Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of GEO Datasets and TCGA Data
2.2. Identification of Differentially Expressed Genes
2.3. Identification of GPCRs as Targets for Approved Drugs
2.4. Survival Analysis
3. Results
3.1. Medullary Thyroid Cancer
3.2. Pituitary Neuroendocrine Tumors (PitNETs)
3.3. Pheochromocytoma and Paraganglioma
3.4. Adrenocortical Carcinomas
3.5. Identification of Dysregulated G Protein Coupled Receptors as Targets for Approved Drugs
3.6. Survival Analysis
4. Discussion
4.1. Medullary Thyroid Cancer
4.2. Pituitary Neuroendocrine Tumors (PitNETs)
4.3. Pheochromocytoma or Paraganglioma
4.4. Adrenocortical Carcinoma
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bjarnadóttir, T.K.; Gloriam, D.E.; Hellstrand, S.H.; Kristiansson, H.; Fredriksson, R.; Schiöth, H.B. Comprehensive Repertoire and Phylogenetic Analysis of the G Protein-Coupled Receptors in Human and Mouse. Genomics 2006, 88, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.M.; Rasmussen, S.G.F.; Kobilka, B.K. The Structure and Function of G-Protein-Coupled Receptors. Nature 2009, 459, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Sriram, K.; Insel, P.A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharm. 2018, 93, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Dorsam, R.T.; Gutkind, J.S. G-Protein-Coupled Receptors and Cancer. Nat. Rev. Cancer 2007, 7, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Lappano, R.; Maggiolini, M. G Protein-Coupled Receptors: Novel Targets for Drug Discovery in Cancer. Nat. Rev. Drug Discov. 2011, 10, 47–60. [Google Scholar] [CrossRef]
- Wu, V.; Yeerna, H.; Nohata, N.; Chiou, J.; Harismendy, O.; Raimondi, F.; Inoue, A.; Russell, R.B.; Tamayo, P.; Gutkind, J.S. Illuminating the Onco-GPCRome: Novel G Protein-Coupled Receptor-Driven Oncocrine Networks and Targets for Cancer Immunotherapy. J. Biol. Chem. 2019, 294, 11062–11086. [Google Scholar] [CrossRef] [Green Version]
- O’Hayre, M.; Vázquez-Prado, J.; Kufareva, I.; Stawiski, E.W.; Handel, T.M.; Seshagiri, S.; Gutkind, J.S. The Emerging Mutational Landscape of G-Proteins and G-Protein Coupled Receptors in Cancer. Nat. Rev. Cancer 2013, 13, 412. [Google Scholar] [CrossRef]
- Cheng, P.F.; Dummer, R.; Levesque, M.P. Data Mining The Cancer Genome Atlas in the Era of Precision Cancer Medicine. Swiss Med. Wkly. 2015, 145, w14183. [Google Scholar] [CrossRef]
- Insel, P.A.; Sriram, K.; Wiley, S.Z.; Wilderman, A.; Katakia, T.; McCann, T.; Yokouchi, H.; Zhang, L.; Corriden, R.; Liu, D.; et al. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front. Pharm. 2018, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Kübler, E.; Albrecht, H. Large Set Data Mining Reveals Overexpressed GPCRs in Prostate and Breast Cancer: Potential for Active Targeting with Engineered Anti-Cancer Nanomedicines. Oncotarget 2018, 9, 24882–24897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriram, K.; Moyung, K.; Corriden, R.; Carter, H.; Insel, P.A. GPCRs Show Widespread Differential MRNA Expression and Frequent Mutation and Copy Number Variation in Solid Tumors. PLoS Biol. 2019, 17, e3000434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiley, S.Z.; Sriram, K.; Liang, W.; Chang, S.E.; French, R.; McCann, T.; Sicklick, J.; Nishihara, H.; Lowy, A.M.; Insel, P.A. GPR68, a Proton-Sensing GPCR, Mediates Interaction of Cancer-Associated Fibroblasts and Cancer Cells. FASEB J. 2018, 32, 1170–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suteau, V.; Seegers, V.; Munier, M.; Ben Boubaker, R.; Reyes, C.; Gentien, D.; Wery, M.; Croué, A.; Illouz, F.; Hamy, A.; et al. G Protein-Coupled Receptors in Radioiodine-Refractory Thyroid Cancer in the Era of Precision Medicine. J. Clin. Endocrinol. Metab. 2021, 106, 2221–2232. [Google Scholar] [CrossRef]
- Asa, S.L.; Casar-Borota, O.; Chanson, P.; Delgrange, E.; Earls, P.; Ezzat, S.; Grossman, A.; Ikeda, H.; Inoshita, N.; Karavitaki, N.; et al. From Pituitary Adenoma to Pituitary Neuroendocrine Tumor (PitNET): An International Pituitary Pathology Club Proposal. Endocr. Relat. Cancer 2017, 24, 5–8. [Google Scholar] [CrossRef]
- Saeger, W.; Honegger, J.; Theodoropoulou, M.; Knappe, U.J.; Schöfl, C.; Petersenn, S.; Buslei, R. Clinical Impact of the Current WHO Classification of Pituitary Adenomas. Endocr. Pathol. 2016, 27, 104–114. [Google Scholar] [CrossRef]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M. European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. Eur. J. Endocrinol. 2018, 178, 1–24. [Google Scholar] [CrossRef]
- Fassnacht, M.; Assie, G.; Baudin, E.; Eisenhofer, G.; de la Fouchardiere, C.; Haak, H.R.; de Krijger, R.; Porpiglia, F.; Terzolo, M.; Berruti, A. Adrenocortical Carcinomas and Malignant Phaeochromocytomas: ESMO–EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up††Approved by the ESMO Guidelines Committee: June 2020. This Publication Supersedes the Previously Published Version—Ann Oncol. 2012;23(Suppl_7):Vii131-Vii138. Ann. Oncol. 2020, 31, 1476–1490. [Google Scholar] [CrossRef]
- Fassnacht, M.; Dekkers, O.M.; Else, T.; Baudin, E.; Berruti, A.; de Krijger, R.R.; Haak, H.R.; Mihai, R.; Assie, G.; Terzolo, M. European Society of Endocrinology Clinical Practice Guidelines on the Management of Adrenocortical Carcinoma in Adults, in Collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2018, 179, 1–46. [Google Scholar] [CrossRef]
- Giordano, T.J.; Kuick, R.; Thomas, D.G.; Misek, D.E.; Vinco, M.; Sanders, D.; Zhu, Z.; Ciampi, R.; Roh, M.; Shedden, K.; et al. Molecular Classification of Papillary Thyroid Carcinoma: Distinct BRAF, RAS, and RET/PTC Mutation-Specific Gene Expression Profiles Discovered by DNA Microarray Analysis. Oncogene 2005, 24, 6646–6656. [Google Scholar] [CrossRef] [Green Version]
- Giordano, T.J.; Au, A.Y.M.; Kuick, R.; Thomas, D.G.; Rhodes, D.R.; Wilhelm, K.G.; Vinco, M.; Misek, D.E.; Sanders, D.; Zhu, Z.; et al. Delineation, Functional Validation, and Bioinformatic Evaluation of Gene Expression in Thyroid Follicular Carcinomas with the PAX8-PPARG Translocation. Clin. Cancer Res. 2006, 12, 1983–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Zheng, Y.; Zhou, J.; Oyesiku, N.M.; Koeffler, H.P.; Melmed, S. Genomic Characterization of Human and Rat Prolactinomas. Endocrinology 2012, 153, 3679–3691. [Google Scholar] [CrossRef]
- Gump, J.M.; Donson, A.M.; Birks, D.K.; Amani, V.M.; Rao, K.K.; Griesinger, A.M.; Kleinschmidt-DeMasters, B.K.; Johnston, J.M.; Anderson, R.C.E.; Rosenfeld, A.; et al. Identification of Targets for Rational Pharmacological Therapy in Childhood Craniopharyngioma. Acta Neuropathol. Commun. 2015, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, S.; Carlsen, E.; Marques, P.; Stiles, C.E.; Gadaleta, E.; Berney, D.M.; Roncaroli, F.; Chelala, C.; Solomou, A.; Herincs, M.; et al. Tumor Microenvironment Defines the Invasive Phenotype of AIP-Mutation-Positive Pituitary Tumors. Oncogene 2019, 38, 5381–5395. [Google Scholar] [CrossRef]
- Hernández-Ramírez, L.C.; Morgan, R.M.L.; Barry, S.; D’Acquisto, F.; Prodromou, C.; Korbonits, M. Multi-Chaperone Function Modulation and Association with Cytoskeletal Proteins Are Key Features of the Function of AIP in the Pituitary Gland. Oncotarget 2018, 9, 9177–9198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, P.; Barry, S.; Carlsen, E.; Collier, D.; Ronaldson, A.; Awad, S.; Dorward, N.; Grieve, J.; Mendoza, N.; Muquit, S.; et al. Chemokines Modulate the Tumour Microenvironment in Pituitary Neuroendocrine Tumours. Acta Neuropathol. Commun. 2019, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giubellino, A.; Shankavaram, U.; Bullova, P.; Schovanek, J.; Zhang, Y.; Shen, M.; Patel, N.; Elkahloun, A.; Lee, M.-J.; Trepel, J.; et al. High-Throughput Screening for the Identification of New Therapeutic Options for Metastatic Pheochromocytoma and Paraganglioma. PLoS ONE 2014, 9, e90458. [Google Scholar] [CrossRef]
- Shankavaram, U.; Fliedner, S.M.J.; Elkahloun, A.G.; Barb, J.J.; Munson, P.J.; Huynh, T.T.; Matro, J.C.; Turkova, H.; Linehan, W.M.; Timmers, H.J.; et al. Genotype and Tumor Locus Determine Expression Profile of Pseudohypoxic Pheochromocytomas and Paragangliomas. Neoplasia 2013, 15, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhuang, Z.; Fliedner, S.M.J.; Shankavaram, U.; Sun, M.G.; Bullova, P.; Zhu, R.; Elkahloun, A.G.; Kourlas, P.J.; Merino, M.; et al. Germ-Line PHD1 and PHD2 Mutations Detected in Patients with Pheochromocytoma/Paraganglioma-Polycythemia. J. Mol. Med. 2015, 93, 93–104. [Google Scholar] [CrossRef]
- López-Jiménez, E.; Gómez-López, G.; Leandro-García, L.J.; Muñoz, I.; Schiavi, F.; Montero-Conde, C.; de Cubas, A.A.; Ramires, R.; Landa, I.; Leskelä, S.; et al. Research Resource: Transcriptional Profiling Reveals Different Pseudohypoxic Signatures in SDHB and VHL-Related Pheochromocytomas. Mol. Endocrinol. 2010, 24, 2382–2391. [Google Scholar] [CrossRef] [Green Version]
- Tömböl, Z.; Szabó, P.M.; Molnár, V.; Wiener, Z.; Tölgyesi, G.; Horányi, J.; Riesz, P.; Reismann, P.; Patócs, A.; Likó, I.; et al. Integrative Molecular Bioinformatics Study of Human Adrenocortical Tumors: MicroRNA, Tissue-Specific Target Prediction, and Pathway Analysis. Endocr. Relat. Cancer 2009, 16, 895–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soon, P.S.H.; Gill, A.J.; Benn, D.E.; Clarkson, A.; Robinson, B.G.; McDonald, K.L.; Sidhu, S.B. Microarray Gene Expression and Immunohistochemistry Analyses of Adrenocortical Tumors Identify IGF2 and Ki-67 as Useful in Differentiating Carcinomas from Adenomas. Endocr. Relat. Cancer 2009, 16, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Demeure, M.J.; Coan, K.E.; Grant, C.S.; Komorowski, R.A.; Stephan, E.; Sinari, S.; Mount, D.; Bussey, K.J. PTTG1 Over-Expression in Adrenocortical Cancer Is Associated with Poor Survival and Represents a Potential Therapeutic Target. Surgery 2013, 154, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legendre, C.R.; Demeure, M.J.; Whitsett, T.G.; Gooden, G.C.; Bussey, K.J.; Jung, S.; Waibhav, T.; Kim, S.; Salhia, B. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer. PLoS ONE 2016, 11, e0150629. [Google Scholar] [CrossRef]
- Heaton, J.H.; Wood, M.A.; Kim, A.C.; Lima, L.O.; Barlaskar, F.M.; Almeida, M.Q.; Fragoso, M.C.B.V.; Kuick, R.; Lerario, A.M.; Simon, D.P.; et al. Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and β-Catenin. Am. J. Pathol. 2012, 181, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Res. 2013, 41, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, H.; Kübler, E. Systematic Meta-Analysis Identifies Co-Expressed Kinases and GPCRs in Ovarian Cancer Tissues Revealing a Potential for Targeted Kinase Inhibitor Delivery. Pharmaceutics 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A Web-Based Tool for the Analysis of Sets through Venn Diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res. 2008, 36, 901–906. [Google Scholar] [CrossRef]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef]
- Klingler, M.; Hörmann, A.A.; Guggenberg, E.V. Cholecystokinin-2 Receptor Targeting with Radiolabeled Peptides: Current Status and Future Directions. Curr. Med. Chem. 2020, 27, 7112–7132. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Putt, K.S.; Coppola, D.; Leon, M.E.; Khalil, F.K.; Centeno, B.A.; Clark, N.; Stark, V.E.; Morse, D.L.; Low, P.S. Assessment of Cholecystokinin 2 Receptor (CCK2R) in Neoplastic Tissue. Oncotarget 2016, 7, 14605–14615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicitore, A.; Cantone, M.C.; Gaudenzi, G.; Saronni, D.; Carra, S.; Borghi, M.O.; Albertelli, M.; Ferone, D.; Hofland, L.J.; Persani, L.; et al. Efficacy of a Novel Second-Generation Somatostatin-Dopamine Chimera (TBR-065) in Human Medullary Thyroid Cancer: A Preclinical Study. NEN 2021, 111, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Zink, A.; Scherübl, H.; Höflich, M.; Hescheler, J.; Raue, F. Adenosine A1-Receptors Inhibit CAMP and Ca2+ Mediated Calcitonin Secretion in C-Cells. Horm. Metab. Res. 1995, 27, 408–414. [Google Scholar] [CrossRef]
- Richter, G.H.S.; Fasan, A.; Hauer, K.; Grunewald, T.G.P.; Berns, C.; Rössler, S.; Naumann, I.; Staege, M.S.; Fulda, S.; Esposito, I.; et al. G-Protein Coupled Receptor 64 Promotes Invasiveness and Metastasis in Ewing Sarcomas through PGF and MMP1. J. Pathol. 2013, 230, 70–81. [Google Scholar] [CrossRef]
- Peeters, M.C.; Fokkelman, M.; Boogaard, B.; Egerod, K.L.; van de Water, B.; IJzerman, A.P.; Schwartz, T.W. The Adhesion G Protein-Coupled Receptor G2 (ADGRG2/GPR64) Constitutively Activates SRE and NFκB and Is Involved in Cell Adhesion and Migration. Cell. Signal. 2015, 27, 2579–2588. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, X.; Wu, M.; Guan, Z.; Su, X.; Chen, S.; Wang, H.; Teng, L. GPRC5A: An Emerging Biomarker in Human Cancer. Biomed Res. Int. 2018, 2018, 1823726. [Google Scholar] [CrossRef]
- Ulivieri, A.; Lavra, L.; Dominici, R.; Giacomelli, L.; Brunetti, E.; Sciacca, L.; Trovato, M.; Barresi, G.; Foukakis, T.; Jia-Jing, L.; et al. Frizzled-1 Is down-Regulated in Follicular Thyroid Tumours and Modulates Growth and Invasiveness. J. Pathol. 2008, 215, 87–96. [Google Scholar] [CrossRef]
- Sheils, O.M.; Sweeney, E.C. TSH Receptor Status of Thyroid Neoplasms—TaqMan RT-PCR Analysis of Archival Material. J. Pathol. 1999, 188, 87–92. [Google Scholar] [CrossRef]
- Elston, M.S.; Gill, A.J.; Conaglen, J.V.; Clarkson, A.; Shaw, J.M.; Law, A.J.J.; Cook, R.J.; Little, N.S.; Clifton-Bligh, R.J.; Robinson, B.G.; et al. Wnt Pathway Inhibitors Are Strongly Down-Regulated in Pituitary Tumors. Endocrinology 2008, 149, 1235–1242. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Jian, F.; Jiang, H.; Sun, Y.; Pan, S.; Gu, C.; Chen, X.; Wang, W.; Ning, G.; Bian, L.; et al. Decreased Expression of SFRP2 Promotes Development of the Pituitary Corticotroph Adenoma by Upregulating Wnt Signaling. Int. J. Oncol. 2018, 52, 1934–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Bai, J.; Li, Z.; Wang, F.; Cao, L.; Liu, C.; Yu, S.; Yu, G.; Zhang, Y. Low Expression of Secreted Frizzled-Related Protein 4 in Aggressive Pituitary Adenoma. Pituitary 2015, 18, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Tsuno, N.H.; Shuno, Y.; Sasaki, K.; Hongo, K.; Okaji, Y.; Sunami, E.; Kitayama, J.; Takahashi, K.; Nagawa, H. Antiangiogenic Effect of a Selective 5-HT4 Receptor Agonist. J. Surg. Res. 2010, 159, 696–704. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.; Zhang, X.; Li, L.; Xu, X.; Xu, X.; Li, X.; Wang, Z.; Lin, Y.; Li, X.; et al. Zelnorm, an Agonist of 5-Hydroxytryptamine 4-Receptor, Acts as a Potential Antitumor Drug by Targeting JAK/STAT3 Signaling. Investig. New Drugs 2020, 38, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowski, M.; Winczyk, K.; Sledź, B. Immunohistochemical Detection of Angiotensin Receptors AT1 and AT2 in Adrenal Tumors. Folia Histochem. Et Cytobiol. 2008, 46, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Wolf, G.; Harendza, S.; Schroeder, R.; Wenzel, U.; Zahner, G.; Butzmann, U.; Freeman, R.S.; Stahl, R.A.K. Angiotensin II’s Antiproliferative Effects Mediated Through AT2-Receptors Depend On Down-Regulation of SM-20. Lab. Investig. 2002, 82, 1305–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Peacock, S.O.; Lo, C.H.; Heidman, L.M.; Rice, M.A.; Fahrenholtz, C.D.; Greene, A.M.; Magani, F.; Copello, V.A.; Martinez, M.J.; et al. Arginine Vasopressin Receptor 1a Is a Therapeutic Target for Castration-Resistant Prostate Cancer. Sci. Transl. Med. 2019, 11, eaaw4636. [Google Scholar] [CrossRef]
- Mazzocchi, G.; Aragona, F.; Malendowicz, L.K.; Nussdorfer, G.G. PTH and PTH-Related Peptide Enhance Steroid Secretion from Human Adrenocortical Cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, 209–213. [Google Scholar] [CrossRef]
- Gao, X.; Yamazaki, Y.; Tezuka, Y.; Onodera, Y.; Ogata, H.; Omata, K.; Morimoto, R.; Nakamura, Y.; Satoh, F.; Sasano, H. The Crosstalk between Aldosterone and Calcium Metabolism in Primary Aldosteronism: A Possible Calcium Metabolism-Associated Aberrant “Neoplastic” Steroidogenesis in Adrenals. J. Steroid Biochem. Mol. Biol. 2019, 193, 105434. [Google Scholar] [CrossRef]
- Rizk-Rabin, M.; Assie, G.; Rene-Corail, F.; Perlemoine, K.; Hamzaoui, H.; Tissier, F.; Lieberherr, M.; Bertagna, X.; Bertherat, J.; Bouizar, Z. Differential Expression of Parathyroid Hormone–Related Protein in Adrenocortical Tumors: Autocrine/Paracrine Effects on the Growth and Signaling Pathways in H295R Cells. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2275–2285. [Google Scholar] [CrossRef] [Green Version]
- Song, G.J.; Fiaschi-Taesch, N.; Bisello, A. Endogenous Parathyroid Hormone-Related Protein Regulates the Expression of PTH Type 1 Receptor and Proliferation of Vascular Smooth Muscle Cells. Mol. Endocrinol. 2009, 23, 1681–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.W.M.; Goradia, A.; Russell, M.R.; Chalk, A.M.; Milley, K.M.; Baker, E.K.; Danks, J.A.; Slavin, J.L.; Walia, M.; Crimeen-Irwin, B.; et al. Knockdown of PTHR1 in Osteosarcoma Cells Decreases Invasion and Growth and Increases Tumor Differentiation in Vivo. Oncogene 2015, 34, 2922–2933. [Google Scholar] [CrossRef] [PubMed]
- Jonklaas, J.; Sarlis, N.J.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; Magner, J.; et al. Outcomes of Patients with Differentiated Thyroid Carcinoma Following Initial Therapy. Thyroid 2006, 16, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Marchalant, Y.; Brownjohn, P.W.; Bonnet, A.; Kleffmann, T.; Ashton, J.C. Validating Antibodies to the Cannabinoid CB2 Receptor. J. Histochem. Cytochem. 2014, 62, 395–404. [Google Scholar] [CrossRef]
- Kaiser, F.; Morawski, M.; Krohn, K.; Rayes, N.; Hsiao, C.-C.; Quaas, M.; Aust, G. Adhesion GPCR GPR56 Expression Profiling in Human Tissues. Cells 2021, 10, 3557. [Google Scholar] [CrossRef]
- Koussounadis, A.; Langdon, S.P.; Um, I.H.; Harrison, D.J.; Smith, V.A. Relationship between Differentially Expressed MRNA and MRNA-Protein Correlations in a Xenograft Model System. Sci. Rep. 2015, 5, 10775. [Google Scholar] [CrossRef] [Green Version]
Tumor Type | Series | Contributors | Samples | Platforms |
---|---|---|---|---|
Medullary Thyroid Cancer | GSE27155 | Giordano TJ [20,21] | 2 MTC vs. 4 normal | GPL96: Affymetrix Human Genome U133A Array |
Pituitary Neuroendocrine Tumor | GSE36314 | Oyesiku NM [22] | 4 PitNET vs. 3 normal | GPL8300: Affymetrix Human Genome U95 Version 2 Array |
GSE119063 | Wu Z (unpublished) | 5 PitNET vs. 4 normal | GPL13607: Agilent-028004 SurePrint G3 Human GE 8 × 60 K Microarray | |
GSE51618 | Feng J (unpublished) | 8 PitNET vs. 3 normal | GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F | |
GSE26966 | Donsom AM [23] | 14 PitNET vs. 9 normal | GPL570: Affymetrix Human Genome U133 Plus 2.0 Array | |
GSE63357 | Barry S [24,25,26] | 16 PitNET vs. 5 normal | GPL570: Affymetrix Human Genome U133 Plus 2.0 Array | |
Pheochromocytoma | GSE50442 | Shankavaram U (unpublished) | 3 PHEO vs. 8 normal | GPL6244: Affymetrix Human Gene 1.0 ST Array |
GSE39716 | Shankavaram U [27,28,29] | 21 PHEO vs. 8 normal | GPL6244: Affymetrix Human Gene 1.0 ST Array | |
GSE19422 | López-Jiménez E [30] | 61 PHEO vs. 6 normal | GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F | |
GSE60459 | Choi Y-L (unpublished) | 2 PHEO vs. 3 normal | GPL13607: Agilent-028004 SurePrint G3 Human GE 8x60K Microarray | |
Paraganglioma | GSE50442 | Shankavaram U (unpublished) | 4 PGL vs. 8 normal | GPL6244: Affymetrix Human Gene 1.0 ST Array |
GSE39716 | Shankavaram U [27,28,29] | 24 PGL vs. 8 normal | GPL6244: Affymetrix Human Gene 1.0 ST Array | |
GSE19422 | López-Jiménez E [30] | 23 PGL vs. 6 normal | GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F | |
GSE60459 | Choi Y-L (unpublished) | 10 PGL vs. 3 normal | GPL13607: Agilent-028004 SurePrint G3 Human GE 8x60K Microarray | |
GSE90713 | Fraber JM (unpublished) | 57 ACC vs. 4 normal | GPL15207: Affymetrix Human Gene Expression Array | |
GSE14922 | Szabó PM [31] | 4 ACC vs. 4 normal | GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F | |
GSE12368 | Soon PS [32] | 12 ACC vs. 6 normal | GPL570: Affymetrix Human Genome U133 Plus 2.0 Array | |
GSE19750 | Bussey KJ [33,34] | 44 ACC vs. 4 normal | GPL570: Affymetrix Human Genome U133 Plus 2.0 Array | |
GSE33371 | Heanton JH [35] | 33 ACC vs. 10 normal | GPL570: Affymetrix Human Genome U133 Plus 2.0 Array |
GPCR Gene Symbol | Log2FC | Adj-p-Val |
---|---|---|
TSHR | −2.22 | 0.0001 |
GPRC5A | −1.93 | 0.0002 |
OPN3 | −0.98 | 0.0011 |
FZD1 | −0.89 | 0.0005 |
ADGRE5 | −0.84 | 0.0014 |
F2RL1 | −0.67 | 0.0043 |
FZD2 | −0.56 | 0.0041 |
CCKBR | 0.59 | 0.0025 |
DRD2 | 0.62 | 0.0030 |
ADORA2B | 0.64 | 0.0029 |
CELSR3 | 0.80 | 0.0032 |
GPR19 | 0.84 | 0.0021 |
ADGRG2 | 1.42 | 0.0049 |
LGR5 | 1.43 | 0.0003 |
GPCR | Mode of Action | Main Indication(s) |
---|---|---|
ADORA2B | ||
Caffeine | Antagonist | pulmonary complications of premature birth |
Enprofylline | Antagonist | Asthma |
Theophylline | Antagonist | Asthma |
Adenosine | Agonist | supraventricular tachycardia |
AVPR1A | ||
Atosiban | Antagonist | pre-term labour |
Conivaptan | Antagonist | SIADH |
Felypressin | Agonist | diabetes insipidus |
Terlipressin | Agonist | bleeding caused by esophageal varices. |
CCKBR | ||
Pentagastrin | Agonist | evaluation of gastric acid secretory function |
DRD2 | ||
>40 Drugs | Antagonist | antipsychotic agent |
Alizapride | Antagonist | anti-emetic |
Bromopride | Antagonist | anti-emetic |
Domperidone | Antagonist | anti-emetic |
Droperidol | Antagonist | anti-emetic |
Metoclopramide | Antagonist | anti-emetic |
8 Drugs * | Agonist | Parkinson’s disease |
Cabergoline | Agonist | pituitary adenoma |
Quinagolide | Agonist | pituitary adenoma |
HTR4 | ||
Vilazodone | Agonist | Depressive disorder |
Mosapride | Agonist | Gastroprokinetic agent |
Cisapride | Agonist | Gastroprokinetic agent |
Prucalopride | Agonist | Gastroprokinetic agent |
Cinitapride | Agonist | Gastroprokinetic agent |
Tegaserod | Agonist | Gastroprokinetic agent |
Metoclopramide | Antagonist | anti-emetic |
MC2R | ||
Corticotropin | Agonist | diagnosis agent |
Tetracosactide | Agonist | diagnosis agent |
PTGER2 | ||
Alprostadil | Agonist | erectile dysfunction |
Dinoprostone | Agonist | labor induction |
Misoprostol | Agonist | gastric ulcer |
Gemeprost | Agonist | pregnancy termination |
Limaprost | Agonist | Ischemic ulcer |
PTH1R | ||
Abaloparatide | Agonist | Osteoporosis |
Parathyroid hormone | Agonist | Hypoparathyroidism |
Teriparatide | Agonist | Osteoporosis |
SSTR1 | ||
Octreotide | Agonist | NeuroEndocrine tumor |
Pasireotide | Agonist | NeuroEndocrine tumors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suteau, V.; Munier, M.; Ben Boubaker, R.; Wery, M.; Henrion, D.; Rodien, P.; Briet, C. Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets? Cells 2022, 11, 703. https://doi.org/10.3390/cells11040703
Suteau V, Munier M, Ben Boubaker R, Wery M, Henrion D, Rodien P, Briet C. Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets? Cells. 2022; 11(4):703. https://doi.org/10.3390/cells11040703
Chicago/Turabian StyleSuteau, Valentine, Mathilde Munier, Rym Ben Boubaker, Méline Wery, Daniel Henrion, Patrice Rodien, and Claire Briet. 2022. "Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets?" Cells 11, no. 4: 703. https://doi.org/10.3390/cells11040703
APA StyleSuteau, V., Munier, M., Ben Boubaker, R., Wery, M., Henrion, D., Rodien, P., & Briet, C. (2022). Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets? Cells, 11(4), 703. https://doi.org/10.3390/cells11040703