kaneko, Y.; Saito, M.; Higashitani, C.; Smulders, R.; Lademacher, C. ASP5094, a humanized monoclonal antibody against integrin alpha-9, did not show efficacy in patients with rheumatoid arthritis refractory to methotrexate: Results from a phase 2a, randomized, double-blind, placebo-controlled trial. Arthritis Res. Ther. 2020, 22, 252. [Google Scholar] [CrossRef] [PubMed]
- Cully, M. Integrin-targeted therapies branch out. Nat. Rev. Drug Discov. 2020, 19, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Slack, R.J.; Macdonald, S.J.F.; Roper, J.A.; Jenkins, R.G.; Hatley, R.J.D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 2021, 21, 60–78. [Google Scholar] [CrossRef]
- Hoshiga, M.; Alpers, C.E.; Smith, L.L.; Giachelli, C.M.; Schwartz, S.M. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ. Res. 1995, 77, 1129–1135. [Google Scholar] [CrossRef]
- Van der Zee, R.; Murohara, T.; Passeri, J.; Kearney, M.; Cheresh, D.A.; Isner, J.M. Reduced intimal thickening following alpha(v)beta3 blockade is associated with smooth muscle cell apoptosis. Cell Adhes. Commun. 1998, 6, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Liaw, L.; Skinner, M.P.; Raines, E.W.; Ross, R.; Cheresh, D.A.; Schwartz, S.M.; Giachelli, C.M. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J. Clin. Investig. 1995, 95, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Bendeck, M.P.; Irvin, C.; Reidy, M.; Smith, L.; Mulholland, D.; Horton, M.; Giachelli, C.M. Smooth muscle cell matrix metalloproteinase production is stimulated via alpha(v)beta(3) integrin. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1467–1472. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Bae, J.S.; Park, R.W.; Kim, J.E.; Park, J.Y.; Kim, I.S. betaig-h3 triggers signaling pathways mediating adhesion and migration of vascular smooth muscle cells through alphavbeta5 integrin. Exp. Mol. Med. 2006, 38, 153–161. [Google Scholar] [CrossRef]
- Ma, Z.; Mao, C.; Jia, Y.; Fu, Y.; Kong, W. Extracellular matrix dynamics in vascular remodeling. Am. J. Physiol. Cell Physiol. 2020, 319, C481–C499. [Google Scholar] [CrossRef]
- Jain, M.; Dhanesha, N.; Doddapattar, P.; Chorawala, M.R.; Nayak, M.K.; Cornelissen, A.; Guo, L.; Finn, A.V.; Lentz, S.R.; Chauhan, A.K. Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia. J. Clin. Investig. 2020, 130, 295–314. [Google Scholar] [CrossRef]
- Isoda, K.; Nishikawa, K.; Kamezawa, Y.; Yoshida, M.; Kusuhara, M.; Moroi, M.; Tada, N.; Ohsuzu, F. Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ. Res. 2002, 91, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Onoda, K.; Sawada, Y.; Fujinaga, K.; Imanaka-Yoshida, K.; Shimpo, H.; Yoshida, T.; Yada, I. Tenascin-C is an essential factor for neointimal hyperplasia after aortotomy in mice. Cardiovasc. Res. 2005, 65, 737–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinkiewicz, C.; Taooka, Y.; Yokosaki, Y.; Calvete, J.J.; Marcinkiewicz, M.M.; Lobb, R.R.; Niewiarowski, S.; Sheppard, D. Inhibitory effects of MLDG-containing heterodimeric disintegrins reveal distinct structural requirements for interaction of the integrin alpha 9beta 1 with VCAM-1, tenascin-C., and osteopontin. J. Biol. Chem. 2000, 275, 31930–31937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emori, T.; Hirose, J.; Ise, K.; Yomoda, J.I.; Kasahara, M.; Shinkuma, T.; Yoshitomi, H.; Ito, H.; Hashimoto, M.; Sugahara, S.; et al. Constitutive Activation of Integrin alpha9 Augments Self-Directed Hyperplastic and Proinflammatory Properties of Fibroblast-like Synoviocytes of Rheumatoid Arthritis. J. Immunol. 2017, 199, 3427–3436. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, N.E.; Young, B.A.; Atakilit, A.; Sheppard, D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J. Biol. Chem. 2005, 280, 4544–4552. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Niu, Y.; Chen, Z.; Yang, Y.; Wang, X. Integrin alpha9 is involved in the pathopoiesis of acute aortic dissection via mediating phenotype switch of vascular smooth muscle cell. Biochem. Biophys. Res. Commun. 2020, 533, 519–525. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, T.; Cao, Z.; Zhong, W.; Zhang, C.; Li, H.; Song, J. Integrin-alpha9beta1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front. Immunol. 2021, 12, 638400. [Google Scholar] [CrossRef]
- Yang, J.T.; Rayburn, H.; Hynes, R.O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995, 121, 549–560. [Google Scholar] [CrossRef]
- Palmer, E.L.; Ruegg, C.; Ferrando, R.; Pytela, R.; Sheppard, D. Sequence and tissue distribution of the integrin alpha 9 subunit, a novel partner of beta 1 that is widely distributed in epithelia and muscle. J. Cell Biol. 1993, 123, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Reimer, C.L.; Peters, J.H.; Stepp, M.A.; Hynes, R.O.; Van De Water, L. The spatial and temporal expression patterns of integrin alpha9beta1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J. Investig. Dermatol. 2004, 123, 1176–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanesha, N.; Jain, M.; Tripathi, A.K.; Doddapattar, P.; Chorawala, M.; Bathla, G.; Nayak, M.K.; Ghatge, M.; Lentz, S.R.; Kon, S.; et al. Targeting Myeloid-Specific Integrin alpha9beta1 Improves Short- and Long-Term Stroke Outcomes in Murine Models with Preexisting Comorbidities by Limiting Thrombosis and Inflammation. Circ. Res. 2020, 126, 1779–1794. [Google Scholar] [CrossRef]
- Dhanesha, N.; Nayak, M.K.; Doddapattar, P.; Jain, M.; Flora, G.D.; Kon, S.; Chauhan, A.K. Targeting myeloid-cell specific integrin alpha9beta1 inhibits arterial thrombosis in mice. Blood 2020, 135, 857–861. [Google Scholar] [CrossRef]
- Kon, S.; Uede, T. The role of alpha9beta1 integrin and its ligands in the development of autoimmune diseases. J. Cell Commun. Signal. 2018, 12, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlen, K.; Ring, P.; Tomasini-Johansson, B.; Holmqvist, K.; Magnusson, K.E.; Rubin, K. Platelet-derived growth factor-BB modulates membrane mobility of beta1 integrins. Biochem. Biophys. Res. Commun. 2004, 314, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Xiao, Y.; Lin, H.P.; Yang, P.; Humphries, B.; Gao, T.; Yang, C. Integrin alpha9 depletion promotes beta-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. Int. J. Cancer 2019, 145, 2767–2780. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.; Jerchow, B.A.; Wurtele, M.; Grimm, J.; Asbrand, C.; Wirtz, R.; Kuhl, M.; Wedlich, D.; Birchmeier, W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 1998, 280, 596–599. [Google Scholar] [CrossRef]
- Liao, Y.F.; Gotwals, P.J.; Koteliansky, V.E.; Sheppard, D.; Van De Water, L. The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem. 2002, 277, 14467–14474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doddapattar, P.; Dev, R.; Jain, M.; Dhanesha, N.; Chauhan, A.K. Differential Roles of Endothelial Cell-Derived and Smooth Muscle Cell-Derived Fibronectin Containing Extra Domain A in Early and Late Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1738–1747. [Google Scholar] [CrossRef]
- Chorawala, M.R.; Prakash, P.; Doddapattar, P.; Jain, M.; Dhanesha, N.; Chauhan, A.K. Deletion of Extra Domain A of Fibronectin Reduces Acute Myocardial Ischaemia/Reperfusion Injury in Hyperlipidaemic Mice by Limiting Thrombo-Inflammation. Thromb. Haemost. 2018, 118, 1450–1460. [Google Scholar] [CrossRef]
- Peters, J.H.; Maunder, R.J.; Woolf, A.D.; Cochrane, C.G.; Ginsberg, M.H. Elevated plasma levels of ED1+ (“cellular”) fibronectin in patients with vascular injury. J. Lab. Clin. Med. 1989, 113, 586–597. [Google Scholar] [PubMed]
- Yokosaki, Y.; Matsuura, N.; Sasaki, T.; Murakami, I.; Schneider, H.; Higashiyama, S.; Saitoh, Y.; Yamakido, M.; Taooka, Y.; Sheppard, D. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J. Biol. Chem. 1999, 274, 36328–36334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokosaki, Y.; Matsuura, N.; Higashiyama, S.; Murakami, I.; Obara, M.; Yamakido, M.; Shigeto, N.; Chen, J.; Sheppard, D. Identification of the ligand binding site for the integrin alpha9 beta1 in the third fibronectin type III repeat of tenascin-C. J. Biol. Chem. 1998, 273, 11423–11428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheu, J.R.; Wu, C.H.; Chen, Y.C.; Hsiao, G.; Lin, C.H. Mechanisms in the inhibition of neointimal hyperplasia with triflavin in a rat model of balloon angioplasty. J. Lab. Clin. Med. 2001, 137, 270–278. [Google Scholar] [CrossRef]
- Baron, J.H.; Moiseeva, E.P.; de Bono, D.P.; Abrams, K.R.; Gershlick, A.H. Inhibition of vascular smooth muscle cell adhesion and migration by c7E3 Fab (abciximab): A possible mechanism for influencing restenosis. Cardiovasc. Res. 2000, 48, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Randomised placebo-controlled trial of effect of eptifibatide on complications of percutaneous coronary intervention: IMPACT-II. Integrilin to Minimise Platelet Aggregation and Coronary Thrombosis-II. Lancet 1997, 349, 1422–1428. [CrossRef]
- Effects of platelet glycoprotein IIb/IIIa blockade with tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty. The RESTORE Investigators. Randomized Efficacy Study of Tirofiban for Outcomes and REstenosis. Circulation 1997, 96, 1445–1453. [CrossRef]
- Lincoff, A.M.; Califf, R.M.; Moliterno, D.J.; Ellis, S.G.; Ducas, J.; Kramer, J.H.; Kleiman, N.S.; Cohen, E.A.; Booth, J.E.; Sapp, S.K.; et al. Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein IIb/IIIa receptors. Evaluation of Platelet IIb/IIIa Inhibition in Stenting Investigators. N. Engl. J. Med. 1999, 341, 319–327. [Google Scholar] [CrossRef]
- Topol, E.J.; Califf, R.M.; Weisman, H.F.; Ellis, S.G.; Tcheng, J.E.; Worley, S.; Ivanhoe, R.; George, B.S.; Fintel, D.; Weston, M.; et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: Results at six months. The EPIC Investigators. Lancet 1994, 343, 881–886. [Google Scholar] [CrossRef]
- Malik, I.; Poullis, M. Acute platelet inhibition with abciximab does not reduce in-stent restenosis. Circulation 2000, 102, E110. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.M.; Goel, M.; Cohen, D.J.; Piana, R.N.; Deckelbaum, L.I.; Harris, K.E.; King, S.B., 3rd. Six-month angiographic and clinical follow-up of patients prospectively randomized to receive either tirofiban or placebo during angioplasty in the RESTORE trial. Randomized Efficacy Study of Tirofiban for Outcomes and Restenosis. J. Am. Coll. Cardiol. 1998, 32, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Jeong, M.H.; Hong, Y.J.; Lee, S.H.; Park, W.S.; Kim, J.H.; Kim, I.S.; Choi, M.J.; Ahn, Y.K.; Cho, J.G.; et al. The long-term clinical results of a platelet glycoprotein IIb/IIIa receptor blocker (Abciximab: Reopro) coated stent in patients with coronary artery disease. Korean J. Intern. Med. 2004, 19, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Hong, Y.J.; Jeong, M.H.; Kim, W.; Kim, H.K.; Ko, J.S.; Lee, M.G.; Sim, D.S.; Park, K.H.; Yoon, N.S.; et al. Two-year clinical outcome after abciximab-coated stent implantation in patients with coronary artery disease. Circ. J. 2010, 74, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blindt, R.; Vogt, F.; Astafieva, I.; Fach, C.; Hristov, M.; Krott, N.; Seitz, B.; Kapurniotu, A.; Kwok, C.; Dewor, M.; et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J. Am. Coll. Cardiol. 2006, 47, 1786–1795. [Google Scholar] [CrossRef] [Green Version]
- Barringhaus, K.G.; Phillips, J.W.; Thatte, J.S.; Sanders, J.M.; Czarnik, A.C.; Bennett, D.K.; Ley, K.F.; Sarembock, I.J. Alpha4beta1 integrin (VLA-4) blockade attenuates both early and late leukocyte recruitment and neointimal growth following carotid injury in apolipoprotein E (-/-) mice. J. Vasc. Res. 2004, 41, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, F.; Byrne, R.A.; Rivero, F.; Kastrati, A. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 2014, 63, 2659–2673. [Google Scholar] [CrossRef] [Green Version]
- Aoki, J.; Tanabe, K. Mechanisms of drug-eluting stent restenosis. Cardiovasc. Interv. Ther. 2020, 36, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Shlofmitz, E.; Iantorno, M.; Waksman, R. Restenosis of Drug-Eluting Stents: A New Classification System Based on Disease Mechanism to Guide Treatment and State-of-the-Art Review. Circ. Cardiovasc. Interv. 2019, 12, e007023. [Google Scholar] [CrossRef]
- Walsh, N.; Clynes, M.; Crown, J.; O’Donovan, N. Alterations in integrin expression modulates invasion of pancreatic cancer cells. J. Exp. Clin. Cancer Res. 2009, 28, 140. [Google Scholar] [CrossRef] [Green Version]
Integrin | ECM | SMC Expression | SMC Function | Implication in Atherosclerosis/Restenosis | Integrin-Targeting Agents in Clinics | Reference |
---|---|---|---|---|---|---|
α1β1 | Col 1-IV, LN | High expression in resting SMCs. Downregulated in culture conditions and during neointimal hyperplasia | Promotes SMC adhesion and contractile phenotype | α1β1 deletion induces a stable plaque phenotype | SAN-300 | [10,34,42,52,53,54,55] |
α2β1 | Col 1 and IV, LN | Undetectable levels in normal human SMCs, and high expression in cultured SMCs | promote chemotaxis of arterial SMCs | α2β1 deletion had no effect on atherosclerosis | Vatelizu-mab | [16,39,42,52,56] |
α3β1 | Col 1, Fn, and LN | Detectable levels in normal human SMCs, and high expression in cultured SMCs | No conclusive reports | [10,33] | ||
α4β1 | Cellular-Fn, VCAM, OPN | Undetectable levels in normal human SMCs, expressed in SMCs in culture and in intimal atherosclerotic thickening | Induction of SMC differentiation | blocking α4β1 prevents neointimal hyperplasia | Natalizu-mab AJM300 | [38,44,45,52] |
α5β1 | Fn and LN | Low levels in normal human SMCs, and high expression in cultured SMCs and during neointimal hyperplasia | Promote SMC proliferation and migration | Mediates early atherosclerosis | Volocixi-mab ATN61 | [41,57,58] |
α7β1 | LN | High levels in normal SMCs, and low expression in synthetic SMC | Promotes contractile SMC phenotype | α7 deletion promotes neointimal hyperplasia | No conclusive reports | [20,51,59,60] |
α8β1 | Fn, TN, VN | Overexpressed in SMCs that display a contractile phenotype low expression in synthetic SMC phenotype and during neointimal hyperplasia | Promotes contractile SMC phenotype. Prevents SMC proliferation and migration | α8 deletion aggravates intimal thickening | No conclusive reports | [12,35,50,61] |
α9β1 | Fn-EDA, TN, VCAM | Expression increases in synthetic SMC phenotype | Promotes SMC proliferation, migration, and synthetic phenotype. | α9 deletion prevents NH | ASP5094 | [21,62] |
αvβ1 | VN, Fn | Weakly expressed in normal SMCs, and upregulated in SMCs cultured on fibronectin | Inhibits contractility in SMC exposed to serum | No conclusive reports | PLN-74809 PLN-1474 | [41,63,64] |
αvβ3 | VN, OPN, Fn | Weakly expressed in normal SMCs, and upregulated in SMCs cultured on fibronectin and during neointimal hyperplasia | Promotes SMC adhesion, proliferation and migration | Promotes neointimal hyperplasia | LM609, Abcixi-mab (c7E3Fab; ReoPro), Vitaxin, Intetumu-mab, Cillengitide | [16,41,65,66,67,68] |
αvβ5 | Fib, Fn, OPN VN | highly abundant in cultured SMCs, upregulated upon vascular injury | Promotes SMC adhesion and migration | Promotes neointimal hyperplasia | LM609 Intetumu-mab | [67,69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, M.; Chauhan, A.K. Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells 2022, 11, 646. https://doi.org/10.3390/cells11040646
Jain M, Chauhan AK. Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells. 2022; 11(4):646. https://doi.org/10.3390/cells11040646
Chicago/Turabian StyleJain, Manish, and Anil K. Chauhan. 2022. "Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications" Cells 11, no. 4: 646. https://doi.org/10.3390/cells11040646
APA StyleJain, M., & Chauhan, A. K. (2022). Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells, 11(4), 646. https://doi.org/10.3390/cells11040646