Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development
Abstract
:1. Psychosocial Development in Adolescence
2. Tryptophan in Pregnancy
3. Maternal Trp Fluctuation Alters Neuroendocrine and Gut Microbiome in Offspring
3.1. Maternal Trp Fluctuation Alters Psychosocial Development via Reprogramming Neuroendocrine in Offspring
3.2. Maternal Trp Fluctuation Alters Psychosocial Development via Reprogramming the Gut Microbiota in Offspring
3.3. The Accompanied Physiological Alterations Are Associated with the Neuropsychological Impairment in Offspring
4. Inconsistency in the Current Findings and Gaps in Knowledge
5. Evidences in a Chicken Model
5.1. Chicken Model
5.2. Embryonic Trp Exposure Yields Bullying Victim
5.3. Embryonic Serotonin Exposure Reduces Aggressiveness in Bullies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Curtin, S.C.; Heron, M. Death Rates Due to Suicide and Homicide Among Persons Aged 10-24: United States, 2000-2017. NCHS Data Brief 2019, 352, 1–8. [Google Scholar]
- Levi-Belz, Y.; Gavish-Marom, T.; Barzilay, S.; Apter, A.; Carli, V.; Hoven, C.; Sarchiapone, M.; Wasserman, D. Psychosocial Factors Correlated with Undisclosed Suicide Attempts to Significant Others: Findings from the Adolescence SEYLE Study. Suicide Life-Threat. Behav. 2019, 49, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Oltmanns, T.F.; Melley, A.H.; Turkheimer, E. Impaired social functioning and symptoms of personality disorders assessed by peer and self-report in a nonclinical population. J. Pers. Disord. 2002, 16, 437–452. [Google Scholar] [CrossRef] [PubMed]
- El Bouhaddani, S.; Van Domburgh, L.; Schaefer, B.; Doreleijers, T.A.H.; Veling, W. Peer status in relation to psychotic experiences and psychosocial problems in adolescents: A longitudinal school-based study. Eur. Child Adolesc. Psychiatry 2017, 27, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Ball, H.; Arseneault, L.; Taylor, A.; Maughan, B.; Caspi, A.; Moffitt, T. Genetic and environmental influences on victims, bullies and bully-victims in childhood. J. Child Psychol. Psychiatry 2008, 49, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, M.; Luoma, I.; Salmelin, R.; Tamminen, T. A longitudinal study of maternal prenatal, postnatal and concurrent depressive symptoms and adolescent well-being. J. Affect. Disord. 2012, 136, 680–692. [Google Scholar] [CrossRef]
- Schmitz, M.; Denardin, D.; Silva, T.L.; Pianca, T.; Hutz, M.H.; Faraone, S.; Rohde, L.A. Smoking During Pregnancy and Attention-Deficit/Hyperactivity Disorder, Predominantly Inattentive Type: A Case-Control Study. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 1338–1345. [Google Scholar] [CrossRef]
- Lereya, S.T.; Wolke, D. Prenatal family adversity and maternal mental health and vulnerability to peer victimisation at school. J. Child Psychol. Psychiatry 2013, 54, 644–652. [Google Scholar] [CrossRef]
- Notarangelo, F.M.; Schwarcz, R. Restraint Stress during Pregnancy Rapidly Raises Kynurenic Acid Levels in Mouse Placenta and Fetal Brain. Dev. Neurosci. 2016, 38, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Keane, J.M.; Khashan, A.S.; McCarthy, F.P.; Kenny, L.C.; Collins, J.M.; O’Donovan, S.; Brown, J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; et al. Identifying a biological signature of prenatal maternal stress. JCI Insight 2021, 6, 143007. [Google Scholar] [CrossRef]
- Tsuji, A.; Nakata, C.; Sano, M.; Fukuwatari, T.; Shibata, K. L-Tryptophan Metabolism in Pregnant Mice Fed a High L-Tryptophan Diet and the Effect on Maternal, Placental, and Fetal Growth. Int. J. Tryptophan Res. 2013, 6, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, Å.; Hellgren, C.; Kallak, T.K.; Åkerud, H.; Skalkidou, A.; Stener-Victorin, E.; Fornes, R.; Spigset, O.; Lager, S.; Olivier, J.; et al. The effect of antenatal depression and antidepressant treatment on placental tissue: A protein-validated gene expression study. BMC Pregnancy Childbirth 2019, 19, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnin, A.; Goeden, N.; Chen, K.; Wilson, M.L.; King, J.; Shih, J.C.; Blakely, R.D.; Deneris, E.S.; Levitt, P. A transient placental source of serotonin for the fetal forebrain. Nature 2011, 472, 347–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, S.; Kema, I.; Bosker, F.; Haavik, J.; Korf, J. Tryptophan as an evolutionarily conserved signal to brain serotonin: Molecular evidence and psychiatric implications. World J. Biol. Psychiatry 2007, 10, 1–11. [Google Scholar] [CrossRef]
- Badawy, A.A.-B. The tryptophan utilization concept in pregnancy. Obstet. Gynecol. Sci. 2014, 57, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Law, K.P.; Han, T.-L.; Mao, X.; Zhang, H. Tryptophan and purine metabolites are consistently upregulated in the urinary metabolome of patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women part 2. Clin. Chim. Acta 2017, 468, 126–139. [Google Scholar] [CrossRef]
- Jones, P.; Cannon, M. The New Epidemiology of Schizophrenia. Psychiatr. Clin. N. Am. 1998, 21, 1–25. [Google Scholar] [CrossRef]
- Anderson, G.; Maes, M. Schizophrenia: Linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 42, 5–19. [Google Scholar] [CrossRef]
- Steen, N.E.; Tesli, M.; Kähler, A.K.; Methlie, P.; Hope, S.; Barrett, E.A.; Larsson, S.; Mork, E.; Løvås, K.; Røssberg, J.I.; et al. SRD5A2 is associated with increased cortisol metabolism in schizophrenia spectrum disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1500–1506. [Google Scholar] [CrossRef]
- Glover, V.; O’Connor, T.; O’Donnell, K. Prenatal stress and the programming of the HPA axis. Neurosci. Biobehav. Rev. 2010, 35, 17–22. [Google Scholar] [CrossRef]
- Galley, J.D.; Chen, H.J.; Antonson, A.M.; Gur, T.L. Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav. Brain Res. 2021, 414, 113471. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Thömke, F.; Adler, L. Administration of tryptophan-enriched diets to pregnant rats retards the development of the serotonergic system in their offspring. Dev. Brain Res. 1992, 68, 175–181. [Google Scholar] [CrossRef]
- Ito, H.; Shiokawa, H.; Torii, M.; Suzuki, T. Effects of Tryptophane on Shrsp Offspring Growth. Clin. Exp. Hypertens. Part A Theory Pract. 1991, 13, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Devoe, L.D.; Castillo, R.A.; Searle, N.S.; Searle, J.R. Maternal dietary substrates and human fetal biophysical activity. Am. J. Obstet. Gynecol. 1986, 155, 135–139. [Google Scholar] [CrossRef]
- Arevalo, R.; Afonso, D.; Castro, R.; Rodriguez, M. Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 1991, 49, 53–66. [Google Scholar] [CrossRef]
- Martin, L.; Díaz, M.R.; Santana-Herrera, C.; Milena, A.; Santana, C. Tryptophan ingestion by gestant mothers alters prolactin and luteinizing hormone release in the adult male offspring. Brain Res. 1997, 774, 265–268. [Google Scholar] [CrossRef]
- Fando, J.L.; Domínguez, F.; Herrera, E. Tryptophan Overload in the Pregnant Rat: Effect on Brain Amino Acid Levels and In Vitro Protein Synthesis. J. Neurochem. 1981, 37, 824–829. [Google Scholar] [CrossRef]
- Imbesi, R.; Castrogiovanni, P. Embryonic and postnatal development in experimental tryptophan deprived rats. A preliminary study. Histochem. J. 2008, 39, 487–498. [Google Scholar] [CrossRef]
- Imbesi, R.; Mazzone, V.; Castrogiovanni, P. Is Tryptophan ‘more’ Essential than Other Essential Aminoacids in Development? A Morphologic Study. Anat. Histol. Embryol. 2009, 38, 361–369. [Google Scholar] [CrossRef]
- Flores-Cruz, G.M.; Escobar, A. Reduction of serotonergic neurons in the dorsal raphe due to chronic prenatal administration of a tryptophan-free diet. Int. J. Dev. Neurosci. 2012, 30, 63–67. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Lin, I.-C.; Yu, H.-R.; Huang, L.-T.; Tiao, M.-M.; Tain, Y.-L. Maternal Tryptophan Supplementation Protects Adult Rat Offspring against Hypertension Programmed by Maternal Chronic Kidney Disease: Implication of Tryptophan-Metabolizing Microbiome and Aryl Hydrocarbon Receptor. Int. J. Mol. Sci. 2020, 21, 4552. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Musumeci, G.; Trovato, F.M.; Avola, R.; Magro, G.; Imbesi, R. Effects of high-tryptophan diet on pre- and postnatal development in rats: A morphological study. Z. für Ernährungswissenschaft 2013, 53, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Bunce, G.E.; Hess, J.L. Lenticular Opacities in Young Rats as a Consequence of Maternal Diets Low in Tryptophan and/or Vitamin E. J. Nutr. 1976, 106, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Penatti, E.M.; Barina, A.E.; Raju, S.; Li, A.; Kinney, H.C.; Commons, K.G.; Nattie, E.E. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups. J. Appl. Physiol. 2011, 110, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Bai, M.; Bin, P.; Duan, Y.; Wu, X.; Liu, H.; Yin, Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. J. Sci. Food Agric. 2019, 99, 3005–3016. [Google Scholar] [CrossRef]
- Zoratto, F.; Berry, A.; Anzidei, F.; Fiore, M.; Alleva, E.; Laviola, G.; Macrì, S. Effects of maternal l-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2011, 35, 1479–1492. [Google Scholar] [CrossRef]
- Baumgarten, H.G.; Göthert, M. Serotoninergic Neurons and 5-HT Receptors in the CNS; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 129. [Google Scholar]
- Yu, Q.; Teixeira, C.; Mahadevia, D.; Huang, Y.-Y.; Balsam, D.; Mann, J.J.; A Gingrich, J.; Ansorge, M.S. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol. Psychiatry 2014, 19, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020, 11, 186. [Google Scholar] [CrossRef]
- Hamon, M.; Bourgoin, S.; Artaud, F.; El Mestikawy, S. The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system. J. Physiol. 1981, 77, 269–279. [Google Scholar]
- St-Pierre, J.; Laurent, L.; King, S.; Vaillancourt, C. Effects of prenatal maternal stress on serotonin and fetal development. Placenta 2016, 48, S66–S71. [Google Scholar] [CrossRef]
- Suri, D.; Teixeira, C.; Cagliostro, M.K.C.; Mahadevia, D.; Ansorge, M.S. Monoamine-Sensitive Developmental Periods Impacting Adult Emotional and Cognitive Behaviors. Neuropsychopharmacology 2015, 40, 88–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, T. Prenatal depression effects on early development: A review. Infant Behav. Dev. 2011, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Smit-Rigter, L.A.; Noorlander, C.W.; von Oerthel, L.; Chameau, P.; Smidt, M.P.; van Hooft, J.A. Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour. Neuropharmacology 2012, 62, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Nulman, I.; Koren, G.; Rovet, J.; Barrera, M.; Streiner, D.L.; Feldman, B.M. Neurodevelopment of Children Prenatally Exposed to Selective Reuptake Inhibitor Antidepressants. J. Clin. Psychiatry 2015, 76, e842–e847. [Google Scholar] [CrossRef]
- von Klitzing, K.; Perren, S.; Klein, A.M.; Stadelmann, S.; White, L.O.; Groeben, M.; Holsboer-Trachsler, E.; Brand, S.; Hatzinger, M. The interaction of social risk factors and HPA axis dysregulation in predicting emotional symptoms of five- and six-year-old children. J. Psychiatr. Res. 2012, 46, 290–297. [Google Scholar] [CrossRef] [Green Version]
- D’Hondt, E.; Eelen, M.; Berghman, L.; Vandesande, F. Colocalization of arginine-vasotocin and chicken luteinizing hormone-releasing hormone-I (cLHRH-I) in the preoptic-hypothalamic region of the chicken. Brain Res. 2000, 856, 55–67. [Google Scholar] [CrossRef]
- Huang, X.; Kuang, S.; Applegate, T.J.; Lin, T.-L.; Cheng, H.-W. The development of the serotonergic and dopaminergic systems during chicken mid-late embryogenesis. Mol. Cell. Endocrinol. 2019, 493, 110472. [Google Scholar] [CrossRef]
- Morrison, T.R.; Melloni, R.H. The Role of Serotonin, Vasopressin, and Serotonin/Vasopressin Interactions in Aggressive Behavior. In Behavioral Neurobiology of Alcohol Addiction; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 17, pp. 189–228. [Google Scholar]
- Ashbury, J.E.; Lévesque, L.E.; Beck, P.A.; Aronson, K.J. Selective Serotonin Reuptake Inhibitor (SSRI) Antidepressants, Prolactin and Breast Cancer. Front. Oncol. 2012, 2, 177. [Google Scholar] [CrossRef] [Green Version]
- Lennartsson, A.-K.; Jonsdottir, I.H. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology 2011, 36, 1530–1539. [Google Scholar] [CrossRef]
- Wagenmaker, E.R.; Moenter, S.M. Exposure to Acute Psychosocial Stress Disrupts the Luteinizing Hormone Surge Independent of Estrous Cycle Alterations in Female Mice. Endocrinology 2017, 158, 2593–2602. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhang, W.; Zhu, Y.; Liu, P.; Tao, B.; Fu, Y.; Chen, Y.; Zhou, L.; Liu, L.; Gao, X.; et al. Initiation of the Hypothalamic–Pituitary–Gonadal Axis in Young Girls Undergoing Central Precocious Puberty Exerts Remodeling Effects on the Prefrontal Cortex. Front. Psychiatry 2019, 10, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usui, N.; Matsuzaki, H.; Shimada, S. Characterization of Early Life Stress-Affected Gut Microbiota. Brain Sci. 2021, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Rincel, M.; Aubert, P.; Chevalier, J.; Grohard, P.-A.; Basso, L.; de Oliveira, C.M.; Helbling, J.C.; Levy, E.; Chevalier, G.; Leboyer, M.; et al. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav. Immun. 2019, 80, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-w.; Jiang, S.; Hu, J. Gut-Brain Axis: Probiotic, Bacillus subtilis, Prevents Aggression via the Modification of the Central Serotonergic System. In Oral Health by Using Probiotic Products; Mahmoudi, R., Moosazad, S., Aghaei, K., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Bailey, M.T.; Coe, C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 1999, 35, 146–155. [Google Scholar] [CrossRef]
- Takada, M.; Nishida, K.; Kataoka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol. Motil. 2016, 28, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, J.; Wu, F.; Zheng, H.; Peng, Q.; Zhou, H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Transl. Psychiatry 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Fung, T.C.; Vuong, H.E.; Luna, C.D.G.; Pronovost, G.N.; Aleksandrova, A.; Riley, N.G.; Vavilina, A.; McGinn, J.; Rendon, T.; Forrest, L.R.; et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat. Microbiol. 2019, 4, 2064–2073. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, B.; Tian, P.; Li, X.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Daily intake of Lactobacillus alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. Food Funct. 2021, 12, 2591–2604. [Google Scholar] [CrossRef]
- Badawy, A.A.-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015, 35, e00261. [Google Scholar] [CrossRef]
- Hilaire, G.; Voituron, N.; Menuet, C.; Ichiyama, R.; Subramanian, H.H.; Dutschmann, M. The role of serotonin in respiratory function and dysfunction. Respir. Physiol. Neurobiol. 2010, 174, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Seidman, L.J.; Buka, S.L.; Goldstein, J.M.; Horton, N.J.; Rieder, R.O.; Tsuang, M.T. The Relationship of Prenatal and Perinatal Complications to Cognitive Functioning at Age 7 in the New England Cohorts of the National Collaborative Perinatal Project. Schizophr. Bull. 2000, 26, 309–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.M.; Lindström, M. Socioeconomic, psychosocial, behavioural, and psychological determinants of BMI among young women: Differing patterns for underweight and overweight/obesity. Eur. J. Public Health 2005, 16, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Levitan, R.D.; Sqapi, M.; Atkinson, L.; Murphy, K.; Levitt, A.; Bocking, A.; Post, M.; Knight, J.A.; Matthews, S.G. Seasonality of plasma tryptophan and kynurenine in pregnant mothers with a history of seasonal affective disorder: Vulnerability or adaptation? World J. Biol. Psychiatry 2020, 21, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Barker, D. The fetal origins of adult disease. Fetal Matern. Med. Rev. 1994, 6, 71–80. [Google Scholar] [CrossRef]
- Balayan, K.; Verma, M. Understanding Bullying: Roles, Types, Gender Difference and Effect on Mental Health. Int. J. Indian Psychol. 2021, 9, 2217–2223. [Google Scholar] [CrossRef]
- Hornef, M.; Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 2017, 10, 598–601. [Google Scholar] [CrossRef] [Green Version]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef]
- Beacon, M.T.H.; Davie, J.R. The chicken model organism for epigenomic research. Genome 2021, 64, 476–489. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Ma, W.; Ni, Y.; Zhou, Q.; Zhao, R. Embryonic exposure to corticosterone modifies aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken. Horm. Behav. 2014, 65, 97–105. [Google Scholar] [CrossRef]
- Hymel, K.A.; Salmeto, A.L.; Loria, M.J.; White, S.W.; Sufka, K.J. Strain vulnerability and resiliency in the chick anxiety–depression model. Physiol. Behav. 2013, 120, 124–129. [Google Scholar] [CrossRef]
- Cheng, H.; Singleton, P.; Muir, W. Social stress differentially regulates neuroendocrine responses in laying hens: I. Genetic basis of dopamine responses under three different social conditions. Psychoneuroendocrinology 2003, 28, 597–611. [Google Scholar] [CrossRef]
- Cheng, H.; Muir, W. Chronic social stress differentially regulates neuroendocrine responses in laying hens: II. Genetic basis of adrenal responses under three different social conditions. Psychoneuroendocrinology 2004, 29, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, E.; Pross, A.; Rosa-Salva, O.; Versace, E.; Sgadò, P.; Vallortigara, G. Embryonic Exposure to Valproic Acid Affects Social Predispositions for Dynamic Cues of Animate Motion in Newly-Hatched Chicks. Front. Physiol. 2019, 10, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishigori, H.; Kagami, K.; Takahashi, A.; Tezuka, Y.; Sanbe, A.; Nishigori, H. Impaired social behavior in chicks exposed to sodium valproate during the last week of embryogenesis. Psychopharmacology 2013, 227, 393–402. [Google Scholar] [CrossRef]
- Sgadò, P.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci. Rep. 2018, 8, 5919. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; La, T.-M.; Lee, H.-J.; Choi, I.-S.; Song, C.-S.; Park, S.-Y.; Lee, J.-B.; Lee, S.-W. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep. 2019, 9, 6838. [Google Scholar] [CrossRef]
- Huang, X.; Hu, J.; Peng, H.; Cheng, H.-W. Embryonic Exposure to Tryptophan Yields Bullying Victimization via Reprogramming the Microbiota-Gut-Brain Axis in a Chicken Model. Nutrients 2022, 14, 661. [Google Scholar] [CrossRef]
- Saffarian, A.; Mulet, C.; Regnault, B.; Amiot, A.; Tran-Van-Nhieu, J.; Ravel, J.; Sobhani, I.; Sansonetti, P.J.; Pédron, T. Crypt- and Mucosa-Associated Core Microbiotas in Humans and Their Alteration in Colon Cancer Patients. mBio 2019, 10, 01315–01319. [Google Scholar] [CrossRef] [Green Version]
- Barandouzi, Z.A.; Starkweather, A.R.; Henderson, W.; Gyamfi, A.; Cong, X.S. Altered Composition of Gut Microbiota in Depression: A Systematic Review. Front. Psychiatry 2020, 11, 541. [Google Scholar] [CrossRef]
- Lasheras, I.; Seral, P.; Latorre, E.; Barroso, E.; Gracia-García, P.; Santabárbara, J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: Evidence for functional gastrointestinal disorders. Asian J. Psychiatry 2020, 47, 101874. [Google Scholar] [CrossRef]
- Gophna, U.; Konikoff, T.; Nielsen, H.B. Oscillospiraand related bacteria—From metagenomic species to metabolic features. Environ. Microbiol. 2017, 19, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osadchiy, V.; Labus, J.S.; Gupta, A.; Jacobs, J.; Ashe-McNalley, C.; Hsiao, E.Y.; Mayer, E.A. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE 2018, 13, e0201772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knack, J.M.; Jensen-Campbell, L.A.; Baum, A. Worse than sticks and stones? Bullying is associated with altered HPA axis functioning and poorer health. Brain Cogn. 2011, 77, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Berthoud, H.-R.; Albaugh, V.L.; Neuhuber, W.L. Gut-brain communication and obesity: Understanding functions of the vagus nerve. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Gastón, M.; Cid, M.; Salvatierra, N. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress. Behav. Brain Res. 2017, 320, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, F.; Armstrong, E.A.; Longmoor, G.K.; D’Eath, R.B.; Sandilands, V.; Boswell, T.; Smulders, T.V. Unpredictable Chronic Mild Stress Suppresses the Incorporation of New Neurons at the Caudal Pole of the Chicken Hippocampal Formation. Sci. Rep. 2019, 9, 7129. [Google Scholar] [CrossRef] [Green Version]
- Smulders, T. The Avian Hippocampal Formation and the Stress Response. Brain Behav. Evol. 2017, 90, 81–91. [Google Scholar] [CrossRef]
- Smulders, T.V. Telencephalic regulation of the HPA axis in birds. Neurobiol. Stress 2021, 15, 100351. [Google Scholar] [CrossRef]
- Li, X.; Jensen, R.L.; Højberg, O.; Canibe, N.; Jensen, B.B. Olsenella scatoligenes sp. nov., a 3-methylindole- (skatole) and 4-methylphenol- (p-cresol) producing bacterium isolated from pig faeces. Int. J. Syst. Evol. Microbiol. 2015, 65, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Wassum, K.M.; Izquierdo, A. The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. 2015, 57, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, F.V.; Hamani, C.; Fonoff, E.T.; Brentani, H.; Alho, E.J.L.; de Morais, R.M.C.B.; de Souza, A.L.; Rigonatti, S.P.; Martinez, R.C.R. Amygdala and Hypothalamus: Historical Overview With Focus on Aggression. Neurosurgery 2019, 85, 11–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, D.D.; Caldji, C.; Champagne, F.; Plotsky, P.M.; Meaney, M.J. The role of corticotropin-releasing factor–norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol. Psychiatry 1999, 46, 1153–1166. [Google Scholar] [CrossRef]
- Castelbaum, L.; Sylvester, C.M.; Zhang, Y.; Yu, Q.; Constantino, J.N. On the Nature of Monozygotic Twin Concordance and Discordance for Autistic Trait Severity: A Quantitative Analysis. Behav. Genet. 2020, 50, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugden, K.; Arseneault, L.; Harrington, H.; Moffitt, T.E.; Williams, B.; Caspi, A. Serotonin Transporter Gene Moderates the Development of Emotional Problems Among Children Following Bullying Victimization. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 830–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moukhles, H.; Bosler, O.; Bolam, J.P.; Vallée, A.; Umbriaco, D.; Geffard, M.; Doucet, G. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 1997, 76, 1159–1171. [Google Scholar] [CrossRef]
- Navailles, S.; De Deurwaerdère, P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology 2010, 213, 213–242. [Google Scholar] [CrossRef]
- De Deurwaerdère, P.; Di Giovanni, G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog. Neurobiol. 2017, 151, 175–236. [Google Scholar] [CrossRef]
- Schlüter, T.; Winz, O.; Henkel, K.; Prinz, S.; Rademacher, L.; Schmaljohann, J.; Dautzenberg, K.; Cumming, P.; Kumakura, Y.; Rex, S.; et al. The Impact of Dopamine on Aggression: An [18F]-FDOPA PET Study in Healthy Males. J. Neurosci. 2013, 33, 16889–16896. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.L.; Fahey, A.G.; Cheng, H.W. Alterations to Embryonic Serotonin Change Aggression and Fearfulness. Aggress. Behav. 2013, 39, 91–98. [Google Scholar] [CrossRef]
- Dennis, R.; Cheng, H. The dopaminergic system and aggression in laying hens. Poult. Sci. 2011, 90, 2440–2448. [Google Scholar] [CrossRef]
- Huang, X.; Kuang, S.; Applegate, T.J.; Lin, T.-L.; Cheng, H.-W. Prenatal Serotonin Fluctuation Affects Serotoninergic Development and Related Neural Circuits in Chicken Embryos. Neuroscience 2021, 473, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Jiang-Xie, L.-F.; Liao, H.-M.; Chen, C.-H.; Chen, Y.-T.; Ho, S.-Y.; Lu, D.-H.; Lee, L.-J.; Liou, H.-H.; Fu, W.-M.; Gau, S.S.-F. Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol. Autism 2014, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.N.; Lind, J.N.; Simeone, R.M.; Bobo, W.V.; Mitchell, A.A.; Riehle-Colarusso, T.; Polen, K.N.; Reefhuis, J. Maternal Use of Specific Antidepressant Medications During Early Pregnancy and the Risk of Selected Birth Defects. JAMA Psychiatry 2020, 77, 1246. [Google Scholar] [CrossRef] [PubMed]
Species | Treated Time | Control | Treatment | Exhibitions in Offspring | Refs |
---|---|---|---|---|---|
Wistar rats | 14 days prior to mating–P4mo * | Standard chow powder (3.5 g Trp/kg) | 10 g Trp mixed with the diet (13.5 g Trp/kg) | Decreased BW of the male offspring at P4mo; Decreased 5-HT concentration, TPH2 activity, and 5-HT uptake in the frontal cortex and brain stem. | [22] |
SHRs or DOCA-salt hypertensive rats | 7 continued days prior to mating | Stock chow diet | 30 mg Trp/kg/day mixed with the diet | Increased BW and blood pressure during P5wk–P15wk; Increased brain weight at P20wk; Increased total 5-HT metabolite content (5-HT plus 5-HIAA) in the medulla at P20wk. | [23] |
Humans | 210 min | Continued fasting | 1 g Trp orally | Increased incidence of fetal breathing movements; Unchanged breathing rates and breath interval variability. | [24] |
SD rats | E17 | Saline vehicle | 200 mg Trp/kg oral gavage | Increased Trp, 5-HT, and 5-HIAA concentrations in the fetal brain at E17 and E18. | [25] |
SD rats | E15–E21 | Saline vehicle | 200 mg Trp/kg oral gavage | Increased serum PRL at P40d and P70d; Increased serum LH at P70d; Increased forebrain 5-HT and 5-HIAA at P70d. | [26] |
Wistar rats | E19 and E21 | 0.1 N-HCl vehicle | 250 mg Trp/kg i.p. | Increased intracerebral concentrations of Trp at E19; Decreased valine, methionine, leucine, tyrosine, phenylalanine, and histidine at E19; Increased phosphoserine, threonine, serine, glutamic acid, and Trp at E21; Decreased methionine, leucine, and histidine at E21; Increased protein synthesis activity indicated by [3H] Leucine incorporation at E19 and E21. | [27] |
SD rats | E14.5–late puberty | Control chow (0.22% Trp) | Trp free diet (0.00% Trp) | Dwarfism pups; Decreased serum GH concentration in male and female offspring; Severe hypoprolactinemia; Normal right-timed onset of puberty in both male and female rats. | [28,29] |
Wistar rats | E5–E21 | Regular chow diet | Trp-free diet (0.2% Trp) | Unchanged Brain weights in newborn pups; Decreased BW in newborn pups; Reduced numbers of 5-HTergic neurons at the dorsal raphe, especially at the medial and caudal sections of dorsal raphe, which contains the majority of 5-HTergic neurons; Unchanged brain 5-HT concentration. | [30] |
SD rats | E1–E21 | Control | 200 mg Trp/kg oral gavage | Increased kidney weight-to-BW ratio at P12wk; Increase blood pressure in male offspring at P4wk, P6wk, P8wk, P10wk, and P12wk; Decreased plasma level of L-citrulline, a precursor of l-arginine and SDMA, an indirect inhibitor of NO synthase; Increased gene expressions in the AHR pathway. | [31] |
CKD SD rats | E1–early postnatal life * | Control | 200 mg Trp/kg oral gavage | Decreased systolic blood pressure, mean arterial pressure, and creatinine at P12wk; Decreased plasma level of L-citrulline and SDMA; Altered the abundance of the Trp-metabolizing microbes, i.e., increased the abundance of the genus Intestinimonas and decreased the abundance of Turicibacter. | [31] |
SD rats | E1–late puberty | Control rat chow (0.22% Trp) | Trp free diet (0.00% Trp) | Pronounced dwarfism pups; Decreased serum GH concentration in males and females; Marked hypoandrogenism and severe hypoprolactinemia in males; Hypoprolactinemia in females; Right-timed pubertal maturation in both sexes. | [28,29] |
SD rats | E1–P12wk * | Control rat chow (0.22 g Trp/100 g of pellets) | high-Trp diet (1 g Trp/100 g of pellets) | Increased blood 5-HT, i.e., hyperserotonemia during P1wk-P12wk; Decreased blood GH; Decreased TPH1 activity in gastrointestinal tracts tissue; Decreased IGF-I expression in hepatic and muscle tissue. | [32] |
SD rats | E1–weaning | 500 mg Trp/100 g diet | 75 mg Trp/ 100 g diet | Decreased average BW at weaning; Unaffected opacities at P22d. | [33] |
SD rats | E1–P25d * | TD.99366 control diet (1.8 g Trp/kg) | TD.08125 Trp-deficient diet (1 g Trp/kg) | Normal BW at P5d but reduced BW at P15d and P25d; Decreased body temperatures at P15d and P25d; Unaffected Oxygen consumption (VO2); Altered breathing pattern and slower heart rates at 15 d; Decreased ventilation (VE) and VE-to-VO2 ratios in both air and 7% CO2 at P25d; Increased ventilatory response to CO2 at P5d in male offspring and reduced at P15d and P25d in male and female offspring; Reduced medullary 5-HT concentration, while similar 5-HT neuronal number. | [34] |
Pigs | Third trimester of gestation–delivery | 2×Trp diet (0.26% Trp fed in the morning and afternoon) | High-low Trp diet (0.39% Trp fed in the morning and 0.13% Trp fed in the afternoon) | Decreased birth healthy pig rate and birth weight of piglet per pen with similar total birth weight per pen; Decreased serum phosphoserine, taurine, cysteine, proline in newborns and increased liver n-6:n-3 PUFA ratio; Altered gene expressions, including the genes related to cytotoxic effector regulation, NADH oxidation, ROS metabolism, and tissue development. | [35] |
Outbred CD-1 mice | Lactation (P0d–P8d) | Standard laboratory diet (0.14% Trp) | Trp-deficient diet (0.00% Trp) | Unchanged time spent in open sectors in the 0-maze test in adolescent daughters (P189d–P193d); Unchanged time spent in floating in the forced-swim test in adolescent daughters; Unchanged time spent in the novel compartment in the novelty-seeking test in adolescent daughters; Unchanged achieved breakpoint in the progressive ratio operant procedure in adolescent daughters; Decreased plasma CORT concentrations and similar BDNF concentrations following restraint stress in adolescent daughters. | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Feng, Z.; Cheng, H.-w. Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells 2022, 11, 1270. https://doi.org/10.3390/cells11081270
Huang X, Feng Z, Cheng H-w. Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells. 2022; 11(8):1270. https://doi.org/10.3390/cells11081270
Chicago/Turabian StyleHuang, Xiaohong, Zhendong Feng, and Heng-wei Cheng. 2022. "Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development" Cells 11, no. 8: 1270. https://doi.org/10.3390/cells11081270
APA StyleHuang, X., Feng, Z., & Cheng, H. -w. (2022). Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells, 11(8), 1270. https://doi.org/10.3390/cells11081270