Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions
Abstract
:1. Introduction
2. Oviductal Function and Pregnancy Establishment
3. Progesterone Action
4. Immunomodulatory Responses and Regulatory Pathways
4.1. Innate Immune System
4.2. Adaptive Immune System
5. Immune Cells and Epithelial Immunity in Human Fallopian Tubes
6. Progesterone Action on Immune Responses
6.1. P4 and Innate Immune System
6.2. P4 and Adaptive Immune System
7. Progesterone Regulation of Inflammation during Pregnancy
7.1. P4 and Its Effects on Immune Responses in the Oviduct
7.1.1. Oviductal Cells
7.1.2. Sperm
7.1.3. Embryos
8. Progesterone and Oviductal Inflammation in Pathological Conditions
8.1. Chlamydia Infection
8.2. Hydrosalpinx
8.3. Ectopic Pregnancy
9. Perspectives and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barton, B.E.; Herrera, G.G.; Anamthathmakula, P.; Rock, J.K.; Willie, A.; Harris, E.A.; Takemaru, K.I.; Winuthayanon, W. Roles of steroid hormones in oviductal function. Reproduction 2020, 159, R125–R137. [Google Scholar] [CrossRef] [PubMed]
- Winuthayanon, W.; Bernhardt, M.L.; Padilla-Banks, E.; Myers, P.H.; Edin, M.L.; Lih, F.B.; Hewitt, S.C.; Korach, K.S.; Williams, C.J. Oviductal estrogen receptor alpha signaling prevents protease-mediated embryo death. Elife 2015, 4, e10453. [Google Scholar] [CrossRef] [PubMed]
- McGlade, E.A.; Herrera, G.G.; Stephens, K.K.; Olsen, S.L.W.; Winuthayanon, S.; Guner, J.; Hewitt, S.C.; Korach, K.S.; DeMayo, F.J.; Lydon, J.P.; et al. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. FASEB J. 2021, 35, e21563. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, R.; Chenoweth, P.J.; Drost, M.; LeClear, C.T.; MacCubbin, M.; Dutton, J.T.; Suarez, S.S. Characterization of the oviductal sperm reservoir in cattle. Biol. Reprod. 1995, 53, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.H.; Flechon, B.; Flechon, J.E. Pre- and peri-ovulatory distribution of viable spermatozoa in the pig oviduct: A scanning electron microscope study. Tissue Cell 1987, 19, 423–436. [Google Scholar] [CrossRef]
- Hafez, E.S.E.; Blandau, R.J. The Mammalian Oviduct. Comparative Biology and Methodology; University of Chicago Press: Chicago, IL, USA; London, UK, 1969. [Google Scholar]
- Lee, S.H.; Oh, H.J.; Kim, M.J.; Kim, G.A.; Choi, Y.B.; Jo, Y.K.; Setyawan, E.M.N.; Lee, B.C. Oocyte maturation-related gene expression in the canine oviduct, cumulus cells, and oocytes and effect of co-culture with oviduct cells on in vitro maturation of oocytes. J. Assist. Reprod. Genet. 2017, 34, 929–938. [Google Scholar] [CrossRef]
- Yeste, M.; Lloyd, R.E.; Badia, E.; Briz, M.; Bonet, S.; Holt, W.V. Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro. Anim. Reprod. Sci. 2009, 113, 263–278. [Google Scholar] [CrossRef]
- Ferraz, M.; Carothers, A.; Dahal, R.; Noonan, M.J.; Songsasen, N. Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci. Rep. 2019, 9, 9484. [Google Scholar] [CrossRef]
- Lopera-Vasquez, R.; Hamdi, M.; Fernandez-Fuertes, B.; Maillo, V.; Beltran-Brena, P.; Calle, A.; Redruello, A.; Lopez-Martin, S.; Gutierrez-Adan, A.; Yanez-Mo, M.; et al. Extracellular Vesicles from BOEC in In Vitro Embryo Development and Quality. PLoS ONE 2016, 11, e0148083. [Google Scholar] [CrossRef]
- Yagel, S.; Casper, R.F.; Powell, W.; Parhar, R.S.; Lala, P.K. Characterization of pure human first-trimester cytotrophoblast cells in long-term culture: Growth pattern, markers, and hormone production. Am. J. Obstet. Gynecol. 1989, 160, 938–945. [Google Scholar] [CrossRef]
- Shah, N.M.; Imami, N.; Johnson, M.R. Progesterone Modulation of Pregnancy-Related Immune Responses. Front. Immunol. 2018, 9, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, R.M. Renewal of Oviduct Cilia During the Menstrual Cycle of the Rhesus Monkey. Fertil. Steril. 1969, 20, 599–611. [Google Scholar] [CrossRef]
- Verhage, H.G.; Bareither, M.L.; Jaffe, R.C.; Akbar, M. Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am. J. Anat. 1979, 156, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Bylander, A.; Nutu, M.; Wellander, R.; Goksör, M.; Billig, H.; Larsson, D.G.J. Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube. Reprod. Biol. Endocrinol. 2010, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, A.; Sakuma, K.; Shimamoto, C.; Ito, S.; Nakano, T.; Daikoku, E.; Ohmichi, M.; Ushiroyama, T.; Ueki, M.; Kuwabara, H.; et al. Ciliary beat frequency controlled by oestradiol and progesterone during ovarian cycle in guinea-pig Fallopian tube. Exp. Physiol. 2010, 95, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Saridogan, E.; Smutna, S.; Habib, A.M.; Djahanbakhch, O. The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum. Reprod. 1998, 13, 2991–2994. [Google Scholar] [CrossRef] [Green Version]
- Bylander, A.; Lind, K.; Goksör, M.; Billig, H.; Larsson, D.G.J. The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone. Reprod. Biol. Endocrinol. 2013, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, Y.-T.; Zhu, Q.; Zhang, H.-Y.; Huang, Z.; Zhang, D.; Qi, H.; Liang, G.-L.; He, X.-Q.; Wang, X.-F.; et al. TRPV4 is involved in levonorgestrel-induced reduction in oviduct ciliary beating. J. Pathol. 2019, 248, 77–87. [Google Scholar] [CrossRef]
- Akison, L.K.; Boden, M.J.; Kennaway, D.J.; Russell, D.L.; Robker, R.L. Progesterone receptor-dependent regulation of genes in the oviducts of female mice. Physiol. Genom. 2014, 46, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Wånggren, K.; Stavreus-Evers, A.; Olsson, C.; Andersson, E.; Gemzell-Danielsson, K. Regulation of muscular contractions in the human Fallopian tube through prostaglandins and progestagens. Hum. Reprod. 2008, 23, 2359–2368. [Google Scholar] [CrossRef] [Green Version]
- Yanagimachi, R. In vitro capacitation of hamster spermatozoa by follicular fluid. Reproduction 1969, 18, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Winuthayanon, W. Oviduct: Roles in fertilization and early embryo development. J. Endocrinol. 2017, 232, R1–R26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atri, C.; Guerfali, F.Z.; Laouini, D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int. J. Mol. Sci. 2018, 19, 1801. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Chen, Y.; Wang, H.Y.; Wang, R.-F. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum. Vaccines Immunother. 2014, 10, 3270–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehrer, R.I.; Bevins, C.L.; Ganz, T. Chapter 6—Defensins and Other Antimicrobial Peptides and Proteins. In Mucosal Immunology, 3rd ed.; Mestecky, J., Lamm, M.E., McGhee, J.R., Bienenstock, J., Mayer, L., Strober, W., Eds.; Academic Press: Burlington, VT, USA, 2005; pp. 95–110. [Google Scholar] [CrossRef]
- Schleimer, R.P.; Kato, A.; Kern, R.; Kuperman, D.; Avila, P.C. Epithelium: At the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 2007, 120, 1279–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, M.; Jamora, C.; Havran, W.; Hayday, A. Epithelial decision makers: In search of the ‘epimmunome’. Nat. Immunol. 2010, 11, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, M.J.; Kelvin, D.J. Cytokines and chemokines--their receptors and their genes: An overview. Adv. Exp. Med. Biol. 2003, 520, 8–32. [Google Scholar] [CrossRef]
- Berger, A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef] [Green Version]
- Hall, O.J.; Nachbagauer, R.; Vermillion, M.S.; Fink, A.L.; Phuong, V.; Krammer, F.; Klein, S.L. Progesterone-Based Contraceptives Reduce Adaptive Immune Responses and Protection against Sequential Influenza A Virus Infections. J. Virol. 2017, 91, e02160-16. [Google Scholar] [CrossRef] [Green Version]
- Hall, O.J.; Klein, S.L. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol. 2017, 10, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Wira, C.R.; Fahey, J.V.; Sentman, C.L.; Pioli, P.A.; Shen, L. Innate and adaptive immunity in female genital tract: Cellular responses and interactions. Immunol. Rev. 2005, 206, 306–335. [Google Scholar] [CrossRef] [PubMed]
- Hickey, D.K.; Patel, M.V.; Fahey, J.V.; Wira, C.R. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: Stratification and integration of immune protection against the transmission of sexually transmitted infections. J. Reprod. Immunol. 2011, 88, 185–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givan, A.L.; White, H.D.; Stern, J.E.; Colby, E.; Guyre, P.M.; Wira, C.R.; Gosselin, E.J. Flow Cytometric Analysis of Leukocytes in the Human Female Reproductive Tract: Comparison of Fallopian Tube, Uterus, Cervix, and Vagina. Am. J. Reprod. Immunol. 1997, 38, 350–359. [Google Scholar] [CrossRef]
- Ardighieri, L.; Lonardi, S.; Moratto, D.; Facchetti, F.; Shih, I.-M.; Vermi, W.; Kurman, R.J. Characterization of the Immune Cell Repertoire in the Normal Fallopian Tube. Int. J. Gynecol. Pathol. 2014, 33, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Artibani, M.; Alsaadi, A.; Wietek, N.; Morotti, M.; Shi, T.; Zhong, Z.; Santana Gonzalez, L.; El-Sahhar, S.; KaramiNejadRanjbar, M.; et al. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell 2020, 37, 226–242.e7. [Google Scholar] [CrossRef]
- Yarbrough, V.L.; Winkle, S.; Herbst-Kralovetz, M.M. Antimicrobial peptides in the female reproductive tract: A critical component of the mucosal immune barrier with physiological and clinical implications. Hum. Reprod. Update 2015, 21, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Ota, Y.; Shimoya, K.; Zhang, Q.; Moriyama, A.; Chin, R.; Tenma, K.; Kimura, T.; Koyama, M.; Azuma, C.; Murata, Y. The expression of secretory leukocyte protease inhibitor (SLPI) in the fallopian tube: SLPI protects the acrosome reaction of sperm from inhibitory effects of elastase. Hum. Reprod. 2002, 17, 2517–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibbetts, T.A.; Conneely, O.M.; O’Malley, B.W. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol. Reprod. 1999, 60, 1158–1165. [Google Scholar] [CrossRef]
- Fukuyama, A.; Tanaka, K.; Kakizaki, I.; Kasai, K.; Chiba, M.; Nakamura, T.; Mizunuma, H. Anti-inflammatory effect of proteoglycan and progesterone on human uterine cervical fibroblasts. Life Sci. 2012, 90, 484–488. [Google Scholar] [CrossRef]
- Aisemberg, J.; Vercelli, C.A.; Bariani, M.V.; Billi, S.C.; Wolfson, M.L.; Franchi, A.M. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone. PLoS ONE 2013, 8, e56161. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.; Hunt, J.S. Sex steroid hormones and macrophage function. Life Sci. 1996, 59, 1–14. [Google Scholar] [CrossRef]
- Starkey, P.M.; Clover, L.M.; Rees, M.C.P. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991, 39, 203–207. [Google Scholar] [CrossRef]
- Yagel, S.; Hurwitz, A.; Rosenn, B.; Keizer, N. Progesterone Enhancement of Prostaglandin E2 Production by Fetal Placental Macrophages. Am. J. Reprod. Immunol. Microbiol. 1987, 14, 45–48. [Google Scholar] [CrossRef]
- Lu, J.; Reese, J.; Zhou, Y.; Hirsch, E. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells. J. Endocrinol. 2015, 224, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressing, G.E.; Goldberg, J.E.; Charles, N.J.; Schwertfeger, K.L.; Lange, C.A. Membrane progesterone receptor expression in mammalian tissues: A review of regulation and physiological implications. Steroids 2011, 76, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, H.O.D.; Jones, R.L.; Lea, R.G.; Drudy, T.A.; Kelly, R.W.; Williams, A.R.W.; Baird, D.T. Role of Inflammatory Mediators in Human Endometrium during Progesterone Withdrawal and Early Pregnancy1. J. Clin. Endocrinol. Metab. 1999, 84, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; Seamark, R. Granulocyte-macrophage colony stimulating factor (GM-CSF): One of a family of epithelial cell-derived cytokines in the preimplantation uterus. Reprod. Fertil. Dev. 1992, 4, 435–448. [Google Scholar] [CrossRef]
- Ndiaye, K.; Poole, D.H.; Walusimbi, S.; Cannon, M.J.; Toyokawa, K.; Maalouf, S.W.; Dong, J.; Thomas, P.; Pate, J.L. Progesterone effects on lymphocytes may be mediated by membrane progesterone receptors. J. Reprod. Immunol. 2012, 95, 15–26. [Google Scholar] [CrossRef]
- Butts, C.L.; Bowers, E.; Horn, J.C.; Shukair, S.A.; Belyavskaya, E.; Tonelli, L.; Sternberg, E.M. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend. Med. 2008, 5, 434–447. [Google Scholar] [CrossRef] [Green Version]
- Marey, M.A.; Yousef, M.S.; Kowsar, R.; Hambruch, N.; Shimizu, T.; Pfarrer, C.; Miyamoto, A. Local immune system in oviduct physiology and pathophysiology: Attack or tolerance? Domest. Anim. Endocrinol. 2016, 56, S204–S211. [Google Scholar] [CrossRef]
- Kowsar, R.; Hambruch, N.; Liu, J.; Shimizu, T.; Pfarrer, C.; Miyamoto, A. Regulation of innate immune function in bovine oviduct epithelial cells in culture: The homeostatic role of epithelial cells in balancing Th1/Th2 response. J. Reprod. Dev. 2013, 59, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Butts, C.L.; Shukair, S.A.; Duncan, K.M.; Bowers, E.; Horn, C.; Belyavskaya, E.; Tonelli, L.; Sternberg, E.M. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 2007, 19, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.O.D.; Kelly, R.W.; Brenner, R.M.; Baird, D.T. The endocrinology of menstruation—A role for the immune system. Clin. Endocrinol. 2001, 55, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Ismail, P.M.; Amato, P.; Soyal, S.M.; DeMayo, F.J.; Conneely, O.M.; O’Malley, B.W.; Lydon, J.P. Progesterone involvement in breast development and tumorigenesis—as revealed by progesterone receptor “knockout” and “knockin” mouse models. Steroids 2003, 68, 779–787. [Google Scholar] [CrossRef]
- Mingjia, L.; Short, R. How Oestrogen or Progesterone might Change a woman’s susceptibility to HIV-1 infection. Aust. N. Z. J. Obstet. Gynaecol. 2002, 42, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Khasar, S.G.; Dina, O.A.; Green, P.G.; Levine, J.D. Estrogen regulates adrenal medullary function producing sexual dimorphism in nociceptive threshold and beta-adrenergic receptor-mediated hyperalgesia in the rat. Eur. J. Neurosci. 2005, 21, 3379–3386. [Google Scholar] [CrossRef]
- Jones, L.A.; Kreem, S.; Shweash, M.; Paul, A.; Alexander, J.; Roberts, C.W. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J. Immunol. 2010, 185, 4525–4534. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Fahey, J.V.; Ghosh, M.; Patel, M.V.; Hickey, D.K.; Ochiel, D.O. Sex hormone regulation of innate immunity in the female reproductive tract: The role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 2010, 63, 544–565. [Google Scholar] [CrossRef] [Green Version]
- Szekeres-Bartho, J.; Wegmann, T.G. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J. Reprod. Immunol. 1996, 31, 81–95. [Google Scholar] [CrossRef]
- Sabat, R.; Grutz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Keller, N.R.; Sierra-Rivera, E.; Eisenberg, E.; Osteen, K.G. Progesterone exposure prevents matrix metalloproteinase-3 (MMP-3) stimulation by interleukin-1alpha in human endometrial stromal cells. J. Clin. Endocrinol. Metab. 2000, 85, 1611–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, D.B.; Janowski, B.A.; Corey, D.R.; Mendelson, C.R. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol. Endocrinol. 2006, 20, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Hamano, N.; Terada, N.; Maesako, K.; Hohki, G.; Ito, T.; Yamashita, T.; Konno, A. Effect of Female Hormones on the Production of IL-4 and IL-13 from Peripheral Blood Mononuclear Cells. Acta Oto-Laryngol. 1998, 118, 27–31. [Google Scholar] [CrossRef]
- AbdulHussain, G.; Azizieh, F.; Makhseed, M.; Raghupathy, R. Effects of Progesterone, Dydrogesterone and Estrogen on the Production of Th1/Th2/Th17 Cytokines by Lymphocytes from Women with Recurrent Spontaneous Miscarriage. J. Reprod. Immunol. 2020, 140, 103132. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R.; Al Mutawa, E.; Makhseed, M.; Azizieh, F.; Szekeres-Bartho, J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. BJOG 2005, 112, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R.; Al-Azemi, M. Modulation of Cytokine Production by the Dydrogesterone Metabolite Dihydrodydrogesterone. Am. J. Reprod. Immunol. 2015, 74, 419–426. [Google Scholar] [CrossRef]
- Loudon, J.A.Z.; Elliott, C.L.; Hills, F.; Bennett, P.R. Progesterone Represses Interleukin-8 and Cyclo-Oxygenase-2 in Human Lower Segment Fibroblast Cells and Amnion Epithelial Cells1. Biol. Reprod. 2003, 69, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Peltier, M.; Berlin, Y.; Day, B.; Smulian, J. Effect of progesterone on interleukin-8 production by endocervical and vaginal epithelial cells. Am. J. Obstet. Gynecol. 2005, 193, S61. [Google Scholar] [CrossRef]
- Guo, B.; Han, B.-C.; Tian, Z.; Zhao, T.-Y.; Zeng, L.; Yang, Z.-M.; Yue, Z.-P. Expression and Hormonal Regulation of IL-11Rα in Canine Uterus During Early Pregnancy. Reprod. Domest. Anim. 2009, 44, 779–782. [Google Scholar] [CrossRef]
- Par, G.; Geli, J.; Kozma, N.; Varga, P.; Szekeres-Bartho, J. Progesterone Regulates IL12 Expression in Pregnancy Lymphocytes by Inhibiting Phospholipase A2. Am. J. Reprod. Immunol. 2003, 49, 1–5. [Google Scholar] [CrossRef]
- Okada, H.; Nakajima, T.; Sanezumi, M.; Ikuta, A.; Yasuda, K.; Kanzaki, H. Progesterone Enhances Interleukin-15 Production in Human Endometrial Stromal Cells in Vitro1. J. Clin. Endocrinol. Metab. 2000, 85, 4765–4770. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, H.; Li, B.; Liu, M.; Liu, D.; Deng, M.; Wang, Y.; Xia, X.; Jiang, Q.; Chen, D. Effects of human chorionic gonadotropin, estradiol, and progesterone on interleukin-18 expression in human decidual tissues. Gynecol. Endocrinol. 2017, 33, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-M.; Chen, D.-B.; Le, S.-P.; Harper, M.J.K. Differential hormonal regulation of leukemia inhibitory factor (LIF) in rabbit and mouse uterus. Mol. Reprod. Dev. 1996, 43, 470–476. [Google Scholar] [CrossRef]
- Franco, H.L.; Rubel, C.A.; Large, M.J.; Wetendorf, M.; Fernandez-Valdivia, R.; Jeong, J.-W.; Spencer, T.E.; Behringer, R.R.; Lydon, J.P.; DeMayo, F.J. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J. 2012, 26, 1218–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teilmann, S.C.; Clement, C.A.; Thorup, J.; Byskov, A.G.; Christensen, S.T. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J. Endocrinol. 2006, 191, 525–535. [Google Scholar] [CrossRef]
- Nutu, M.; Weijdegard, B.; Thomas, P.; Bergh, C.; Thurin-Kjellberg, A.; Pang, Y.; Billig, H.; Larsson, D.G. Membrane progesterone receptor gamma: Tissue distribution and expression in ciliated cells in the fallopian tube. Mol. Reprod. Dev. 2007, 74, 843–850. [Google Scholar] [CrossRef]
- Hess, A.P.; Talbi, S.; Hamilton, A.E.; Baston-Buest, D.M.; Nyegaard, M.; Irwin, J.C.; Barragan, F.; Kruessel, J.S.; Germeyer, A.; Giudice, L.C. The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reprod. Biomed. Online 2013, 27, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Kowsar, R.; Hambruch, N.; Marey, M.A.; Liu, J.; Shimizu, T.; Pfarrer, C.; Miyamoto, A. Evidence for a novel, local acute-phase response in the bovine oviduct: Progesterone and lipopolysaccharide up-regulate alpha 1-acid-glycoprotein expression in epithelial cells in vitro. Mol. Reprod. Dev. 2014, 81, 861–870. [Google Scholar] [CrossRef]
- Lydon, J.P.; DeMayo, F.J.; Funk, C.R.; Mani, S.K.; Hughes, A.R.; Montgomery, C.A., Jr.; Shyamala, G.; Conneely, O.M.; O’Malley, B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995, 9, 2266–2278. [Google Scholar] [CrossRef] [Green Version]
- Yousef, M.S.; Abd-Elhafeez, H.H.; Talukder, A.K.; Miyamoto, A. Ovulatory follicular fluid induces sperm phagocytosis by neutrophils, but oviductal fluid around oestrus suppresses its inflammatory effect in the buffalo oviduct in vitro. Mol. Reprod. Dev. 2019, 86, 835–846. [Google Scholar] [CrossRef]
- Oren-Benaroya, R.; Orvieto, R.; Gakamsky, A.; Pinchasov, M.; Eisenbach, M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 2008, 23, 2339–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, P.V.; Botchkina, I.L.; Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011, 471, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Schjenken, J.E.; Robertson, S.A. The Female Response to Seminal Fluid. Physiol. Rev. 2020, 100, 1077–1117. [Google Scholar] [CrossRef]
- Yousef, M.S.; Marey, M.A.; Hambruch, N.; Hayakawa, H.; Shimizu, T.; Hussien, H.A.; Abdel-Razek, A.K.; Pfarrer, C.; Miyamoto, A. Sperm Binding to Oviduct Epithelial Cells Enhances TGFB1 and IL10 Expressions in Epithelial Cells as Well as Neutrophils In Vitro: Prostaglandin E2 As a Main Regulator of Anti-Inflammatory Response in the Bovine Oviduct. PLoS ONE 2016, 11, e0162309. [Google Scholar] [CrossRef] [Green Version]
- Gardela, J.; Jauregi-Miguel, A.; Martinez, C.A.; Rodriguez-Martinez, H.; Lopez-Bejar, M.; Alvarez-Rodriguez, M. Semen Modulates Inflammation and Angiogenesis in the Reproductive Tract of Female Rabbits. Animals 2020, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, J.J.; Schjenken, J.E.; Chin, P.Y.; Care, A.S.; Jasper, M.J.; Robertson, S.A. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 2014, 111, 2200–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillo, V.A.; Akthar, I.; Fiorenza, M.F.; Takahashi, K.I.; Sasaki, M.; Marey, M.A.; Suarez, S.S.; Miyamoto, A. Toll-like receptor 2 mediates the immune response of the bovine oviductal ampulla to sperm binding. Mol. Reprod. Dev. 2020, 87, 1059–1069. [Google Scholar] [CrossRef]
- Zhang, C.; Murphy, B.D. Progesterone is critical for the development of mouse embryos. Endocrine 2014, 46, 615–623. [Google Scholar] [CrossRef]
- WHO. Sexually Transmitted Infections (STIs). Available online: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis) (accessed on 19 January 2022).
- CDC. Reported STDs Reach All-Time High for 6th Consecutive Year. Available online: https://www.cdc.gov/nchhstp/newsroom/2021/2019-STD-surveillance-report.html (accessed on 19 January 2022).
- CDC. Sexually Transmitted Disease Surveillance 2018. Available online: https://www.cdc.gov/std/stats18/figures/49.htm (accessed on 19 January 2022).
- Panchanadeswaran, S.; Johnson, S.C.; Mayer, K.H.; Srikrishnan, A.K.; Sivaran, S.; Zelaya, C.E.; Go, V.F.; Solomon, S.; Bentley, M.E.; Celentano, D.D. Gender differences in the prevalence of sexually transmitted infections and genital symptoms in an urban setting in southern India. Sex. Transm. Infect. 2006, 82, 491–495. [Google Scholar] [CrossRef] [Green Version]
- FHI360. Sexually Transmitted Diseases—Women at Risk. Available online: https://www.fhi360.org/sites/default/files/webpages/Modules/STD/s1pg22.htm (accessed on 19 January 2022).
- Wira, C.R.; Fahey, J.V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 2008, 22, 1909–1917. [Google Scholar] [CrossRef]
- Marx, P.A.; Spira, A.I.; Gettie, A.; Dailey, P.J.; Veazey, R.S.; Lackner, A.A.; Mahoney, C.J.; Miller, C.J.; Claypool, L.E.; Ho, D.D.; et al. Progesterone implants enhance SIV vaginal transmission and early virus load. Nat. Med. 1996, 2, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Eggert-Kruse, W. Chlamydia trachomatis: Impact on human reproduction. Hum. Reprod. Update 1999, 5, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.D.; Eddy, C.A.; Gibbs, R.S.; Schachter, J.; Holden, A.E.; Pauerstein, C.J. Antibodies to Chlamydia trachomatis and risk for tubal pregnancy. Am. J. Obstet. Gynecol. 1988, 159, 942–946. [Google Scholar] [CrossRef]
- Licciardi, F.; Grifo, J.A.; Rosenwaks, Z.; Witkin, S.S. Relation between antibodies toChlamydia trachomatis and spontaneous abortion following in vitro fertilization. J. Assist. Reprod. Genet. 1992, 9, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Ajonuma, L.C.; Ng, E.H.Y.; Chan, H.C. New insights into the mechanisms underlying hydrosalpinx fluid formation and its adverse effect on IVF outcome. Hum. Reprod. Update 2002, 8, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Tuffrey, M.; Falder, P.; Gale, J.; Taylor-Robinson, D. Salpingitis in mice induced by human strains of Chlamydia trachomatis. Br. J. Exp. Pathol. 1986, 67, 605–616. [Google Scholar]
- Kintner, J.; Schoborg, R.V.; Wyrick, P.B.; Hall, J.V. Progesterone antagonizes the positive influence of estrogen on Chlamydia trachomatis serovar E in an Ishikawa/SHT-290 co-culture model. Pathog. Dis. 2015, 73, ftv015. [Google Scholar] [CrossRef] [Green Version]
- Amirshahi, A.; Wan, C.; Beagley, K.; Latter, J.; Symonds, I.; Timms, P. Modulation of the Chlamydia trachomatisIn vitro transcriptome response by the sex hormones estradiol and progesterone. BMC Microbiol. 2011, 11, 150. [Google Scholar] [CrossRef] [Green Version]
- Kaushic, C.; Murdin, A.D.; Underdown, B.J.; Wira, C.R. Chlamydia trachomatis Infection in the Female Reproductive Tract of the Rat: Influence of Progesterone on Infectivity and Immune Response. Infect. Immun. 1998, 66, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Kaushic, C.; Zhou, F.; Murdin, A.D.; Wira, C.R. Effects of Estradiol and Progesterone on Susceptibility and Early Immune Responses to Chlamydia trachomatis Infection in the Female Reproductive Tract. Infect. Immun. 2000, 68, 4207–4216. [Google Scholar] [CrossRef] [Green Version]
- Strandell, A.; Waldenström, U.; Nilsson, L.; Hamberger, L. Hydrosalpinx reduces in-vitro fertilization/embryo transfer pregnancy rates. Hum. Reprod. 1994, 9, 861–863. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.L.; Sagoskin, A.W.; Widra, E.A.; Levy, M.J. The adverse effect of hydrosalpinges on in vitro fertilization pregnancy rates and the benefit of surgical correction. Fertil. Steril. 1998, 69, 41–45. [Google Scholar] [CrossRef]
- Barmat, L.I.; Rauch, E.; Spandorfer, S.; Kowalik, A.; Sills, E.S.; Schattman, G.; Liu, H.C.; Rosenwaks, Z. The effect of hydrosalpinges on IVF-ET outcome. J. Assist. Reprod. Genet. 1999, 16, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Piquette, G.N.; Frances, A.; Polan, M.L. Localization of interleukin-1 type I receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle. J. Clin. Endocrinol. Metab. 1993, 77, 549–555. [Google Scholar] [CrossRef]
- Sawin, S.W.; Loret de Mola, J.R.; Monzon-Bordonaba, F.; Wang, C.L.; Feinberg, R.F. Hydrosalpinx fluid enhances human trophoblast viability and function in vitro: Implications for embryonic implantation in assisted reproduction. Fertil. Steril. 1997, 68, 65–71. [Google Scholar] [CrossRef]
- Strandell, A.; Lindhard, A.; Waldenstrom, U.; Thorburn, J. Hydrosalpinx and IVF outcome: Cumulative results after salpingectomy in a randomized controlled trial. Hum. Reprod. 2001, 16, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Devoto, L.; Pino, A.M. Estradiol and progesterone receptors in the human oviduct. Arch. Biol. Med. Exp. 1991, 24, 295–300. [Google Scholar]
- Farquhar, C.M. Ectopic pregnancy. Lancet 2005, 366, 583–591. [Google Scholar] [CrossRef]
- Shaw, J.L.; Dey, S.K.; Critchley, H.O.; Horne, A.W. Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum. Reprod. Update 2010, 16, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Creanga, A.A.; Shapiro-Mendoza, C.K.; Bish, C.L.; Zane, S.; Berg, C.J.; Callaghan, W.M. Trends in Ectopic Pregnancy Mortality in the United States: 1980–2007. Obstet. Gynecol. 2011, 117, 837–843. [Google Scholar] [CrossRef]
- Shibahara, H.; Takamizawa, S.; Hirano, Y.; Ayustawati; Takei, Y.; Fujiwara, H.; Tamada, S.; Sato, I. Relationships between Chlamydia trachomatis Antibody Titers and Tubal Pathology Assessed using Transvaginal Hydrolaparoscopy in Infertile Women. Am. J. Reprod. Immunol. 2003, 50, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.P.; Coulson, P.B.; Wild, R.A. Serum Progesterone Levels as an Aid in the Diagnosis of Ectopic Pregnancy. Obstet. Gynecol. 1986, 68, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Riss, P.A.; Radivojevic, K.; Bieglmayer, C. Serum progesterone and human chorionic gonadotropin in very early pregnancy: Implications for clinical management. Eur. J. Obstet. Gynecol. Reprod. Biol. 1989, 32, 71–77. [Google Scholar] [CrossRef]
- Ghosh, B.; Dadhwal, V.; Deka, D.; Ramesan, C.K.; Mittal, S. Ectopic pregnancy following levonorgestrel emergency contraception: A case report. Contraception 2009, 79, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Marx, L.; Arck, P.; Kapp, M.; Kieslich, C.; Dietl, J. Leukocyte populations, hormone receptors and apoptosis in eutopic and ectopic first trimester human pregnancies. Hum. Reprod. 1999, 14, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Land, J.A.; Arends, J.W. Immunohistochemical analysis of estrogen and progesterone receptors in fallopian tubes during ectopic pregnancy. Fertil. Steril. 1992, 58, 335–337. [Google Scholar] [CrossRef]
- Cartwright, J.; Duncan, W.C.; Critchley, H.O.D.; Horne, A.W. Serum biomarkers of tubal ectopic pregnancy: Current candidates and future possibilities. Reproduction 2009, 138, 9–22. [Google Scholar] [CrossRef] [Green Version]
Cytokine | Pro (+) vs. Anti (−) Inflammatory | Response to P4 | References |
---|---|---|---|
IL1α | + | ↓ | [63] |
IL1β | + | ⊗, ↓ | [12,64] |
IL3 | + | ↑ | [61] |
IL4 | − | ↑ | [61,65] |
IL6 | + and − | ⇑ | [66,67,68] |
IL7 | + | ↓ | [12] |
IL8 | + | ⊗, ↑ | [69,70] |
IL10 | − | ↑ | [12,61] |
IL11 | − | ↑ | [71] |
IL12 | + | ⊗ | [72] |
IL13 | − | ↑ | [65] |
IL15 | + | ↑ | [73] |
IL17 | + | ⇓ | [66] |
IL18 | + | ↓ | [74] |
IL23 | + | ⇓ | [66] |
TNFα | + | ↓ | [53] |
TNFγ | + | ↑ | [67,68] |
IFNγ | + | ↓ | [12] |
LIF 1 | − | ⇑ 2 | [75,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGlade, E.A.; Miyamoto, A.; Winuthayanon, W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022, 11, 1075. https://doi.org/10.3390/cells11071075
McGlade EA, Miyamoto A, Winuthayanon W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells. 2022; 11(7):1075. https://doi.org/10.3390/cells11071075
Chicago/Turabian StyleMcGlade, Emily A., Akio Miyamoto, and Wipawee Winuthayanon. 2022. "Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions" Cells 11, no. 7: 1075. https://doi.org/10.3390/cells11071075
APA StyleMcGlade, E. A., Miyamoto, A., & Winuthayanon, W. (2022). Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells, 11(7), 1075. https://doi.org/10.3390/cells11071075